/************************************************************************** * Copyright(c) 2006-2008, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ #include #include "AliESDVertex.h" #include "AliLog.h" #include "AliStrLine.h" #include "AliTracker.h" #include "AliITSDetTypeRec.h" #include "AliITSRecPoint.h" #include "AliITSgeomTGeo.h" #include "AliVertexerTracks.h" #include "AliITSVertexer3D.h" #include "AliITSVertexerZ.h" #include "AliITSSortTrkl.h" ///////////////////////////////////////////////////////////////// // this class implements a method to determine // the 3 coordinates of the primary vertex // for p-p collisions // It can be used successfully with Pb-Pb collisions //////////////////////////////////////////////////////////////// ClassImp(AliITSVertexer3D) /* $Id$ */ //______________________________________________________________________ AliITSVertexer3D::AliITSVertexer3D():AliITSVertexer(), fLines("AliStrLine",1000), fVert3D(), fCoarseDiffPhiCut(0.), fFineDiffPhiCut(0.), fCutOnPairs(0.), fCoarseMaxRCut(0.), fMaxRCut(0.), fZCutDiamond(0.), fMaxZCut(0.), fDCAcut(0.), fDiffPhiMax(0.), fMeanPSelTrk(0.), fMeanPtSelTrk(0.), fUsedCluster(kMaxCluPerMod*kNSPDMod), fZHisto(0), fDCAforPileup(0.), fPileupAlgo(0) { // Default constructor SetCoarseDiffPhiCut(); SetFineDiffPhiCut(); SetCutOnPairs(); SetCoarseMaxRCut(); SetMaxRCut(); SetZCutDiamond(); SetMaxZCut(); SetDCACut(); SetDiffPhiMax(); SetMeanPSelTracks(); SetMeanPtSelTracks(); SetMinDCAforPileup(); SetPileupAlgo(); Float_t binsize=0.02; // default 200 micron Int_t nbins=static_cast(1+2*fZCutDiamond/binsize); fZHisto=new TH1F("hz","",nbins,-fZCutDiamond,-fZCutDiamond+binsize*nbins); } //______________________________________________________________________ AliITSVertexer3D::~AliITSVertexer3D() { // Destructor fLines.Clear("C"); if(fZHisto) delete fZHisto; } //______________________________________________________________________ void AliITSVertexer3D::ResetVert3D(){ // ResetVertex(); fVert3D.SetXv(0.); fVert3D.SetYv(0.); fVert3D.SetZv(0.); fVert3D.SetDispersion(0.); fVert3D.SetNContributors(0); fUsedCluster.ResetAllBits(0); } //______________________________________________________________________ AliESDVertex* AliITSVertexer3D::FindVertexForCurrentEvent(TTree *itsClusterTree){ // Defines the AliESDVertex for the current event ResetVert3D(); AliDebug(1,"FindVertexForCurrentEvent - 3D - PROCESSING NEXT EVENT"); fLines.Clear("C"); fCurrentVertex = NULL; Int_t nolines = FindTracklets(itsClusterTree,0); if(nolines>=2){ Int_t rc=Prepare3DVertex(0); if(fPileupAlgo == 2 && rc == 0) FindVertex3DIterative(); else if(fPileupAlgo<2 && rc == 0) FindVertex3D(itsClusterTree); } if(!fCurrentVertex){ AliITSVertexerZ vertz(GetNominalPos()[0],GetNominalPos()[1]); vertz.SetDetTypeRec(GetDetTypeRec()); AliDebug(1,"Call Vertexer Z\n"); vertz.SetLowLimit(-fZCutDiamond); vertz.SetHighLimit(fZCutDiamond); AliESDVertex* vtxz = vertz.FindVertexForCurrentEvent(itsClusterTree); if(vtxz){ Double_t position[3]={GetNominalPos()[0],GetNominalPos()[1],vtxz->GetZv()}; Double_t covmatrix[6]; vtxz->GetCovMatrix(covmatrix); Double_t chi2=99999.; Int_t nContr=vtxz->GetNContributors(); fCurrentVertex = new AliESDVertex(position,covmatrix,chi2,nContr); fCurrentVertex->SetTitle("vertexer: Z"); fCurrentVertex->SetName("SPDVertexZ"); delete vtxz; } } FindMultiplicity(itsClusterTree); return fCurrentVertex; } //______________________________________________________________________ void AliITSVertexer3D::FindVertex3D(TTree *itsClusterTree){ // 3D algorithm /* uncomment to debug printf("Vertex found in first iteration:\n"); fVert3D.Print(); printf("Start second iteration\n"); end of debug lines */ if(fVert3D.GetNContributors()>0){ fLines.Clear("C"); Int_t nolines = FindTracklets(itsClusterTree,1); if(nolines>=2){ Int_t rc=Prepare3DVertex(1); if(rc!=0) fVert3D.SetNContributors(0); // exclude this vertex } } /* uncomment to debug printf("Vertex found in second iteration:\n"); fVert3D.Print(); end of debug lines */ Float_t vRadius=TMath::Sqrt(fVert3D.GetXv()*fVert3D.GetXv()+fVert3D.GetYv()*fVert3D.GetYv()); if(vRadius0){ Double_t position[3]={fVert3D.GetXv(),fVert3D.GetYv(),fVert3D.GetZv()}; Double_t covmatrix[6]; fVert3D.GetCovMatrix(covmatrix); Double_t chi2=99999.; Int_t nContr=fVert3D.GetNContributors(); fCurrentVertex = new AliESDVertex(position,covmatrix,chi2,nContr); fCurrentVertex->SetTitle("vertexer: 3D"); fCurrentVertex->SetName("SPDVertex3D"); fCurrentVertex->SetDispersion(fVert3D.GetDispersion()); fNoVertices=1; switch(fPileupAlgo){ case 0: PileupFromZ(); break; case 1: FindOther3DVertices(itsClusterTree); break; default: AliError("Wrong pileup algorithm"); break; } if(fNoVertices==1){ fVertArray = new AliESDVertex[1]; fVertArray[0]=(*fCurrentVertex); } } } //______________________________________________________________________ void AliITSVertexer3D::FindVertex3DIterative(){ // Defines the AliESDVertex for the current event Int_t numsor=fLines.GetEntriesFast()*(fLines.GetEntriesFast()-1)/2; //cout<<"AliITSVertexer3D::FindVertexForCurentEvent: Number of tracklets selected for vertexing "<0){ fVertArray = new AliESDVertex[fNoVertices]; for(Int_t kk=0; kk0 & jj%8==0)cout<0 & jj%8==0)cout<(fLines[labels[jj]]); } // cout<0){ Double_t position[3]={fVertArray[0].GetXv(),fVertArray[0].GetYv(),fVertArray[0].GetZv()}; Double_t covmatrix[6]; fVertArray[0].GetCovMatrix(covmatrix); Double_t chi2=99999.; Int_t nContr=fVertArray[0].GetNContributors(); fCurrentVertex = new AliESDVertex(position,covmatrix,chi2,nContr); fCurrentVertex->SetTitle("vertexer: 3D"); fCurrentVertex->SetName("SPDVertex3D"); fCurrentVertex->SetDispersion(fVertArray[0].GetDispersion()); } } } //______________________________________________________________________ Bool_t AliITSVertexer3D::DistBetweenVertices(AliESDVertex &a, AliESDVertex &b, Double_t test, Double_t &dist){ // method to compare the distance between vertices a and b with "test" //it returns kTRUE is the distance is less or equal to test dist = (a.GetX()-b.GetX()) * (a.GetX()-b.GetX()); dist += (a.GetY()-b.GetY()) * (a.GetY()-b.GetY()); dist += (a.GetZ()-b.GetZ()) * (a.GetZ()-b.GetZ()); dist = TMath::Sqrt(dist); if(dist <= test)return kTRUE; return kFALSE; } //______________________________________________________________________ Int_t AliITSVertexer3D::FindTracklets(TTree *itsClusterTree, Int_t optCuts){ // All the possible combinations between recpoints on layer 1and 2 are // considered. Straight lines (=tracklets)are formed. // The tracklets are processed in Prepare3DVertex if(!GetDetTypeRec())AliFatal("DetTypeRec pointer has not been set"); TTree *tR = itsClusterTree; fDetTypeRec->ResetRecPoints(); fDetTypeRec->SetTreeAddressR(tR); TClonesArray *itsRec = 0; if(optCuts==0) fZHisto->Reset(); // gc1 are local and global coordinates for layer 1 Float_t gc1[3]={0.,0.,0.}; // gc2 are local and global coordinates for layer 2 Float_t gc2[3]={0.,0.,0.}; itsRec = fDetTypeRec->RecPoints(); TBranch *branch = NULL; branch = tR->GetBranch("ITSRecPoints"); if(!branch){ AliError("Null pointer for RecPoints branch"); return -1; } // Set values for cuts Float_t xbeam=GetNominalPos()[0]; Float_t ybeam=GetNominalPos()[1]; Float_t zvert=0.; Float_t deltaPhi=fCoarseDiffPhiCut; Float_t deltaR=fCoarseMaxRCut; Float_t dZmax=fZCutDiamond; if(fPileupAlgo == 2){ deltaPhi=fFineDiffPhiCut; deltaR=fMaxRCut; if(optCuts != 0)AliWarning(Form("fPileupAlgo=2 AND optCuts=%d has been selected. It should be 0",optCuts)); } else if(optCuts==1){ xbeam=fVert3D.GetXv(); ybeam=fVert3D.GetYv(); zvert=fVert3D.GetZv(); deltaPhi = fDiffPhiMax; deltaR=fMaxRCut; dZmax=fMaxZCut; } else if(optCuts==2){ xbeam=fVert3D.GetXv(); ybeam=fVert3D.GetYv(); deltaPhi = fDiffPhiMax; deltaR=fMaxRCut; } Int_t nrpL1 = 0; // number of rec points on layer 1 Int_t nrpL2 = 0; // number of rec points on layer 2 // By default irstL1=0 and lastL1=79 Int_t firstL1 = AliITSgeomTGeo::GetModuleIndex(1,1,1); Int_t lastL1 = AliITSgeomTGeo::GetModuleIndex(2,1,1)-1; for(Int_t module= firstL1; module<=lastL1;module++){ // count number of recopints on layer 1 branch->GetEvent(module); nrpL1+= itsRec->GetEntries(); fDetTypeRec->ResetRecPoints(); } //By default firstL2=80 and lastL2=239 Int_t firstL2 = AliITSgeomTGeo::GetModuleIndex(2,1,1); Int_t lastL2 = AliITSgeomTGeo::GetModuleIndex(3,1,1)-1; for(Int_t module= firstL2; module<=lastL2;module++){ // count number of recopints on layer 2 branch->GetEvent(module); nrpL2+= itsRec->GetEntries(); fDetTypeRec->ResetRecPoints(); } if(nrpL1 == 0 || nrpL2 == 0){ return -1; } AliDebug(1,Form("RecPoints on Layer 1,2 = %d, %d\n",nrpL1,nrpL2)); Double_t a[3]={xbeam,ybeam,0.}; Double_t b[3]={xbeam,ybeam,10.}; AliStrLine zeta(a,b,kTRUE); Float_t bField=AliTracker::GetBz()/10.; //T SetMeanPPtSelTracks(bField); Int_t nolines = 0; // Loop on modules of layer 1 for(Int_t modul1= firstL1; modul1<=lastL1;modul1++){ // Loop on modules of layer 1 if(!fUseModule[modul1]) continue; UShort_t ladder=int(modul1/4)+1; // ladders are numbered starting from 1 branch->GetEvent(modul1); Int_t nrecp1 = itsRec->GetEntries(); static TClonesArray prpl1("AliITSRecPoint",nrecp1); prpl1.SetOwner(); for(Int_t j=0;jAt(j); new(prpl1[j])AliITSRecPoint(*recp); } fDetTypeRec->ResetRecPoints(); for(Int_t j=0;jkMaxCluPerMod) continue; UShort_t idClu1=modul1*kMaxCluPerMod+j; if(fUsedCluster.TestBitNumber(idClu1)) continue; AliITSRecPoint *recp1 = (AliITSRecPoint*)prpl1.At(j); recp1->GetGlobalXYZ(gc1); Double_t phi1 = TMath::ATan2(gc1[1]-ybeam,gc1[0]-xbeam); if(phi1<0)phi1=2*TMath::Pi()+phi1; for(Int_t ladl2=0 ; ladl2AliITSgeomTGeo::GetNLadders(2)) ladmod=ladmod-AliITSgeomTGeo::GetNLadders(2); Int_t modul2=AliITSgeomTGeo::GetModuleIndex(2,ladmod,k+1); if(!fUseModule[modul2]) continue; branch->GetEvent(modul2); Int_t nrecp2 = itsRec->GetEntries(); for(Int_t j2=0;j2kMaxCluPerMod) continue; UShort_t idClu2=modul2*kMaxCluPerMod+j2; if(fUsedCluster.TestBitNumber(idClu2)) continue; AliITSRecPoint *recp2 = (AliITSRecPoint*)itsRec->At(j2); recp2->GetGlobalXYZ(gc2); Double_t phi2 = TMath::ATan2(gc2[1]-ybeam,gc2[0]-xbeam); if(phi2<0)phi2=2*TMath::Pi()+phi2; Double_t diff = TMath::Abs(phi2-phi1); if(diff>TMath::Pi())diff=2.*TMath::Pi()-diff; if(optCuts==0 && diffFill(zr0); } if(diff>deltaPhi)continue; AliStrLine line(gc1,gc2,kTRUE); Double_t cp[3]; Int_t retcode = line.Cross(&zeta,cp); if(retcode<0)continue; Double_t dca = line.GetDCA(&zeta); if(dca<0.) continue; if(dca>deltaR)continue; Double_t deltaZ=cp[2]-zvert; if(TMath::Abs(deltaZ)>dZmax)continue; if(nolines == 0){ if(fLines.GetEntriesFast()>0)fLines.Clear("C"); } Float_t cov[6]; recp2->GetGlobalCov(cov); Float_t rad1=TMath::Sqrt(gc1[0]*gc1[0]+gc1[1]*gc1[1]); Float_t rad2=TMath::Sqrt(gc2[0]*gc2[0]+gc2[1]*gc2[1]); Float_t factor=(rad1+rad2)/(rad2-rad1); //factor to account for error on tracklet direction Float_t curvErr=0; if(bField>0.00001){ Float_t curvRadius=fMeanPtSelTrk/(0.3*bField)*100; //cm Float_t dRad=TMath::Sqrt(TMath::Power((gc1[0]-gc2[0]),2)+TMath::Power((gc1[1]-gc2[1]),2)); Float_t aux=dRad/2.+rad1; curvErr=TMath::Sqrt(curvRadius*curvRadius-dRad*dRad/4.)-TMath::Sqrt(curvRadius*curvRadius-aux*aux); //cm } Float_t sigmasq[3]; sigmasq[0]=(cov[0]+curvErr*curvErr/2.)*factor*factor; sigmasq[1]=(cov[3]+curvErr*curvErr/2.)*factor*factor; sigmasq[2]=cov[5]*factor*factor; // Multiple scattering Float_t beta=1.; Float_t beta2=beta*beta; Float_t p2=fMeanPSelTrk*fMeanPSelTrk; Float_t rBP=GetPipeRadius(); Float_t dBP=0.08/35.3; // 800 um of Be Float_t dL1=0.01; //approx. 1% of radiation length Float_t theta2BP=14.1*14.1/(beta2*p2*1e6)*TMath::Abs(dBP); Float_t theta2L1=14.1*14.1/(beta2*p2*1e6)*TMath::Abs(dL1); Float_t thetaBP=TMath::Sqrt(theta2BP); Float_t thetaL1=TMath::Sqrt(theta2L1); for(Int_t ico=0; ico<3;ico++){ // printf("Error on coord. %d due to cov matrix+curvErr=%f\n",ico,sigmasq[ico]); // // sigmasq[ico]+=rad1*rad1*geomfac[ico]*theta2L1/2; // multiple scattering in layer 1 // // sigmasq[ico]+=rBP*rBP*geomfac[ico]*theta2BP/2; // multiple scattering in beam pipe sigmasq[ico]+=TMath::Power(rad1*TMath::Tan(thetaL1),2)/3.; sigmasq[ico]+=TMath::Power(rBP*TMath::Tan(thetaBP),2)/3.; // printf("Multipl. scatt. contr %d = %f (LAY1), %f (BP)\n",ico,rad1*rad1*geomfac[ico]*theta2L1/2,rBP*rBP*geomfac[ico]*theta2BP/2); // printf("Total error on coord %d = %f\n",ico,sigmasq[ico]); } Float_t wmat[9]={1.,0.,0.,0.,1.,0.,0.,0.,1.}; if(sigmasq[0]!=0.) wmat[0]=1./sigmasq[0]; if(sigmasq[1]!=0.) wmat[4]=1./sigmasq[1]; if(sigmasq[2]!=0.) wmat[8]=1./sigmasq[2]; new(fLines[nolines++])AliStrLine(gc1,sigmasq,wmat,gc2,kTRUE,idClu1,idClu2); } fDetTypeRec->ResetRecPoints(); } } } prpl1.Clear(); } if(nolines == 0)return -2; return nolines; } //______________________________________________________________________ Int_t AliITSVertexer3D::Prepare3DVertex(Int_t optCuts){ // Finds the 3D vertex information using tracklets Int_t retcode = -1; Float_t xbeam=GetNominalPos()[0]; Float_t ybeam=GetNominalPos()[1]; Float_t zvert=0.; Float_t deltaR=fCoarseMaxRCut; if(fPileupAlgo == 2) { deltaR=fMaxRCut; if(optCuts!=0)AliWarning(Form("fPileupAlgo=2 AND optCuts=%d. It should be 0",optCuts)); } Float_t dZmax=fZCutDiamond; if(optCuts==1){ xbeam=fVert3D.GetXv(); ybeam=fVert3D.GetYv(); zvert=fVert3D.GetZv(); deltaR=fMaxRCut; dZmax=fMaxZCut; }else if(optCuts==2){ xbeam=fVert3D.GetXv(); ybeam=fVert3D.GetYv(); deltaR=fMaxRCut; } Int_t nbr=50; Float_t rl=-fCoarseMaxRCut; Float_t rh=fCoarseMaxRCut; Int_t nbz=100; Float_t zl=-fZCutDiamond; Float_t zh=fZCutDiamond; Float_t binsizer=(rh-rl)/nbr; Float_t binsizez=(zh-zl)/nbz; Int_t nbrcs=25; Int_t nbzcs=50; TH3F *h3d = NULL; TH3F *h3dcs = NULL; if(fPileupAlgo !=2){ h3d = new TH3F("h3d","xyz distribution",nbr,rl,rh,nbr,rl,rh,nbz,zl,zh); h3dcs = new TH3F("h3dcs","xyz distribution",nbrcs,rl,rh,nbrcs,rl,rh,nbzcs,zl,zh); } // cleanup of the TCLonesArray of tracklets (i.e. fakes are removed) Int_t *validate = new Int_t [fLines.GetEntriesFast()]; for(Int_t i=0; iGetDCA(l2); if(dca > fDCAcut || dca<0.00001) continue; Double_t point[3]; Int_t retc = l1->Cross(l2,point); if(retc<0)continue; Double_t deltaZ=point[2]-zvert; if(TMath::Abs(deltaZ)>dZmax)continue; Double_t rad=TMath::Sqrt(point[0]*point[0]+point[1]*point[1]); if(rad>fCoarseMaxRCut)continue; Double_t deltaX=point[0]-xbeam; Double_t deltaY=point[1]-ybeam; Double_t raddist=TMath::Sqrt(deltaX*deltaX+deltaY*deltaY); if(raddist>deltaR)continue; validate[i]=1; validate[j]=1; if(fPileupAlgo != 2){ h3d->Fill(point[0],point[1],point[2]); h3dcs->Fill(point[0],point[1],point[2]); } } } Int_t numbtracklets=0; for(Int_t i=0; i=1)numbtracklets++; if(numbtracklets<2){ delete [] validate; if(fPileupAlgo != 2){ delete h3d; delete h3dcs; } return retcode; } for(Int_t i=0; i1){delete h3dcs; return retcode;} } delete h3dcs; // Second selection loop Float_t bs=(binsizer+binsizez)/2.; for(Int_t i=0; iGetDistFromPoint(peak)>2.5*bs)fLines.RemoveAt(i); } fLines.Compress(); AliDebug(1,Form("Number of tracklets (after 2nd compression) %d",fLines.GetEntriesFast())); if(fLines.GetEntriesFast()>1){ retcode=0; // find a first candidate for the primary vertex fVert3D=AliVertexerTracks::TrackletVertexFinder(&fLines,0); // make a further selection on tracklets based on this first candidate fVert3D.GetXYZ(peak); AliDebug(1,Form("FIRST V candidate: %f ; %f ; %f",peak[0],peak[1],peak[2])); for(Int_t i=0; iGetDistFromPoint(peak)> fDCAcut)fLines.RemoveAt(i); } fLines.Compress(); AliDebug(1,Form("Number of tracklets (after 3rd compression) %d",fLines.GetEntriesFast())); if(fLines.GetEntriesFast()>1){// this new tracklet selection is used fVert3D=AliVertexerTracks::TrackletVertexFinder(&fLines,0); } } return retcode; } //________________________________________________________ void AliITSVertexer3D::SetMeanPPtSelTracks(Float_t fieldTesla){ // Sets mean values of P and Pt based on the field if(TMath::Abs(fieldTesla-0.5)<0.01){ SetMeanPSelTracks(0.885); SetMeanPtSelTracks(0.630); }else if(TMath::Abs(fieldTesla-0.4)<0.01){ SetMeanPSelTracks(0.805); SetMeanPtSelTracks(0.580); }else if(TMath::Abs(fieldTesla-0.2)<0.01){ SetMeanPSelTracks(0.740); SetMeanPtSelTracks(0.530); }else if(fieldTesla<0.00001){ SetMeanPSelTracks(0.730); SetMeanPtSelTracks(0.510); }else{ SetMeanPSelTracks(); SetMeanPtSelTracks(); } } //________________________________________________________ void AliITSVertexer3D::FindPeaks(TH3F* histo, Double_t *peak, Int_t &nOfTracklets, Int_t &nOfTimes){ // Finds bin with max contents in 3D histo of tracket intersections TAxis *xax = histo->GetXaxis(); TAxis *yax = histo->GetYaxis(); TAxis *zax = histo->GetZaxis(); peak[0]=0.; peak[1]=0.; peak[2]=0.; nOfTracklets = 0; nOfTimes=0; for(Int_t i=xax->GetFirst();i<=xax->GetLast();i++){ Float_t xval = xax->GetBinCenter(i); for(Int_t j=yax->GetFirst();j<=yax->GetLast();j++){ Float_t yval = yax->GetBinCenter(j); for(Int_t k=zax->GetFirst();k<=zax->GetLast();k++){ Float_t zval = zax->GetBinCenter(k); Int_t bc =(Int_t)histo->GetBinContent(i,j,k); if(bc>nOfTracklets){ nOfTracklets = bc; peak[2] = zval; peak[1] = yval; peak[0] = xval; nOfTimes = 1; }else if(bc==nOfTracklets){ nOfTimes++; } } } } } //________________________________________________________ void AliITSVertexer3D::MarkUsedClusters(){ // Mark clusters of tracklets used in vertex claulation for(Int_t i=0; iGetIdPoint(0); Int_t idClu2=lin->GetIdPoint(1); fUsedCluster.SetBitNumber(idClu1); fUsedCluster.SetBitNumber(idClu2); } } //________________________________________________________ Int_t AliITSVertexer3D::RemoveTracklets(){ // Remove trackelts close to first found vertex Double_t vert[3]={fVert3D.GetXv(),fVert3D.GetYv(),fVert3D.GetZv()}; Int_t nRemoved=0; for(Int_t i=0; iGetDistFromPoint(vert)GetIdPoint(0); Int_t idClu2=lin->GetIdPoint(1); fUsedCluster.SetBitNumber(idClu1); fUsedCluster.SetBitNumber(idClu2); fLines.RemoveAt(i); ++nRemoved; } } fLines.Compress(); return nRemoved; } //________________________________________________________ void AliITSVertexer3D::FindOther3DVertices(TTree *itsClusterTree){ // pileup identification based on 3D vertexing with not used clusters MarkUsedClusters(); fLines.Clear("C"); Int_t nolines = FindTracklets(itsClusterTree,2); if(nolines>=2){ Int_t nr=RemoveTracklets(); nolines-=nr; if(nolines>=2){ Int_t rc=Prepare3DVertex(2); if(rc==0){ fVert3D=AliVertexerTracks::TrackletVertexFinder(&fLines,0); if(fVert3D.GetNContributors()>=fMinTrackletsForPilup){ fIsPileup=kTRUE; fNoVertices=2; fVertArray = new AliESDVertex[2]; fVertArray[0]=(*fCurrentVertex); fVertArray[1]=fVert3D; fZpuv=fVert3D.GetZv(); fNTrpuv=fVert3D.GetNContributors(); } } } } } //______________________________________________________________________ void AliITSVertexer3D::PileupFromZ(){ // Calls the pileup algorithm of ALiITSVertexerZ Int_t binmin, binmax; Int_t nPeaks=AliITSVertexerZ::GetPeakRegion(fZHisto,binmin,binmax); if(nPeaks==2)AliWarning("2 peaks found"); Int_t firstPeakCont=0; Float_t firstPeakPos=0.; for(Int_t i=binmin-1;i<=binmax+1;i++){ firstPeakCont+=static_cast(fZHisto->GetBinContent(i)); firstPeakPos+=fZHisto->GetBinContent(i)*fZHisto->GetBinCenter(i); } if(firstPeakCont>0){ firstPeakPos/=firstPeakCont; Int_t ncontr2=0; if(firstPeakCont>fMinTrackletsForPilup){ Float_t secPeakPos; ncontr2=AliITSVertexerZ::FindSecondPeak(fZHisto,binmin,binmax,secPeakPos); if(ncontr2>=fMinTrackletsForPilup){ fIsPileup=kTRUE; fNoVertices=2; AliESDVertex secondVert(secPeakPos,0.1,ncontr2); fVertArray = new AliESDVertex[2]; fVertArray[0]=(*fCurrentVertex); fVertArray[1]=secondVert; fZpuv=secPeakPos; fNTrpuv=ncontr2; } } } } //________________________________________________________ void AliITSVertexer3D::PrintStatus() const { // Print current status printf("=======================================================\n"); printf("Loose cut on Delta Phi %f\n",fCoarseDiffPhiCut); printf("Cut on tracklet DCA to Z axis %f\n",fCoarseMaxRCut); printf("Cut on tracklet DCA to beam axis %f\n",fMaxRCut); printf("Cut on diamond (Z) %f\n",fZCutDiamond); printf("Cut on DCA - tracklet to tracklet and to vertex %f\n",fDCAcut); printf("Max Phi difference: %f\n",fDiffPhiMax); printf("Pileup algo: %d\n",fPileupAlgo); printf("Min DCA to 1st vetrtex for pileup: %f\n",fDCAforPileup); printf("=======================================================\n"); }