#ifndef ALIITSRESPONSE_H #define ALIITSRESPONSE_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ #include #include class AliITSsegmentation; class TF1; class AliITSgeom; //---------------------------------------------- // // ITS response virtual base class // class AliITSresponse : public TObject { public: // Default Constructor AliITSresponse(); // Standard Constructor AliITSresponse(Double_t Thickness); // Destructor. virtual ~AliITSresponse() {} // // Configuration methods // // Set GeVcharge value (Default value is based on about 20,000 e- by a // mip (1.163E-4GeV) in 300 microns) virtual void SetGeVToCharge(Double_t gc=1.719E+8){fGeVcharge = gc;} // Returns the value fGeVcharge virtual Double_t GetGeVToCharge() const {return fGeVcharge;} // Converts deposited energy to number of electrons liberated virtual Double_t GeVToCharge(Double_t gev) const {return gev*fGeVcharge;} // Diffusion coefficient virtual void SetDiffCoeff(Double_t, Double_t) = 0; // Get diffusion coefficients virtual void DiffCoeff(Double_t &,Double_t &) const = 0; // Temperature in [degree K] virtual void SetTemperature(Double_t t=300.0) {fT = t;} // Get temperature [degree K] virtual Double_t Temperature() const {return fT;} // Set the impurity concentrations in [#/cm^3] virtual void SetImpurity(Double_t n=0.0){fN = n;} // Returns the impurity consentration in [#/cm^3] virtual Double_t Impurity() const {return fN;} // Sets the applied ratio distance/voltage [cm/volt] virtual void SetDistanceOverVoltage(Double_t d,Double_t v){fdv = d/v;} // Sets the applied ration distance/voltage [cm/volt]. Default value // is 300E-4cm/80 volts = 0.000375 cm/volts virtual void SetDistanceOverVoltage(Double_t dv=0.000375){fdv = dv;} // Returns the ration distance/voltage virtual Double_t DistanceOverVoltage() const {return fdv;} // Get data type virtual const char *DataType() const {return fDataType.Data();} // Type of data - real or simulated virtual void SetDataType(const char *data="simulated") {fDataType=data;} // Set parameters options: "same" or read from "file" or "SetInvalid" or... virtual void SetParamOptions(const char*,const char*) = 0; // Set noise parameters virtual void SetNoiseParam(Double_t, Double_t) = 0; // Number of parameters to be set virtual void SetNDetParam(Int_t) = 0; // Set detector parameters: gain, coupling ... virtual void SetDetParam(Double_t *) = 0; // Parameters options virtual void ParamOptions(char *,char*) const = 0; virtual Int_t NDetParam() const = 0; virtual void GetDetParam(Double_t *) const = 0; virtual void GetNoiseParam(Double_t&, Double_t&) const = 0; // Zero-suppression option - could be 1D, 2D or non-ZeroSuppressed virtual void SetZeroSupp(const char*) = 0; // Get zero-suppression option virtual const char *ZeroSuppOption() const = 0; // Set thresholds virtual void SetThresholds(Double_t, Double_t) = 0; virtual void Thresholds(Double_t &, Double_t &) const = 0; // Set filenames virtual void SetFilenames(const char *f1="",const char *f2="", const char *f3=""){ // Set filenames - input, output, parameters .... fFileName1=f1; fFileName2=f2; fFileName3=f3;} // Filenames virtual void Filenames(char* input,char* baseline,char* param) { strcpy(input,fFileName1.Data()); strcpy(baseline,fFileName2.Data()); strcpy(param,fFileName3.Data());} virtual Double_t DriftSpeed() const {return SpeedElectron();}; // set output option virtual void SetOutputOption(Bool_t write=kFALSE) {fWrite = write;} virtual Bool_t OutputOption() const {return fWrite;} virtual Bool_t Do10to8() const {return kTRUE;} virtual void GiveCompressParam(Int_t *) const =0; // // Detector type response methods // Set number of sigmas over which cluster disintegration is performed virtual void SetNSigmaIntegration(Double_t) = 0; // Get number of sigmas over which cluster disintegration is performed virtual Double_t NSigmaIntegration() const = 0; // Set number of bins for the gaussian lookup table virtual void SetNLookUp(Int_t) = 0; // Get number of bins for the gaussian lookup table virtual Int_t GausNLookUp() const {return 0;} // Get scaling factor for bin i-th from the gaussian lookup table virtual Double_t GausLookUp(Int_t) const {return 0.;} // Set sigmas of the charge spread function virtual void SetSigmaSpread(Double_t, Double_t) = 0; // Get sigmas for the charge spread virtual void SigmaSpread(Double_t &,Double_t &) const = 0; // Pulse height from scored quantity (eloss) virtual Double_t IntPH(Double_t) const {return 0.;} // Charge disintegration virtual Double_t IntXZ(AliITSsegmentation *) const {return 0.;} // Electron mobility in Si. [cm^2/(Volt Sec)]. T in degree K, N in #/cm^3 virtual Double_t MobilityElectronSiEmp() const ; // Hole mobility in Si. [cm^2/(Volt Sec)] T in degree K, N in #/cm^3 virtual Double_t MobilityHoleSiEmp() const ; // Einstein relation for Diffusion Coefficient of Electrons. [cm^2/sec] // T in degree K, N in #/cm^3 virtual Double_t DiffusionCoefficientElectron() const ; // Einstein relation for Diffusion Coefficient of Holes. [cm^2/sec] // T in [degree K], N in [#/cm^3] virtual Double_t DiffusionCoefficientHole() const ; // Electron under an applied electric field E=Volts/cm. [cm/sec] // d distance-thickness in [cm], v in [volts], T in [degree K], // N in [#/cm^3] virtual Double_t SpeedElectron() const ; // Holes under an applied electric field E=Volts/cm. [cm/sec] // d distance-thickness in [cm], v in [volts], T in [degree K], // N in [#/cm^3] virtual Double_t SpeedHole() const ; // Returns the Gaussian sigma == [cm^2] due to the defusion of // electrons or holes through a distance l [cm] caused by an applied // voltage v [volt] through a distance d [cm] in any material at a // temperature T [degree K]. virtual Double_t SigmaDiffusion3D(Double_t l) const ; // Returns the Gaussian sigma == [cm^2] due to the // defusion of electrons or holes through a distance l [cm] caused by an // applied voltage v [volt] through a distance d [cm] in any material at a // temperature T [degree K]. virtual Double_t SigmaDiffusion2D(Double_t l) const ; // Returns the Gaussian sigma == [cm^2] due to the defusion of // electrons or holes through a distance l [cm] caused by an applied // voltage v [volt] through a distance d [cm] in any material at a // temperature T [degree K]. virtual Double_t SigmaDiffusion1D(Double_t l) const ; // Prints out the content of this class in ASCII format. virtual void Print(ostream *os) const; // Reads in the content of this class in the format of Print virtual void Read(istream *is); protected: void NotImplemented(const char *method) const {if(gDebug>0) Warning(method,"This method is not implemented for this sub-class");} TString fDataType; // data type - real or simulated private: Double_t fdv; // The parameter d/v where d is the disance over which the // the potential v is applied d/v [cm/volts] Double_t fN; // the impurity consentration of the material in #/cm^3 Double_t fT; // The temperature of the Si in Degree K. Double_t fGeVcharge; // Energy to ionize (free an electron). TString fFileName1; // input keys : run, module # TString fFileName2; // baseline & noise val or output code // signal or monitored bgr. TString fFileName3; // param values or output coded signal Bool_t fWrite; // Write option for the compression algorithms ClassDef(AliITSresponse,2) // Detector type response virtual base class }; // Input and output function for standard C++ input/output. ostream& operator<<(ostream &os,AliITSresponse &source); istream& operator>>(istream &os,AliITSresponse &source); #endif