#ifndef ALIITSRECOPARAM_H #define ALIITSRECOPARAM_H /* Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ /////////////////////////////////////////////////////////////////////////////// // // // Class with ITS reconstruction parameters // // Origin: andrea.dainese@lnl.infn.it // // // /////////////////////////////////////////////////////////////////////////////// #include "AliDetectorRecoParam.h" #include "AliITSgeomTGeo.h" #include "AliESDV0Params.h" class AliITSRecoParam : public AliDetectorRecoParam { public: AliITSRecoParam(); virtual ~AliITSRecoParam(); static AliITSRecoParam *GetLowFluxParam();// make reco parameters for low flux env. static AliITSRecoParam *GetHighFluxParam();// make reco parameters for high flux env. static AliITSRecoParam *GetCosmicTestParam();// special setting for cosmic static AliITSRecoParam *GetPlaneEffParam(Int_t i);// special setting for Plane Efficiency studies static Int_t GetLayersNotToSkip(Int_t i) { return fgkLayersNotToSkip[i]; } static Int_t GetLastLayerToTrackTo() { return fgkLastLayerToTrackTo; } static Int_t GetMaxClusterPerLayer() { return fgkMaxClusterPerLayer; } static Int_t GetMaxClusterPerLayer5() { return fgkMaxClusterPerLayer5; } static Int_t GetMaxClusterPerLayer10() { return fgkMaxClusterPerLayer10; } static Int_t GetMaxClusterPerLayer20() { return fgkMaxClusterPerLayer20; } static Int_t GetMaxDetectorPerLayer() { return fgkMaxDetectorPerLayer; } static Double_t Getriw() { return fgkriw; } static Double_t Getdiw() { return fgkdiw; } static Double_t GetX0iw() { return fgkX0iw; } static Double_t Getrcd() { return fgkrcd; } static Double_t Getdcd() { return fgkdcd; } static Double_t GetX0cd() { return fgkX0cd; } static Double_t Getyr() { return fgkyr; } static Double_t Getdr() { return fgkdr; } static Double_t Getzm() { return fgkzm; } static Double_t Getdm() { return fgkdm; } static Double_t Getrs() { return fgkrs; } static Double_t Getds() { return fgkds; } static Double_t GetrInsideITSscreen() { return fgkrInsideITSscreen; } static Double_t GetrInsideSPD1() { return fgkrInsideSPD1; } static Double_t GetrPipe() { return fgkrPipe; } static Double_t GetrInsidePipe() { return fgkrInsidePipe; } static Double_t GetrOutsidePipe() { return fgkrOutsidePipe; } static Double_t GetdPipe() { return fgkdPipe; } static Double_t GetrInsideShield(Int_t i) { return fgkrInsideShield[i]; } static Double_t GetrOutsideShield(Int_t i) { return fgkrOutsideShield[i]; } static Double_t Getdshield(Int_t i) { return fgkdshield[i]; } static Double_t GetX0shield(Int_t i) { return fgkX0shield[i]; } static Double_t GetX0Air() { return fgkX0Air; } static Double_t GetX0Be() { return fgkX0Be; } static Double_t GetBoundaryWidth() { return fgkBoundaryWidth; } static Double_t GetDeltaXNeighbDets() { return fgkDeltaXNeighbDets; } static Double_t GetSPDdetzlength() { return fgkSPDdetzlength; } static Double_t GetSPDdetxlength() { return fgkSPDdetxlength; } void PrintParameters() const; void SetTracker(Int_t tracker=0) { fTracker=tracker; } void SetTrackerDefault() { SetTracker(0); } // = MI and SA void SetTrackerMI() { SetTracker(1); } void SetTrackerV2() { SetTracker(2); } Int_t GetTracker() const { return fTracker; } void SetTrackerSAOnly(Bool_t flag=kTRUE) { fITSonly=flag; } Bool_t GetTrackerSAOnly() const { return fITSonly; } void SetVertexer(Int_t vertexer=0) { fVertexer=vertexer; } void SetVertexer3D() { SetVertexer(0); } void SetVertexerZ() { SetVertexer(1); } void SetVertexerCosmics() { SetVertexer(2); } void SetVertexerIons() { SetVertexer(3); } void SetVertexerSmearMC(Float_t smearx=0.005, Float_t smeary=0.005, Float_t smearz=0.01) { fVertexerFastSmearX=smearx; fVertexerFastSmearY=smeary; fVertexerFastSmearZ=smearz; SetVertexer(4); } void SetVertexerFixedOnTDI() {SetVertexer(5);} // for injection tests void SetVertexerFixedOnTED() {SetVertexer(6);} // for injection tests Int_t GetVertexer() const { return fVertexer; } Float_t GetVertexerFastSmearX() const {return fVertexerFastSmearX;} Float_t GetVertexerFastSmearY() const {return fVertexerFastSmearY;} Float_t GetVertexerFastSmearZ() const {return fVertexerFastSmearZ;} void SetClusterFinder(Int_t cf=0) { fClusterFinder=cf; } void SetClusterFinderV2() { SetClusterFinder(0); } void SetClusterFinderOrig() { SetClusterFinder(1); } Int_t GetClusterFinder() const { return fClusterFinder; } void SetPID(Int_t pid=0) {fPID=pid;} void SetDefaultPID() {SetPID(0);} void SetLandauFitPID() {SetPID(1);} Int_t GetPID() const {return fPID;} void SetVertexer3DFiducialRegions(Float_t dzwid=40.0, Float_t drwid=2.5, Float_t dznar=0.5, Float_t drnar=0.5){ SetVertexer3DWideFiducialRegion(dzwid,drwid); SetVertexer3DNarrowFiducialRegion(dznar,drnar); } void SetVertexer3DWideFiducialRegion(Float_t dz=40.0, Float_t dr=2.5){ fVtxr3DZCutWide=dz; fVtxr3DRCutWide=dr; } void SetVertexer3DNarrowFiducialRegion(Float_t dz=0.5, Float_t dr=0.5){ fVtxr3DZCutNarrow=dz; fVtxr3DRCutNarrow=dr; } void SetVertexer3DDeltaPhiCuts(Float_t dphiloose=0.5, Float_t dphitight=0.025){ fVtxr3DPhiCutLoose=dphiloose; fVtxr3DPhiCutTight=dphitight; } void SetVertexer3DDCACut(Float_t dca=0.1){ fVtxr3DDCACut=dca; } void SetVertexer3DDefaults(){ SetVertexer3DFiducialRegions(); SetVertexer3DDeltaPhiCuts(); SetVertexer3DDCACut(); } void SetSPDVertexerPileupAlgoZ(){fVtxr3DPileupAlgo=0;} void SetSPDVertexerPileupAlgo3DTwoSteps(){fVtxr3DPileupAlgo=1;} void SetSPDVertexerPileupAlgo3DOneShot(){fVtxr3DPileupAlgo=2;} Float_t GetVertexer3DWideFiducialRegionZ() const {return fVtxr3DZCutWide;} Float_t GetVertexer3DWideFiducialRegionR() const {return fVtxr3DRCutWide;} Float_t GetVertexer3DNarrowFiducialRegionZ() const {return fVtxr3DZCutNarrow;} Float_t GetVertexer3DNarrowFiducialRegionR() const {return fVtxr3DRCutNarrow;} Float_t GetVertexer3DLooseDeltaPhiCut() const {return fVtxr3DPhiCutLoose;} Float_t GetVertexer3DTightDeltaPhiCut() const {return fVtxr3DPhiCutTight;} Float_t GetVertexer3DDCACut() const {return fVtxr3DDCACut;} Int_t GetSPDVertexerPileupAlgo() const {return fVtxr3DPileupAlgo;} Double_t GetSigmaY2(Int_t i) const { return fSigmaY2[i]; } Double_t GetSigmaZ2(Int_t i) const { return fSigmaZ2[i]; } Double_t GetMaxSnp() const { return fMaxSnp; } Double_t GetNSigmaYLayerForRoadY() const { return fNSigmaYLayerForRoadY; } Double_t GetNSigmaRoadY() const { return fNSigmaRoadY; } Double_t GetNSigmaZLayerForRoadZ() const { return fNSigmaZLayerForRoadZ; } Double_t GetNSigmaRoadZ() const { return fNSigmaRoadZ; } Double_t GetNSigma2RoadYC() const { return fNSigma2RoadYC; } Double_t GetNSigma2RoadZC() const { return fNSigma2RoadZC; } Double_t GetNSigma2RoadYNonC() const { return fNSigma2RoadYNonC; } Double_t GetNSigma2RoadZNonC() const { return fNSigma2RoadZNonC; } Double_t GetRoadMisal() const { return fRoadMisal; } void SetRoadMisal(Double_t road=0) { fRoadMisal=road; } Double_t GetChi2PerCluster() const { return fChi2PerCluster; } Double_t GetMaxChi2PerCluster(Int_t i) const { return fMaxChi2PerCluster[i]; } Double_t GetMaxNormChi2NonC(Int_t i) const { return fMaxNormChi2NonC[i]; } Double_t GetMaxNormChi2C(Int_t i) const { return fMaxNormChi2C[i]; } Double_t GetMaxNormChi2NonCForHypothesis() const { return fMaxNormChi2NonCForHypothesis; } Double_t GetMaxChi2() const { return fMaxChi2; } Double_t GetMaxChi2s(Int_t i) const { return fMaxChi2s[i]; } Double_t GetMaxChi2sR(Int_t i) const { return fMaxChi2sR[i]; } Double_t GetMaxChi2In() const { return fMaxChi2In; } Double_t GetMaxRoad() const { return fMaxRoad; } Double_t GetMaxNormChi2ForGolden(Int_t i) const { return 3.+0.5*i; } Double_t GetXVdef() const { return fXV; } Double_t GetYVdef() const { return fYV; } Double_t GetZVdef() const { return fZV; } Double_t GetSigmaXVdef() const { return fSigmaXV; } Double_t GetSigmaYVdef() const { return fSigmaYV; } Double_t GetSigmaZVdef() const { return fSigmaZV; } Double_t GetVertexCut() const { return fVertexCut; } Double_t GetMaxDZforPrimTrk() const { return fMaxDZforPrimTrk; } Double_t GetMaxDZToUseConstraint() const { return fMaxDZToUseConstraint; } Double_t GetMaxDforV0dghtrForProlongation() const { return fMaxDforV0dghtrForProlongation; } Double_t GetMaxDForProlongation() const { return fMaxDForProlongation; } Double_t GetMaxDZForProlongation() const { return fMaxDZForProlongation; } Double_t GetMinPtForProlongation() const { return fMinPtForProlongation; } void SetAddVirtualClustersInDeadZone(Bool_t add=kTRUE) { fAddVirtualClustersInDeadZone=add; return; } Bool_t GetAddVirtualClustersInDeadZone() const { return fAddVirtualClustersInDeadZone; } Double_t GetZWindowDeadZone() const { return fZWindowDeadZone; } Double_t GetSigmaXDeadZoneHit2() const { return fSigmaXDeadZoneHit2; } Double_t GetSigmaZDeadZoneHit2() const { return fSigmaZDeadZoneHit2; } Double_t GetXPassDeadZoneHits() const { return fXPassDeadZoneHits; } Bool_t GetSkipSubdetsNotInTriggerCluster() const { return fSkipSubdetsNotInTriggerCluster; } void SetSkipSubdetsNotInTriggerCluster(Bool_t flag=kTRUE) { fSkipSubdetsNotInTriggerCluster=flag; } void SetUseTGeoInTracker(Int_t use=1) { fUseTGeoInTracker=use; return; } Int_t GetUseTGeoInTracker() const { return fUseTGeoInTracker; } void SetStepSizeTGeo(Double_t size=0.1) { fStepSizeTGeo=size; return; } Double_t GetStepSizeTGeo() const { return fStepSizeTGeo; } void SetAllowSharedClusters(Bool_t allow=kTRUE) { fAllowSharedClusters=allow; return; } Bool_t GetAllowSharedClusters() const { return fAllowSharedClusters; } void SetClusterErrorsParam(Int_t param=1) { fClusterErrorsParam=param; return; } Int_t GetClusterErrorsParam() const { return fClusterErrorsParam; } void SetClusterMisalErrorY(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorY[0]=e0; fClusterMisalErrorY[1]=e1; fClusterMisalErrorY[2]=e2; fClusterMisalErrorY[3]=e3; fClusterMisalErrorY[4]=e4; fClusterMisalErrorY[5]=e5; return; } void SetClusterMisalErrorZ(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorZ[0]=e0; fClusterMisalErrorZ[1]=e1; fClusterMisalErrorZ[2]=e2; fClusterMisalErrorZ[3]=e3; fClusterMisalErrorZ[4]=e4; fClusterMisalErrorZ[5]=e5; return; } void SetClusterMisalError(Float_t err=0.) { SetClusterMisalErrorY(err,err,err,err,err,err); SetClusterMisalErrorZ(err,err,err,err,err,err); } void SetClusterMisalErrorYBOn(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorYBOn[0]=e0; fClusterMisalErrorYBOn[1]=e1; fClusterMisalErrorYBOn[2]=e2; fClusterMisalErrorYBOn[3]=e3; fClusterMisalErrorYBOn[4]=e4; fClusterMisalErrorYBOn[5]=e5; return; } void SetClusterMisalErrorZBOn(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorZBOn[0]=e0; fClusterMisalErrorZBOn[1]=e1; fClusterMisalErrorZBOn[2]=e2; fClusterMisalErrorZBOn[3]=e3; fClusterMisalErrorZBOn[4]=e4; fClusterMisalErrorZBOn[5]=e5; return; } void SetClusterMisalErrorBOn(Float_t err=0.) { SetClusterMisalErrorYBOn(err,err,err,err,err,err); SetClusterMisalErrorZBOn(err,err,err,err,err,err); } Float_t GetClusterMisalErrorY(Int_t i,Double_t b=0.) const { return (TMath::Abs(b)<0.0001 ? fClusterMisalErrorY[i] : fClusterMisalErrorYBOn[i]); } Float_t GetClusterMisalErrorZ(Int_t i,Double_t b=0.) const { return (TMath::Abs(b)<0.0001 ? fClusterMisalErrorZ[i] : fClusterMisalErrorZBOn[i]); } void SetUseAmplitudeInfo(Bool_t use=kTRUE) { for(Int_t i=0;i=AliITSgeomTGeo::kNLayers) return; fIPlanePlaneEff=i; } Int_t GetIPlanePlaneEff() const {return fIPlanePlaneEff;} void SetReadPlaneEffFrom0CDB(Bool_t read=kTRUE) { fReadPlaneEffFromOCDB=read; } Bool_t GetReadPlaneEffFromOCDB() const { return fReadPlaneEffFromOCDB; } void SetMinPtPlaneEff(Bool_t ptmin=0.) { fMinPtPlaneEff=ptmin; } Double_t GetMinPtPlaneEff() const { return fMinPtPlaneEff; } void SetMaxMissingClustersPlaneEff(Int_t max=0) { fMaxMissingClustersPlaneEff=max;} Int_t GetMaxMissingClustersPlaneEff() const {return fMaxMissingClustersPlaneEff;} void SetRequireClusterInOuterLayerPlaneEff(Bool_t out=kTRUE) { fRequireClusterInOuterLayerPlaneEff=out;} Bool_t GetRequireClusterInOuterLayerPlaneEff() const {return fRequireClusterInOuterLayerPlaneEff;} void SetRequireClusterInInnerLayerPlaneEff(Bool_t in=kTRUE) { fRequireClusterInInnerLayerPlaneEff=in;} Bool_t GetRequireClusterInInnerLayerPlaneEff() const {return fRequireClusterInInnerLayerPlaneEff;} void SetOnlyConstraintPlaneEff(Bool_t con=kFALSE) { fOnlyConstraintPlaneEff=con; } Bool_t GetOnlyConstraintPlaneEff() const { return fOnlyConstraintPlaneEff; } // void SetExtendedEtaAcceptance(Bool_t ext=kTRUE) { fExtendedEtaAcceptance=ext; return; } Bool_t GetExtendedEtaAcceptance() const { return fExtendedEtaAcceptance; } void SetAllowProlongationWithEmptyRoad(Bool_t allow=kTRUE) { fAllowProlongationWithEmptyRoad=allow; return; } Bool_t GetAllowProlongationWithEmptyRoad() const { return fAllowProlongationWithEmptyRoad; } void SetUseBadZonesFromOCDB(Bool_t use=kTRUE) { fUseBadZonesFromOCDB=use; return; } Bool_t GetUseBadZonesFromOCDB() const { return fUseBadZonesFromOCDB; } void SetUseSingleBadChannelsFromOCDB(Bool_t use=kTRUE) { fUseSingleBadChannelsFromOCDB=use; return; } Bool_t GetUseSingleBadChannelsFromOCDB() const { return fUseSingleBadChannelsFromOCDB; } void SetMinFractionOfBadInRoad(Float_t frac=0) { fMinFractionOfBadInRoad=frac; return; } Float_t GetMinFractionOfBadInRoad() const { return fMinFractionOfBadInRoad; } void SetOutwardFindingSA() {fInwardFlagSA=kFALSE;} void SetInwardFindingSA() {fInwardFlagSA=kTRUE;} Bool_t GetInwardFindingSA() const {return fInwardFlagSA;} void SetOuterStartLayerSA(Int_t lay) { fOuterStartLayerSA=lay; return; } Int_t GetOuterStartLayerSA() const { return fOuterStartLayerSA; } void SetInnerStartLayerSA(Int_t lay) { fInnerStartLayerSA=lay; return; } Int_t GetInnerStartLayerSA() const { return fInnerStartLayerSA; } void SetMinNPointsSA(Int_t np) { fMinNPointsSA=np; return; } Int_t GetMinNPointsSA() const { return fMinNPointsSA;} void SetFactorSAWindowSizes(Double_t fact=1.) { fFactorSAWindowSizes=fact; return; } Double_t GetFactorSAWindowSizes() const { return fFactorSAWindowSizes; } void SetNLoopsSA(Int_t nl=10) {fNLoopsSA=nl;} Int_t GetNLoopsSA() const { return fNLoopsSA;} void SetPhiLimitsSA(Double_t phimin,Double_t phimax){ fMinPhiSA=phimin; fMaxPhiSA=phimax; } Double_t GetMinPhiSA() const {return fMinPhiSA;} Double_t GetMaxPhiSA() const {return fMaxPhiSA;} void SetLambdaLimitsSA(Double_t lambmin,Double_t lambmax){ fMinLambdaSA=lambmin; fMaxLambdaSA=lambmax; } Double_t GetMinLambdaSA() const {return fMinLambdaSA;} Double_t GetMaxLambdaSA() const {return fMaxLambdaSA;} void SetSAMinClusterCharge(Float_t minq=0.) {fMinClusterChargeSA=minq;} Float_t GetSAMinClusterCharge() const {return fMinClusterChargeSA;} void SetSAOnePointTracks() { fSAOnePointTracks=kTRUE; return; } Bool_t GetSAOnePointTracks() const { return fSAOnePointTracks; } void SetSAUseAllClusters(Bool_t opt=kTRUE) { fSAUseAllClusters=opt; return; } Bool_t GetSAUseAllClusters() const { return fSAUseAllClusters; } void SetFindV0s(Bool_t find=kTRUE) { fFindV0s=find; return; } Bool_t GetFindV0s() const { return fFindV0s; } void SetStoreLikeSignV0s(Bool_t like=kFALSE) { fStoreLikeSignV0s=like; return; } Bool_t GetStoreLikeSignV0s() const { return fStoreLikeSignV0s; } void SetLayersParameters(); void SetLayerToSkip(Int_t i) { fLayersToSkip[i]=1; return; } Int_t GetLayersToSkip(Int_t i) const { return fLayersToSkip[i]; } void SetUseUnfoldingInClusterFinderSPD(Bool_t use=kTRUE) { fUseUnfoldingInClusterFinderSPD=use; return; } Bool_t GetUseUnfoldingInClusterFinderSPD() const { return fUseUnfoldingInClusterFinderSPD; } void SetUseUnfoldingInClusterFinderSDD(Bool_t use=kTRUE) { fUseUnfoldingInClusterFinderSDD=use; return; } Bool_t GetUseUnfoldingInClusterFinderSDD() const { return fUseUnfoldingInClusterFinderSDD; } void SetUseUnfoldingInClusterFinderSSD(Bool_t use=kTRUE) { fUseUnfoldingInClusterFinderSSD=use; return; } Bool_t GetUseUnfoldingInClusterFinderSSD() const { return fUseUnfoldingInClusterFinderSSD; } void SetUseBadChannelsInClusterFinderSSD(Bool_t use=kFALSE) { fUseBadChannelsInClusterFinderSSD=use; return; } Bool_t GetUseBadChannelsInClusterFinderSSD() const { return fUseBadChannelsInClusterFinderSSD; } void SetUseSDDCorrectionMaps(Bool_t use=kTRUE) {fUseSDDCorrectionMaps=use;} Bool_t GetUseSDDCorrectionMaps() const {return fUseSDDCorrectionMaps;} void SetUseSDDClusterSizeSelection(Bool_t use=kTRUE) {fUseSDDClusterSizeSelection=use;} Bool_t GetUseSDDClusterSizeSelection() const {return fUseSDDClusterSizeSelection;} void SetMinClusterChargeSDD(Float_t qcut=0.){fMinClusterChargeSDD=qcut;} Float_t GetMinClusterChargeSDD() const {return fMinClusterChargeSDD;} void SetUseChargeMatchingInClusterFinderSSD(Bool_t use=kTRUE) { fUseChargeMatchingInClusterFinderSSD=use; return; } Bool_t GetUseChargeMatchingInClusterFinderSSD() const { return fUseChargeMatchingInClusterFinderSSD; } void SetUseCosmicRunShiftsSSD(Bool_t use=kFALSE) { fUseCosmicRunShiftsSSD=use; return; } Bool_t GetUseCosmicRunShiftsSSD() const { return fUseCosmicRunShiftsSSD; } // SPD Tracklets (D. Elia) void SetTrackleterPhiWindow(Float_t w=0.08) {fTrackleterPhiWindow=w;} void SetTrackleterThetaWindow(Float_t w=0.025) {fTrackleterThetaWindow=w;} void SetTrackleterPhiShift(Float_t w=0.0045) {fTrackleterPhiShift=w;} Float_t GetTrackleterPhiWindow() const {return fTrackleterPhiWindow;} Float_t GetTrackleterThetaWindow() const {return fTrackleterThetaWindow;} Float_t GetTrackleterPhiShift() const {return fTrackleterPhiShift;} void SetTrackleterRemoveClustersFromOverlaps(Bool_t use=kTRUE) { fTrackleterRemoveClustersFromOverlaps=use; return; } Bool_t GetTrackleterRemoveClustersFromOverlaps() const { return fTrackleterRemoveClustersFromOverlaps; } void SetTrackleterPhiOverlapCut(Float_t w=0.005) {fTrackleterPhiOverlapCut=w;} void SetTrackleterZetaOverlapCut(Float_t w=0.05) {fTrackleterZetaOverlapCut=w;} Float_t GetTrackleterPhiOverlapCut() const {return fTrackleterPhiOverlapCut;} Float_t GetTrackleterZetaOverlapCut() const {return fTrackleterZetaOverlapCut;} // void SetSPDRemoveNoisyFlag(Bool_t value) {fSPDRemoveNoisyFlag = value;} Bool_t GetSPDRemoveNoisyFlag() const {return fSPDRemoveNoisyFlag;} void SetSPDRemoveDeadFlag(Bool_t value) {fSPDRemoveDeadFlag = value;} Bool_t GetSPDRemoveDeadFlag() const {return fSPDRemoveDeadFlag;} // void SetAlignFilterCosmics(Bool_t b=kTRUE) {fAlignFilterCosmics=b;} void SetAlignFilterCosmicMergeTracks(Bool_t b=kTRUE) {fAlignFilterCosmicMergeTracks=b;} void SetAlignFilterMinITSPoints(Int_t n=4) {fAlignFilterMinITSPoints=n;} void SetAlignFilterMinITSPointsMerged(Int_t n=4) {fAlignFilterMinITSPointsMerged=n;} void SetAlignFilterOnlyITSSATracks(Bool_t b=kTRUE) {fAlignFilterOnlyITSSATracks=b;} void SetAlignFilterOnlyITSTPCTracks(Bool_t b=kFALSE) {fAlignFilterOnlyITSTPCTracks=b;} void SetAlignFilterUseLayer(Int_t ilay,Bool_t use) {fAlignFilterUseLayer[ilay]=use;} void SetAlignFilterSkipExtra(Bool_t b=kFALSE) {fAlignFilterSkipExtra=b;} void SetAlignFilterMaxMatchingAngle(Float_t max=0.085/*5deg*/) {fAlignFilterMaxMatchingAngle=max;} void SetAlignFilterMinAngleWrtModulePlanes(Float_t min=0.52/*30deg*/) {fAlignFilterMinAngleWrtModulePlanes=min;} void SetAlignFilterMinPt(Float_t min=0.) {fAlignFilterMinPt=min;} void SetAlignFilterMaxPt(Float_t max=1.e10) {fAlignFilterMaxPt=max;} void SetAlignFilterFillQANtuples(Bool_t b=kTRUE) {fAlignFilterFillQANtuples=b;} Bool_t GetAlignFilterCosmics() const {return fAlignFilterCosmics;} Bool_t GetAlignFilterCosmicMergeTracks() const {return fAlignFilterCosmicMergeTracks;} Int_t GetAlignFilterMinITSPoints() const {return fAlignFilterMinITSPoints;} Int_t GetAlignFilterMinITSPointsMerged() const {return fAlignFilterMinITSPointsMerged;} Bool_t GetAlignFilterOnlyITSSATracks() const {return fAlignFilterOnlyITSSATracks;} Bool_t GetAlignFilterOnlyITSTPCTracks() const {return fAlignFilterOnlyITSTPCTracks;} Bool_t GetAlignFilterUseLayer(Int_t i) const {return fAlignFilterUseLayer[i];} Bool_t GetAlignFilterSkipExtra() const {return fAlignFilterSkipExtra;} Float_t GetAlignFilterMaxMatchingAngle() const {return fAlignFilterMaxMatchingAngle;} Float_t GetAlignFilterMinAngleWrtModulePlanes() const {return fAlignFilterMinAngleWrtModulePlanes;} Float_t GetAlignFilterMinPt() const {return fAlignFilterMinPt;} Float_t GetAlignFilterMaxPt() const {return fAlignFilterMaxPt;} Bool_t GetAlignFilterFillQANtuples() const {return fAlignFilterFillQANtuples;} AliESDV0Params *GetESDV0Params() const {return fESDV0Params;} enum {fgkMaxClusterPerLayer=70000}; //7000*10; // max clusters per layer enum {fgkMaxClusterPerLayer5=28000};//7000*10*2/5; // max clusters per layer enum {fgkMaxClusterPerLayer10=14000};//7000*10*2/10; // max clusters per layer enum {fgkMaxClusterPerLayer20=7000};//7000*10*2/20; // max clusters per layer protected: // static const Int_t fgkLayersNotToSkip[AliITSgeomTGeo::kNLayers]; // array with layers not to skip static const Int_t fgkLastLayerToTrackTo; // innermost layer static const Int_t fgkMaxDetectorPerLayer; // max clusters per layer static const Double_t fgkriw; // TPC inner wall radius static const Double_t fgkdiw; // TPC inner wall x/X0 static const Double_t fgkX0iw; // TPC inner wall X0 static const Double_t fgkrcd; // TPC central drum radius static const Double_t fgkdcd; // TPC central drum x/X0 static const Double_t fgkX0cd; // TPC central drum X0 static const Double_t fgkyr; // TPC rods y (tracking c.s.) static const Double_t fgkdr; // TPC rods x/X0 static const Double_t fgkzm; // TPC membrane z static const Double_t fgkdm; // TPC membrane x/X0 static const Double_t fgkrs; // ITS screen radius static const Double_t fgkds; // ITS screed x/X0 static const Double_t fgkrInsideITSscreen; // inside ITS screen radius static const Double_t fgkrInsideSPD1; // inside SPD1 radius static const Double_t fgkrPipe; // pipe radius static const Double_t fgkrInsidePipe; // inside pipe radius static const Double_t fgkrOutsidePipe; // outside pipe radius static const Double_t fgkdPipe; // pipe x/X0 static const Double_t fgkrInsideShield[2]; // inside SPD (0) SDD (1) shield radius static const Double_t fgkrOutsideShield[2]; // outside SPD (0) SDD (1) shield radius static const Double_t fgkdshield[2]; // SPD (0) SDD (1) shield x/X0 static const Double_t fgkX0shield[2]; // SPD (0) SDD (1) shield X0 static const Double_t fgkX0Air; // air X0 static const Double_t fgkX0Be; // Berillium X0 static const Double_t fgkBoundaryWidth; // to define track at detector boundary static const Double_t fgkDeltaXNeighbDets; // max difference in radius between neighbouring detectors static const Double_t fgkSPDdetzlength; // SPD ladder length in z static const Double_t fgkSPDdetxlength; // SPD ladder length in x Int_t fTracker; // ITS tracker to be used (see AliITSReconstructor) Bool_t fITSonly; // tracking only in ITS (no TPC) Int_t fVertexer; // ITS vertexer to be used (see AliITSReconstructor) Int_t fClusterFinder; // ITS cf to be used (see AliITSReconstructor) Int_t fPID; // ITS PID method to be used (see AliITSReconstructor) // SPD 3D Vertexer configuration Float_t fVtxr3DZCutWide; // Z extension of the wide fiducial region for vertexer 3D Float_t fVtxr3DRCutWide; // R extension of the wide fiducial region for vertexer 3D Float_t fVtxr3DZCutNarrow; // Z extension of the narrow fiducial region for vertexer 3D Float_t fVtxr3DRCutNarrow; // R extension of the narrow fiducial region for vertexer 3D Float_t fVtxr3DPhiCutLoose; // loose deltaPhi cut to define tracklets in vertexer 3D Float_t fVtxr3DPhiCutTight; // tight deltaPhi cut to define tracklets in vertexer 3D Float_t fVtxr3DDCACut; // cut on tracklet-to-tracklet DCA in vertexer3D Int_t fVtxr3DPileupAlgo; // pileup algorithm (0 = VtxZ, 1 = 3D - 2 step, 2 = 3D all in once) Int_t fLayersToSkip[AliITSgeomTGeo::kNLayers]; // array with layers to skip (MI,SA) // spatial resolutions of the detectors Double_t fSigmaY2[AliITSgeomTGeo::kNLayers]; // y Double_t fSigmaZ2[AliITSgeomTGeo::kNLayers]; // z // Double_t fMaxSnp; // maximum of sin(phi) (MI) // // search road (MI) Double_t fNSigmaYLayerForRoadY; // y Double_t fNSigmaRoadY; // y Double_t fNSigmaZLayerForRoadZ; // z Double_t fNSigmaRoadZ; // z Double_t fNSigma2RoadZC; // z Double_t fNSigma2RoadYC; // y Double_t fNSigma2RoadZNonC; // z Double_t fNSigma2RoadYNonC; // y Double_t fRoadMisal; // [cm] increase of road for misalignment (MI) // // chi2 cuts Double_t fMaxChi2PerCluster[AliITSgeomTGeo::kNLayers-1]; // max chi2 for MIP (MI) Double_t fMaxNormChi2NonC[AliITSgeomTGeo::kNLayers]; //max norm chi2 for non constrained tracks (MI) Double_t fMaxNormChi2C[AliITSgeomTGeo::kNLayers]; //max norm chi2 for constrained tracks (MI) Double_t fMaxNormChi2NonCForHypothesis; //max norm chi2 (on layers 0,1,2) for hypotheis to be kept (MI) Double_t fMaxChi2; // used to initialize variables needed to find minimum chi2 (MI,V2) Double_t fMaxChi2s[AliITSgeomTGeo::kNLayers]; // max predicted chi2 (cluster & track prol.) (MI) // Double_t fMaxRoad; // (V2) // Double_t fMaxChi2In; // (NOT USED) Double_t fMaxChi2sR[AliITSgeomTGeo::kNLayers]; // (NOT USED) Double_t fChi2PerCluster; // (NOT USED) // // default primary vertex (MI,V2) Double_t fXV; // x Double_t fYV; // y Double_t fZV; // z Double_t fSigmaXV; // x Double_t fSigmaYV; // y Double_t fSigmaZV; // z Double_t fVertexCut; // (V2) Double_t fMaxDZforPrimTrk; // maximum (imp. par.)/(1+layer) to define // a primary and apply vertex constraint (MI) Double_t fMaxDZToUseConstraint; // maximum (imp. par.) for tracks to be // prolonged with constraint // cuts to decide if trying to prolong a TPC track (MI) Double_t fMaxDforV0dghtrForProlongation; // max. rphi imp. par. cut for V0 daughter // Double_t fMaxDForProlongation; // max. rphi imp. par. cut Double_t fMaxDZForProlongation; // max. 3D imp. par. cut Double_t fMinPtForProlongation; // min. pt cut // parameters to create "virtual" clusters in SPD dead zone (MI) Bool_t fAddVirtualClustersInDeadZone; // add if kTRUE Double_t fZWindowDeadZone; // window size Double_t fSigmaXDeadZoneHit2; // x error virtual cls Double_t fSigmaZDeadZoneHit2; // z error virtual cls Double_t fXPassDeadZoneHits; // x distance between clusters Bool_t fSkipSubdetsNotInTriggerCluster; // skip the subdetectors that are not in the trigger cluster Int_t fUseTGeoInTracker; // use TGeo to get material budget in tracker MI Double_t fStepSizeTGeo; // step size (cm) // in AliITStrackerMI::CorrectFor*Material methods Bool_t fAllowSharedClusters; // if kFALSE don't set to kITSin tracks with shared clusters (MI) Int_t fClusterErrorsParam; // parametrization for cluster errors (MI), see AliITSRecoParam::GetError() Float_t fClusterMisalErrorY[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Y pos. due to misalignment (MI,SA) Float_t fClusterMisalErrorZ[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Z pos. due to misalignment (MI,SA) Float_t fClusterMisalErrorYBOn[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Y pos. due to misalignment (MI,SA) Float_t fClusterMisalErrorZBOn[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Z pos. due to misalignment (MI,SA) Bool_t fUseAmplitudeInfo[AliITSgeomTGeo::kNLayers]; // use cluster charge in cluster-track matching (SDD,SSD) (MI) // Plane Efficiency evaluation Bool_t fComputePlaneEff; // flag to enable computation of PlaneEfficiency Bool_t fHistoPlaneEff; // flag to enable auxiliary PlaneEff histograms (e.g. residual distributions) Bool_t fUseTrackletsPlaneEff; // flag to enable estimate of SPD PlaneEfficiency using tracklets Bool_t fMCTrackletsPlaneEff; // flag to enable the use of MC info for corrections (SPD PlaneEff using tracklets) Bool_t fBkgTrackletsPlaneEff; // flag to evaluate background instead of normal use (SPD PlaneEff using tracklets) Float_t fTrackleterPhiWindowL1; // Search window in phi for inner layer (1) (SPD PlaneEff using tracklets) Float_t fTrackleterPhiWindowL2; // Search window in phi for outer layer (2) (SPD PlaneEff using tracklets) Float_t fTrackleterZetaWindowL1; // Search window in zeta for inner layer (1) (SPD PlaneEff using tracklets) Float_t fTrackleterZetaWindowL2; // Search window in zeta for outer layer (2) (SPD PlaneEff using tracklets) Bool_t fUpdateOncePerEventPlaneEff; // option to update chip efficiency once/event (to avoid doubles) Int_t fMinContVtxPlaneEff; // min number of contributors to ESD vtx for SPD PlaneEff using tracklets Int_t fIPlanePlaneEff; // index of the plane (in the range [-1,5]) to study the efficiency (-1 ->Tracklets) Bool_t fReadPlaneEffFromOCDB; // enable initial reading of Plane Eff statistics from OCDB // The analized events would be used to increase the statistics Double_t fMinPtPlaneEff; // minimum p_t of the track to be used for Plane Efficiency evaluation Int_t fMaxMissingClustersPlaneEff; // max n. of (other) layers without a cluster associated to the track Bool_t fRequireClusterInOuterLayerPlaneEff; // if kTRUE, then only tracks with an associated cluster on the closest Bool_t fRequireClusterInInnerLayerPlaneEff; // outer/inner layer are used. It has no effect for outermost/innermost layer Bool_t fOnlyConstraintPlaneEff; // if kTRUE, use only constrained tracks at primary vertex for Plane Eff. Bool_t fExtendedEtaAcceptance; // enable jumping from TPC to SPD at large eta (MI) Bool_t fUseBadZonesFromOCDB; // enable using OCDB info on dead modules and chips (MI) Bool_t fUseSingleBadChannelsFromOCDB; // enable using OCDB info on bad single SPD pixels and SDD anodes (MI) Float_t fMinFractionOfBadInRoad; // to decide whether to skip the layer (MI) Bool_t fAllowProlongationWithEmptyRoad; // allow to prolong even if road is empty (MI) Int_t fInwardFlagSA; // flag for inward track finding in SA Int_t fOuterStartLayerSA; // outer ITS layer to start track in SA outward Int_t fInnerStartLayerSA; // inner ITS layer to start track in SA inward Int_t fMinNPointsSA; // min. number of ITS clusters for a SA track Double_t fFactorSAWindowSizes; // larger window sizes in SA Int_t fNLoopsSA; // number of loops in tracker SA Double_t fMinPhiSA; // minimum phi value for SA windows Double_t fMaxPhiSA; // maximum phi value for SA windows Double_t fMinLambdaSA; // minimum lambda value for SA windows Double_t fMaxLambdaSA; // maximum lambda value for SA windows Float_t fMinClusterChargeSA; // minimum SDD,SSD cluster charge for SA tarcker Bool_t fSAOnePointTracks; // one-cluster tracks in SA (only for cosmics!) Bool_t fSAUseAllClusters; // do not skip clusters used by MI (same track twice in AliESDEvent!) Bool_t fFindV0s; // flag to enable V0 finder (MI) Bool_t fStoreLikeSignV0s; // flag to store like-sign V0s (MI) // cluster unfolding in ITS cluster finders Bool_t fUseUnfoldingInClusterFinderSPD; // SPD Bool_t fUseUnfoldingInClusterFinderSDD; // SDD Bool_t fUseUnfoldingInClusterFinderSSD; // SSD Bool_t fUseBadChannelsInClusterFinderSSD; // flag to switch on bad channels in CF SSD Bool_t fUseSDDCorrectionMaps; // flag for use of SDD maps in C.F. Bool_t fUseSDDClusterSizeSelection; // cut on SDD cluster size Float_t fMinClusterChargeSDD; // cut on SDD cluster charge Bool_t fUseChargeMatchingInClusterFinderSSD; // SSD // SPD Tracklets (D. Elia) Float_t fTrackleterPhiWindow; // Search window in phi Float_t fTrackleterThetaWindow; // Search window in theta Float_t fTrackleterPhiShift; // Phi shift reference value (at 0.5 T) Bool_t fTrackleterRemoveClustersFromOverlaps; // Option to skip clusters in the overlaps Float_t fTrackleterPhiOverlapCut; // Fiducial window in phi for overlap cut Float_t fTrackleterZetaOverlapCut; // Fiducial window in eta for overlap cut Bool_t fUseCosmicRunShiftsSSD; // SSD time shifts for cosmic run 2007/2008 (use for data taken up to 18 sept 2008) // SPD flags to specify whether noisy and dead pixels // should be removed at the local reconstruction step (default and safe way is true for both) Bool_t fSPDRemoveNoisyFlag; // Flag saying whether noisy pixels should be removed Bool_t fSPDRemoveDeadFlag; // Flag saying whether dead pixels should be removed // VertexerFast configuration Float_t fVertexerFastSmearX; // gaussian sigma for x MC vertex smearing Float_t fVertexerFastSmearY; // gaussian sigma for y MC vertex smearing Float_t fVertexerFastSmearZ; // gaussian sigma for z MC vertex smearing // PWG1/AliAlignmentDataFilterITS configuration Bool_t fAlignFilterCosmics; // flag for cosmics case Bool_t fAlignFilterCosmicMergeTracks; // merge cosmic tracks Int_t fAlignFilterMinITSPoints; // min points per track Int_t fAlignFilterMinITSPointsMerged; // min points for merged tracks Bool_t fAlignFilterOnlyITSSATracks; // only ITS SA tracks Bool_t fAlignFilterOnlyITSTPCTracks; // only ITS+TPC tracks Bool_t fAlignFilterUseLayer[AliITSgeomTGeo::kNLayers]; // layers to use Bool_t fAlignFilterSkipExtra; // no extra cls in array Float_t fAlignFilterMaxMatchingAngle; // matching for cosmics Float_t fAlignFilterMinAngleWrtModulePlanes; // min angle track-to-sensor Float_t fAlignFilterMinPt; // min pt Float_t fAlignFilterMaxPt; // max pt Bool_t fAlignFilterFillQANtuples; // fill QA ntuples private: AliESDV0Params * fESDV0Params; // declare the AliESDV0Params to be able to used in AliITSV0Finder AliITSRecoParam(const AliITSRecoParam & param); AliITSRecoParam & operator=(const AliITSRecoParam ¶m); ClassDef(AliITSRecoParam,27) // ITS reco parameters }; #endif