#ifndef ALIITSRESPONSE_H #define ALIITSRESPONSE_H #include #include "AliITSsegmentation.h" class TF1; class TString; class AliITSgeom; //---------------------------------------------- // // ITS response virtual base class // class AliITSresponse : public TObject { public: // Default Constructor AliITSresponse(); // Standard Constructor AliITSresponse(Double_t Thickness); // Destructor. virtual ~AliITSresponse() {} // // Configuration methods // // Set Electronics virtual void SetElectronics(Int_t p1) {} // Get Electronics virtual Int_t Electronics() {return 0;} // Set maximum Adc-count value virtual void SetMaxAdc(Float_t p1) {} // Get maximum Adc-count value virtual Float_t MaxAdc() {return 0.;} // Set maximum Adc-top value virtual void SetDynamicRange(Float_t p1) {} // Get maximum Adc-top value virtual Float_t DynamicRange() {return 0.0;} // Set Charge Loss Linear Coefficient virtual void SetChargeLoss(Float_t p1) {} // Get Charge Loss Linear Coefficient virtual Float_t ChargeLoss() {return 0.0;} // Diffusion coefficient virtual void SetDiffCoeff(Float_t, Float_t) {} // Get diffusion coefficients virtual void DiffCoeff(Float_t &,Float_t &) {} // Temperature in [degree K] virtual void SetTemperature(Float_t t=300.0) {fT = t;} // Get temperature [degree K] virtual Float_t Temperature() {return fT;} // Type of data - real or simulated virtual void SetDataType(const char *data) {} // Set the impurity concentrations in [#/cm^3] virtual void SetImpurity(Double_t n=0.0){fN = n;} // Returns the impurity consentration in [#/cm^3] virtual Double_t Impurity(){return fN;} // Sets the applied ratio distance/voltage [cm/volt] virtual void SetDistanceOverVoltage(Double_t d,Double_t v){fdv = d/v;} // Sets the applied ration distance/voltage [cm/volt]. Default value // is 300E-4cm/80 volts = 0.000375 cm/volts virtual void SetDistanceOverVoltage(Double_t dv=0.000375){fdv = dv;} // Returns the ration distance/voltage virtual Double_t DistanceOverVoltage(){return fdv;} // Get data type virtual const char *DataType() const {return "";} // Set parameters options: "same" or read from "file" or "SetInvalid" or... virtual void SetParamOptions(const char* opt1,const char* opt2) {} // Set noise parameters virtual void SetNoiseParam(Float_t, Float_t) {} // Number of parameters to be set virtual void SetNDetParam(Int_t) {} // Set detector parameters: gain, coupling ... virtual void SetDetParam(Float_t *) {} // Parameters options virtual void ParamOptions(char *,char*) {} virtual Int_t NDetParam() {return 0;} virtual void GetDetParam(Float_t *) {} virtual void GetNoiseParam(Float_t&, Float_t&) {} // Zero-suppression option - could be 1D, 2D or non-ZeroSuppressed virtual void SetZeroSupp(const char* opt) {} // Get zero-suppression option virtual const char *ZeroSuppOption() const {return "";} // Set thresholds virtual void SetThresholds(Float_t, Float_t) {} virtual void Thresholds(Float_t &, Float_t &) {} // Set min val virtual void SetMinVal(Int_t) {}; virtual Int_t MinVal() {return 0;}; // Set filenames virtual void SetFilenames(const char *f1,const char *f2,const char *f3) {} // Filenames virtual void Filenames(char*,char*,char*) {} virtual Float_t DriftSpeed() {return 0.;} virtual Bool_t OutputOption() {return kFALSE;} virtual Bool_t Do10to8() {return kTRUE;} virtual void GiveCompressParam(Int_t *x) {} // // Detector type response methods // Set number of sigmas over which cluster disintegration is performed virtual void SetNSigmaIntegration(Float_t p1) {} // Get number of sigmas over which cluster disintegration is performed virtual Float_t NSigmaIntegration() {return 0.;} // Set number of bins for the gaussian lookup table virtual void SetNLookUp(Int_t p1) {} // Get number of bins for the gaussian lookup table virtual Int_t GausNLookUp() {return 0;} // Get scaling factor for bin i-th from the gaussian lookup table virtual Float_t GausLookUp(Int_t) {return 0.;} // Set sigmas of the charge spread function virtual void SetSigmaSpread(Float_t p1, Float_t p2) {} // Get sigmas for the charge spread virtual void SigmaSpread(Float_t &s1, Float_t &s2) {} // Pulse height from scored quantity (eloss) virtual Float_t IntPH(Float_t eloss) {return 0.;} // Charge disintegration virtual Float_t IntXZ(AliITSsegmentation *) {return 0.;} // Electron mobility in Si. [cm^2/(Volt Sec)]. T in degree K, N in #/cm^3 virtual Double_t MobilityElectronSiEmp(); // Hole mobility in Si. [cm^2/(Volt Sec)] T in degree K, N in #/cm^3 virtual Double_t MobilityHoleSiEmp(); // Einstein relation for Diffusion Coefficient of Electrons. [cm^2/sec] // T in degree K, N in #/cm^3 virtual Double_t DiffusionCoefficientElectron(); // Einstein relation for Diffusion Coefficient of Holes. [cm^2/sec] // T in [degree K], N in [#/cm^3] virtual Double_t DiffusionCoefficientHole(); // Electron under an applied electric field E=Volts/cm. [cm/sec] // d distance-thickness in [cm], v in [volts], T in [degree K], // N in [#/cm^3] virtual Double_t SpeedElectron(); // Holes under an applied electric field E=Volts/cm. [cm/sec] // d distance-thickness in [cm], v in [volts], T in [degree K], // N in [#/cm^3] virtual Double_t SpeedHole(); // Returns the Gaussian sigma == [cm^2] due to the defusion of // electrons or holes through a distance l [cm] caused by an applied // voltage v [volt] through a distance d [cm] in any material at a // temperature T [degree K]. virtual Double_t SigmaDiffusion3D(Double_t l); // Returns the Gaussian sigma == [cm^2] due to the // defusion of electrons or holes through a distance l [cm] caused by an // applied voltage v [volt] through a distance d [cm] in any material at a // temperature T [degree K]. virtual Double_t SigmaDiffusion2D(Double_t l); // Returns the Gaussian sigma == [cm^2] due to the defusion of // electrons or holes through a distance l [cm] caused by an applied // voltage v [volt] through a distance d [cm] in any material at a // temperature T [degree K]. virtual Double_t SigmaDiffusion1D(Double_t l); private: Double_t fdv; // The parameter d/v where d is the disance over which the // the potential v is applied d/v [cm/volts] Double_t fN; // the impurity consentration of the material in #/cm^3 Double_t fT; // The temperature of the Si in Degree K. ClassDef(AliITSresponse,2) // Detector type response virtual base class }; #endif