#ifndef ALIITSTRACKLETERSPDEFF_H #define ALIITSTRACKLETERSPDEFF_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ //____________________________________________________________________ // // AliITSTrackleterSPDEff - find SPD chips efficiencies by using tracklets. // // This class was originally derived from AliITSMultReconstructor (see // it for more details). Later on, the inheritance was changed to AliTracker // It is the class for the Trackleter used to estimate // SPD plane efficiency. // The trackleter prediction is built using the vertex and 1 cluster. // // // Author : Giuseppe Eugenio Bruno, based on the skeleton of Reconstruct method provided by Tiziano Virgili // email: giuseppe.bruno@ba.infn.it // //____________________________________________________________________ class AliStack; class TTree; class TH1F; class TH2F; #include "AliTracker.h" #include "AliITSPlaneEffSPD.h" #include "AliPlaneEff.h" class AliITSTrackleterSPDEff : public AliTracker { public: AliITSTrackleterSPDEff(); virtual ~AliITSTrackleterSPDEff(); Int_t Clusters2Tracks(AliESDEvent *esd); Int_t PostProcess(AliESDEvent *); virtual Int_t PropagateBack(AliESDEvent*) {return 0;} virtual Int_t RefitInward(AliESDEvent*) {return 0;} Int_t LoadClusters(TTree* cl) {LoadClusterArrays(cl); return 0;} // see implementation in AliITSMultReconstructor virtual void UnloadClusters() {return;} virtual AliCluster *GetCluster(Int_t) const {return NULL;} // Main method to perform the trackleter and the SPD efficiency evaluation void Reconstruct(AliStack* pStack=0x0, TTree* tRef=0x0, Bool_t lbkg=kFALSE); void SetReflectClusterAroundZAxisForLayer(Int_t ilayer,Bool_t b=kTRUE){ // method to study residual background: if(b) {AliInfo(Form("All clusters on layer %d will be rotated by 180 deg around z",ilayer)); SetLightBkgStudyInParallel(kFALSE);} if(ilayer==0) fReflectClusterAroundZAxisForLayer0=b; // a rotation by 180degree around the Z axis else if(ilayer==1) fReflectClusterAroundZAxisForLayer1=b; // (x->-x; y->-y) to all RecPoints on a else AliInfo("Nothing done: input argument (ilayer) either 0 or 1"); // given layer is applied. In such a way } // you remove all the true tracklets. void SetLightBkgStudyInParallel(Bool_t b = kTRUE); // if you set this on, then the estimation of the // SPD efficiency is done as usual for data, but in // parallel a light (i.e. without control histograms, etc.) // evaluation of combinatorial background is performed // with the usual ReflectClusterAroundZAxisForLayer method. Bool_t GetLightBkgStudyInParallel() const {return fLightBkgStudyInParallel;} void SetOnlyOneTrackletPerC2(Bool_t b = kTRUE) {fOnlyOneTrackletPerC2 = b;} void SetPhiWindowL2(Float_t w=0.08) {fPhiWindowL2=w;} void SetZetaWindowL2(Float_t w=1.) {fZetaWindowL2=w;} void SetPhiWindowL1(Float_t w=0.08) {fPhiWindowL1=w;} // method to set the cuts in the interpolation void SetZetaWindowL1(Float_t w=1.) {fZetaWindowL1=w;} // phase; use method of the base class for extrap. void SetOnlyOneTrackletPerC1(Bool_t b = kTRUE) {fOnlyOneTrackletPerC1 = b;} // as in the base class but void SetMinContVtx(Int_t min=3) {fMinContVtx=min;} // set minimum n. of contributors to vertex Int_t GetNClustersLayer1() const {return fNClustersLay1;} Int_t GetNClustersLayer2() const {return fNClustersLay2;} Int_t GetNTracklets() const {return fNTracklets;} Float_t* GetClusterLayer1(Int_t n) {return fClustersLay1[n];} Float_t* GetClusterLayer2(Int_t n) {return fClustersLay2[n];} Float_t* GetTracklet(Int_t n) {return fTracklets[n];} // for the inner layer void SetUpdateOncePerEventPlaneEff(Bool_t b = kTRUE) {fUpdateOncePerEventPlaneEff = b;} AliITSPlaneEffSPD* GetPlaneEffSPD() const {return fPlaneEffSPD;} // return a pointer to the AliITSPlaneEffSPD AliPlaneEff *GetPlaneEff() {return (AliPlaneEff*)fPlaneEffSPD;} // return the pointer to AliPlaneEff void SetMC(Bool_t mc=kTRUE) {fMC=mc; fMC? InitPredictionMC() : DeletePredictionMC(); return;} // switch on access to MC true Bool_t GetMC() const {return fMC;} // check the access to MC true // Only for MC: use only "primary" particles (according to PrimaryTrackChecker) for the tracklet prediction void SetUseOnlyPrimaryForPred(Bool_t flag=kTRUE) {CallWarningMC(); fUseOnlyPrimaryForPred = flag; } // Only for MC: use only "secondary" particles (according to PrimaryTrackChecker) for the tracklet prediction void SetUseOnlySecondaryForPred(Bool_t flag=kTRUE) {CallWarningMC(); fUseOnlySecondaryForPred = flag;} // Only for MC: associate a cluster to the tracklet prediction if from the same particle void SetUseOnlySameParticle(Bool_t flag=kTRUE) {CallWarningMC(); fUseOnlySameParticle = flag;} // Only for MC: associate a cluster to the tracklet prediction if from different particles void SetUseOnlyDifferentParticle(Bool_t flag=kTRUE) {CallWarningMC(); fUseOnlyDifferentParticle = flag;} // Only for MC: re-define "primary" a particle if it is also "stable" (according to definition in method DecayingTrackChecker) void SetUseOnlyStableParticle(Bool_t flag=kTRUE) {CallWarningMC(); fUseOnlyStableParticle = flag;} // only for MC: Getters relative to the above setters Bool_t GetUseOnlyPrimaryForPred() const {CallWarningMC(); return fUseOnlyPrimaryForPred; } Bool_t GetUseOnlySecondaryForPred() const {CallWarningMC(); return fUseOnlySecondaryForPred;} Bool_t GetUseOnlySameParticle() const {CallWarningMC(); return fUseOnlySameParticle;} Bool_t GetUseOnlyDifferentParticle() const {CallWarningMC(); return fUseOnlyDifferentParticle;} Bool_t GetUseOnlyStableParticle() const {CallWarningMC(); return fUseOnlyStableParticle;} // Getters for the data members related to MC true statisitcs (see below) Int_t GetPredictionPrimary(const UInt_t key) const; Int_t GetPredictionSecondary(const UInt_t key) const; Int_t GetClusterPrimary(const UInt_t key) const; Int_t GetClusterSecondary(const UInt_t key) const; Int_t GetSuccessPP(const UInt_t key) const; Int_t GetSuccessTT(const UInt_t key) const; Int_t GetSuccessS(const UInt_t key) const; Int_t GetSuccessP(const UInt_t key) const; Int_t GetFailureS(const UInt_t key) const; Int_t GetFailureP(const UInt_t key) const; Int_t GetRecons(const UInt_t key) const; Int_t GetNonRecons(const UInt_t key) const; Int_t GetPredictionPrimary(const UInt_t mod, const UInt_t chip) const {return GetPredictionPrimary(fPlaneEffSPD->GetKey(mod,chip));}; Int_t GetPredictionSecondary(const UInt_t mod, const UInt_t chip) const {return GetPredictionSecondary(fPlaneEffSPD->GetKey(mod,chip));}; Int_t GetClusterPrimary(const UInt_t mod, const UInt_t chip) const {return GetClusterPrimary(fPlaneEffSPD->GetKey(mod,chip));}; Int_t GetClusterSecondary(const UInt_t mod, const UInt_t chip) const {return GetClusterSecondary(fPlaneEffSPD->GetKey(mod,chip));}; Int_t GetSuccessPP(const UInt_t mod, const UInt_t chip) const {return GetSuccessPP(fPlaneEffSPD->GetKey(mod,chip));}; Int_t GetSuccessTT(const UInt_t mod, const UInt_t chip) const {return GetSuccessTT(fPlaneEffSPD->GetKey(mod,chip));}; Int_t GetSuccessS(const UInt_t mod, const UInt_t chip) const {return GetSuccessS(fPlaneEffSPD->GetKey(mod,chip));}; Int_t GetSuccessP(const UInt_t mod, const UInt_t chip) const {return GetSuccessP(fPlaneEffSPD->GetKey(mod,chip));}; Int_t GetFailureS(const UInt_t mod, const UInt_t chip) const {return GetFailureS(fPlaneEffSPD->GetKey(mod,chip));}; Int_t GetFailureP(const UInt_t mod, const UInt_t chip) const {return GetFailureP(fPlaneEffSPD->GetKey(mod,chip));}; Int_t GetRecons(const UInt_t mod, const UInt_t chip) const {return GetRecons(fPlaneEffSPD->GetKey(mod,chip));}; Int_t GetNonRecons(const UInt_t mod, const UInt_t chip) const {return GetNonRecons(fPlaneEffSPD->GetKey(mod,chip));}; // methods to write/reas cuts and MC statistics into/from file // if filename contains ".root", then data are stored into histograms (->root file). void SavePredictionMC(TString filename="TrackletsMCpred.root") const; void ReadPredictionMC(TString filename="TrackletsMCpred.root"); // Print some class info in ascii form to stream (cut values and MC statistics) virtual void PrintAscii(ostream *os)const; // Read some class info in ascii form from stream (cut values and MC statistics) virtual void ReadAscii(istream *is); Bool_t GetHistOn() const {return fHistOn;}; // return status of histograms // write histograms into a root file on disk Bool_t WriteHistosToFile(TString filename="TrackleterSPDHistos.root",Option_t* option = "RECREATE"); // switch on/off the extra histograms void SetHistOn(Bool_t his=kTRUE) {fHistOn=his; if(GetHistOn()) {DeleteHistos(); BookHistos();} else DeleteHistos(); return;} protected: AliITSTrackleterSPDEff(const AliITSTrackleterSPDEff& mr); // protected method: no copy allowed from outside AliITSTrackleterSPDEff& operator=(const AliITSTrackleterSPDEff& mr); // //// From AliITSMultReconstructor // Float_t** fClustersLay1; //! clusters in the 1st layer of ITS Float_t** fClustersLay2; //! clusters in the 2nd layer of ITS Float_t** fTracklets; //! tracklets Bool_t* fAssociationFlag; //! flag for the associations Int_t fNClustersLay1; // Number of clusters (Layer1) Int_t fNClustersLay2; // Number of clusters (Layer2) Int_t fNTracklets; // Number of tracklets // Following members are set via AliITSRecoParam Bool_t fOnlyOneTrackletPerC2; // Allow only one tracklet per cluster in the outer layer Float_t fPhiWindowL2; // Search window in phi Float_t fZetaWindowL2; // Search window in eta Float_t fPhiOverlapCut; // Fiducial window in phi for overlap cut Float_t fZetaOverlapCut; // Fiducial window in eta for overlap cut Bool_t fHistOn; // Option to define and fill the histograms TH1F* fhClustersDPhiAcc; //! Phi2 - Phi1 for tracklets TH1F* fhClustersDThetaAcc; //! Theta2 - Theta1 for tracklets TH1F* fhClustersDZetaAcc; //! z2 - z1projected for tracklets TH1F* fhClustersDPhiAll; //! Phi2 - Phi1 all the combinations TH1F* fhClustersDThetaAll; //! Theta2 - Theta1 all the combinations TH1F* fhClustersDZetaAll; //! z2 - z1projected all the combinations TH2F* fhDPhiVsDThetaAll; //! 2D plot for all the combinations TH2F* fhDPhiVsDThetaAcc; //! same plot for tracklets TH2F* fhDPhiVsDZetaAll; //! 2d plot for all the combination TH2F* fhDPhiVsDZetaAcc; //! same plot for tracklets TH1F* fhetaTracklets; //! Pseudorapidity distr. for tracklets TH1F* fhphiTracklets; //! Azimuthal (Phi) distr. for tracklets TH1F* fhetaClustersLay1; //! Pseudorapidity distr. for Clusters L. 1 TH1F* fhphiClustersLay1; //! Azimuthal (Phi) distr. for Clusters L. 1 // // Bool_t* fAssociationFlag1; //! flag for the associations (Layer 1) UInt_t* fChipPredOnLay2; //! prediction for the chip traversed by the tracklet // based on vtx and ClusterLay1 (to be used in extrapolation) UInt_t* fChipPredOnLay1; //! prediction for the chip traversed by the tracklet // based on vtx and ClusterLay2 (to be used in interpolation) Int_t fNTracklets1; // Number of tracklets layer 1 // possible cuts : Float_t fPhiWindowL1; // Search window in phi (Layer 1) Float_t fZetaWindowL1; // SEarch window in zeta (Layer 1) Bool_t fOnlyOneTrackletPerC1; // only one tracklet per cluster in L. 1 Bool_t fUpdateOncePerEventPlaneEff; // If this is kTRUE, then you can update the chip efficiency only once Int_t fMinContVtx; // minimum number of contributors (tracklets) to the vertex for the event to be used // per event in that chip. This to avoid double counting from the // same tracklets which has two rec-points on one layer. Bool_t* fChipUpdatedInEvent; //! boolean (chip by chip) to flag which chip has been updated its efficiency // in that event AliITSPlaneEffSPD* fPlaneEffSPD; //! pointer to SPD plane efficiency class AliITSPlaneEffSPD* fPlaneEffBkg; //! pointer to SPD plane efficiency class for background evaluation Bool_t fReflectClusterAroundZAxisForLayer0; // if kTRUE, then a 180degree rotation around Z is applied to all Bool_t fReflectClusterAroundZAxisForLayer1; // clusters on that layer (x->-x; y->-y) Bool_t fLightBkgStudyInParallel; // if this is kTRUE, the basic and correct evaluation of background is performed // in paralell to standard SPD efficiency evaluation Bool_t fMC; // Boolean to access Kinematics (only for MC events ) Bool_t fUseOnlyPrimaryForPred; // Only for MC: if this is true, build tracklet prediction using only primary particles Bool_t fUseOnlySecondaryForPred; // Only for MC: if this is true build tracklet prediction using only secondary particles Bool_t fUseOnlySameParticle; // Only for MC: if this is true, assign a success only if clusters from same particles // (i.e. PP or SS) otherwise ignore the combination Bool_t fUseOnlyDifferentParticle; // Only for MC: if this is true, assign a success only if clusters from different particles // (i.e. PP' or PS or SS') otherwise ignore the combination Bool_t fUseOnlyStableParticle; // Only for MC: if this is kTRUE then method PrimaryTrackChecker return kTRUE only // for particles decaying (eventually) after pixel layers Int_t *fPredictionPrimary; //! those for correction of bias from secondaries Int_t *fPredictionSecondary; //! chip_by_chip: number of Prediction built with primaries/secondaries Int_t *fClusterPrimary; //! number of clusters on a given chip fired by (at least) a primary Int_t *fClusterSecondary; //! number of clusters on a given chip fired by (only) secondaries Int_t *fSuccessPP; //! number of successes by using the same primary track (vs. chip of the success) Int_t *fSuccessTT; //! number of successes by using the same track (either a primary or a secondary) (vs. chip of the success) Int_t *fSuccessS; //! number of successes by using a secondary for the prediction (vs. chip of the success) Int_t *fSuccessP; //! number of successes by using a primary for the prediction (vs. chip of the success) Int_t *fFailureS; //! number of failures by using a secondary for the prediction (vs. chip of the failure) Int_t *fFailureP; //! number of failures by using a primary for the prediction (vs. chip of the failure) Int_t *fRecons; //! number of particle which can be reconstructed (only for MC from TrackRef) Int_t *fNonRecons; //! unmber of particle which cannot be reconstructed (only for MC from TrackRef) // extra histograms with respect to the base class AliITSMultReconstructor TH1F* fhClustersDPhiInterpAcc; //! Phi2 - Phi1 for tracklets (interpolation phase) TH1F* fhClustersDThetaInterpAcc; //! Theta2 - Theta1 for tracklets (interpolation phase) TH1F* fhClustersDZetaInterpAcc; //! z2 - z1projected for tracklets (interpolation phase) TH1F* fhClustersDPhiInterpAll; //! Phi2 - Phi1 all the combinations (interpolation phase) TH1F* fhClustersDThetaInterpAll; //! Theta2 - Theta1 all the combinations (interpolation phase) TH1F* fhClustersDZetaInterpAll; //! z2 - z1projected all the combinations (interpolation phase) TH2F* fhDPhiVsDThetaInterpAll; //! 2D plot for all the combinations TH2F* fhDPhiVsDThetaInterpAcc; //! same plot for tracklets TH2F* fhDPhiVsDZetaInterpAll; //! 2d plot for all the combination TH2F* fhDPhiVsDZetaInterpAcc; //! same plot for tracklets TH1F* fhetaClustersLay2; //! Pseudorapidity distr. for Clusters L. 2 TH1F* fhphiClustersLay2; //! Azimuthal (Phi) distr. for Clusters L. 2 TH1F* fhClustersInChip; //! number of fired clusters versus chip number [0,1199] TH2F** fhClustersInModuleLay1; //! distribution of cluster in the module Lay 1 (sub-chip scale) TH2F** fhClustersInModuleLay2; //! distribution of cluster in the module Lay 2 (sub-chip scale) // Double_t GetRLayer(Int_t layer); // return average radius of layer (0,1) from Geometry Bool_t PrimaryTrackChecker(Int_t ipart,AliStack* stack=0x0); // check if a MC particle is primary (need AliStack) Int_t DecayingTrackChecker(Int_t ipart,AliStack* stack=0x0); // For a primary particle, check if it is stable (see cxx) // check if a MC particle is reconstructable Bool_t IsReconstructableAt(Int_t layer,Int_t iC,Int_t ipart,Float_t* vtx,AliStack* stack=0x0,TTree* ref=0x0); void InitPredictionMC(); // allocate memory for cuts and MC data memebers void DeletePredictionMC(); // deallocate memory // method to locate a chip using current vtx and polar coordinate od tracklet w.r.t. to vtx (zVtx may not be given) Bool_t FindChip(UInt_t &key, Int_t layer, Float_t* vtx, Float_t thetaVtx, Float_t phiVtx, Float_t zVtx=999.); // method to transform from Global Cilindrical coordinate to local (module) Cartesian coordinate Bool_t FromGloCilToLocCart(Int_t ilayer,Int_t idet, Double_t r, Double_t phi, Double_t z, Float_t &xloc, Float_t &zloc); // method to obtain the module (detector) index using global coordinates Int_t FindDetectorIndex(Int_t layer, Double_t phi, Double_t z); // this method gives you the intersections between a line and a circle (centred in the origin) // using polar coordinates Bool_t FindIntersectionPolar(Double_t vtx[2],Double_t phiVtx, Double_t R,Double_t &phi); Bool_t SetAngleRange02Pi(Double_t &angle); // set the range of angle in [0,2pi[ Bool_t SetAngleRange02Pi(Float_t &angle) {Double_t tmp=(Double_t)angle; Bool_t ret=SetAngleRange02Pi(tmp);angle=(Float_t)tmp;return ret;}; void CallWarningMC() const {if(!fMC) AliWarning("You can use this method only for MC! Call SetMC() first");} Bool_t SaveHists(); void BookHistos(); // booking of extra histograms w.r.t. base class void DeleteHistos(); //delete histos from memory // Method to apply a rotation by 180degree to all RecPoints (x->-x; y->-y) on a given layer void ReflectClusterAroundZAxisForLayer(Int_t ilayer); // to be used for backgnd estimation on real data void LoadClusterArrays(TTree* tree); ClassDef(AliITSTrackleterSPDEff,6) }; // Input and output function for standard C++ input/output (for the cut values and MC statistics). ostream &operator<<(ostream &os,const AliITSTrackleterSPDEff &s); istream &operator>>(istream &is, AliITSTrackleterSPDEff &s); #endif