#ifndef ALIITSRESPONSESDD_H #define ALIITSRESPONSESDD_H #include "TArrayF.h" #include #include #include "AliITSresponse.h" // response for SDD class AliITSresponseSDD : public AliITSresponse { public: // // Configuration methods // AliITSresponseSDD(); AliITSresponseSDD(const char *dataType); virtual ~AliITSresponseSDD(); void SetElectronics(Int_t p1=1) { // Electronics: Pascal (1) or OLA (2) fElectronics=p1; } Int_t Electronics() { // Electronics: 1 = Pascal; 2 = OLA return fElectronics; } void SetMaxAdc(Float_t p1=1024.) { // Adc-count saturation value fMaxAdc=p1; } Float_t MaxAdc() { // Get maximum Adc-count value return fMaxAdc; } void SetChargeLoss(Float_t p1=0.0) { // Set Linear Charge Loss Steepness // 0.01 for 20% fChargeLoss=p1; } Float_t ChargeLoss() { // Get Charge Loss Coefficient return fChargeLoss; } void SetDynamicRange(Float_t p1=132.) { // Set Dynamic Range fDynamicRange=p1; } Float_t DynamicRange() { // Get Dynamic Range return fDynamicRange; } void SetDiffCoeff(Float_t p1=3.23,Float_t p2=30.) { // Diffusion coefficients fDiffCoeff=p1; fDiffCoeff1=p2; } void DiffCoeff(Float_t&diff,Float_t&diff1) { // Get diffusion coefficients diff = fDiffCoeff; diff1 = fDiffCoeff1; } void SetDriftSpeed(Float_t p1=7.3) { // Drift velocity fDriftSpeed=p1; } Float_t DriftSpeed() { // drift speed return fDriftSpeed; } void SetTemperature(Float_t p1=23.) { // Temperature fTemperature=p1; } Float_t Temperature() { // Get temperature return fTemperature; } void SetDataType(const char *data="simulated") { // Type of data - real or simulated fDataType=data; } const char *DataType() const { // Get data type return fDataType.Data(); } void SetParamOptions(const char *opt1="same",const char *opt2="same"){ // Parameters: "same" or read from "file" fParam1=opt1; fParam2=opt2; } void ParamOptions(char *opt1,char *opt2) { // options strcpy(opt1,fParam1.Data()); strcpy(opt2,fParam2.Data()); } void SetNoiseParam(Float_t n=0., Float_t b=20.){ // Noise and baseline // 8.3 for ALICE with beam test measurements fNoise=n; fBaseline=b; } void SetNoiseAfterElectronics(Float_t n=0.){ // Noise after electronics (ADC units) // 1.6 for ALICE from beam test measurements fNoiseAfterEl=n; } void GetNoiseParam(Float_t &n, Float_t &b) { // get noise param n=fNoise; b=fBaseline; } Float_t GetNoiseAfterElectronics(){ // Noise after electronics (ADC units) return fNoiseAfterEl; } void SetDo10to8(Bool_t bitcomp=kTRUE) { // set the option for 10 to 8 bit compression fBitComp = bitcomp; } Bool_t Do10to8() { // get 10 to 8 compression option return fBitComp; } void SetZeroSupp (const char *opt="1D") { // Zero-suppression option - could be 1D, 2D or non-ZS fOption=opt; } const char *ZeroSuppOption() const { // Get zero-suppression option return fOption.Data(); } void SetMinVal(Int_t mv=4) { // Min value used in 2D - could be used as a threshold setting fMinVal = mv; } Int_t MinVal() { // min val return fMinVal; } void SetFilenames(const char *f1="",const char *f2="",const char *f3="") { // Set filenames - input, output, parameters .... fFileName1=f1; fFileName2=f2; fFileName3=f3; } void Filenames(char *input,char *baseline,char *param) { // Filenames strcpy(input,fFileName1.Data()); strcpy(baseline,fFileName2.Data()); strcpy(param,fFileName3.Data()); } void SetOutputOption(Bool_t write=kFALSE) { // set output option fWrite = write; } Bool_t OutputOption() { // output option return fWrite; } // // Compression parameters void SetCompressParam(Int_t cp[8]); void GiveCompressParam(Int_t *x); // // Detector type response methods void SetNSigmaIntegration(Float_t p1=3.) { // Set number of sigmas over which cluster disintegration is performed fNsigmas=p1; } Float_t NSigmaIntegration() { // Get number of sigmas over which cluster disintegration is performed return fNsigmas; } void SetNLookUp(Int_t p1=121) { // Set number of sigmas over which cluster disintegration is performed fNcomps=p1; fGaus = new TArrayF(fNcomps+1); for(Int_t i=0; i<=fNcomps; i++) { Float_t x = -fNsigmas + (2.*i*fNsigmas)/(fNcomps-1); (*fGaus)[i] = exp(-((x*x)/2)); // cout << "fGaus[" << i << "]: " << fGaus->At(i) << endl; } } // Get number of intervals in which the gaussian lookup table is divided Int_t GausNLookUp() {return fNcomps;} Float_t IntPH(Float_t eloss) { // Pulse height from scored quantity (eloss) return 0.; } Float_t IntXZ(AliITSsegmentation *) { // Charge disintegration return 0.; } Float_t GausLookUp(Int_t i) { if(i<0 || i>=fNcomps) return 0.; return fGaus->At(i); } void SetDeadChannels(Int_t nmodules=0, Int_t nchips=0, Int_t nchannels=0); void PrintGains(); void Print(); private: AliITSresponseSDD(const AliITSresponseSDD &source); // copy constructor AliITSresponseSDD& operator=(const AliITSresponseSDD &source); // ass. op. protected: static const Int_t fModules = 520; // Total number of SDD modules static const Int_t fChips = 4; // Number of chips/module static const Int_t fChannels = 64; // Number of channels/chip Float_t fGain[fModules][fChips][fChannels]; // Array for channel gains Int_t fCPar[8]; // Hardware compression parameters Float_t fNoise; // Noise Float_t fBaseline; // Baseline Float_t fNoiseAfterEl; // Noise after electronics Float_t fDynamicRange; // Set Dynamic Range Float_t fChargeLoss; // Set Linear Coefficient for Charge Loss Float_t fTemperature; // Temperature Float_t fDriftSpeed; // Drift velocity Int_t fElectronics; // Electronics Float_t fMaxAdc; // Adc saturation value Float_t fDiffCoeff; // Diffusion Coefficient (scaling the time) Float_t fDiffCoeff1; // Diffusion Coefficient (constant term) Float_t fNsigmas; // Number of sigmas over which charge disintegration // is performed TArrayF *fGaus; // Gaussian lookup table for signal generation Int_t fNcomps; // Number of samplings along the gaussian Int_t fMinVal; // Min value used in 2D zero-suppression algo Bool_t fWrite; // Write option for the compression algorithms Bool_t fBitComp; // 10 to 8 bit compression option TString fOption; // Zero-suppresion option (1D, 2D or none) TString fParam1; // Read baselines from file option TString fParam2; // Read compression algo thresholds from file TString fDataType; // data type - real or simulated TString fFileName1; // input keys : run, module # TString fFileName2; // baseline & noise val or output coded // signal or monitored bgr. TString fFileName3; // param values or output coded signal ClassDef(AliITSresponseSDD,2) // SDD response }; #endif