#ifndef ALIITSRESPONSESDD_H #define ALIITSRESPONSESDD_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ #include "TArrayF.h" #include #include #include "AliITSresponse.h" // response for SDD class AliITSresponseSDD : public AliITSresponse { public: // // Configuration methods // AliITSresponseSDD(); AliITSresponseSDD(const char *dataType); virtual ~AliITSresponseSDD(); void SetElectronics(Int_t p1=1) {// Electronics: Pascal (1) or OLA (2) fElectronics=p1;} Int_t Electronics() {// Electronics: 1 = Pascal; 2 = OLA return fElectronics;} void SetMaxAdc(Float_t p1=1024.) {// Adc-count saturation value fMaxAdc=p1;} Float_t MaxAdc() {// Get maximum Adc-count value return fMaxAdc;} void SetChargeLoss(Float_t p1=0.0) { // Set Linear Charge Loss Steepness // 0.01 for 20% fChargeLoss=p1;} Float_t ChargeLoss(){// Get Charge Loss Coefficient return fChargeLoss;} void SetDynamicRange(Float_t p1=132.) {// Set Dynamic Range fDynamicRange=p1;} Float_t DynamicRange(){// Get Dynamic Range return fDynamicRange;} void SetDiffCoeff(Float_t p1=3.23,Float_t p2=30.) { // Diffusion coefficients fDiffCoeff=p1;fDiffCoeff1=p2;} void DiffCoeff(Float_t&diff,Float_t&diff1) {// Get diffusion coefficients diff = fDiffCoeff;diff1 = fDiffCoeff1;} void SetDriftSpeed(Float_t p1=7.3) {// Drift velocity fDriftSpeed=p1;} Float_t DriftSpeed() {// drift speed return fDriftSpeed;} void SetTemperature(Float_t p1=23.) {// Temperature fTemperature=p1;} Float_t Temperature() {// Get temperature return fTemperature;} void SetDataType(const char *data="simulated") { // Type of data - real or simulated fDataType=data;} const char *DataType() const {// Get data type return fDataType.Data();} void SetParamOptions(const char *opt1="same",const char *opt2="same"){ // Parameters: "same" or read from "file" fParam1=opt1; fParam2=opt2;} void ParamOptions(char *opt1,char *opt2) {// options strcpy(opt1,fParam1.Data()); strcpy(opt2,fParam2.Data());} void SetNoiseParam(Float_t n=10., Float_t b=20.){ // Noise and baseline // 10 for ALICE with beam test measurements 2001 fNoise=n; fBaseline=b;} void SetNoiseAfterElectronics(Float_t n=2.38){ // Noise after electronics (ADC units) // 2.36 for ALICE from beam test measurements 2001 fNoiseAfterEl=n;} void GetNoiseParam(Float_t &n, Float_t &b) {// get noise param n=fNoise; b=fBaseline;} Float_t GetNoiseAfterElectronics(){ // Noise after electronics (ADC units) return fNoiseAfterEl;} void SetJitterError(Float_t jitter=20) { // set Jitter error (20 um for ALICE from beam test measurements 2001) fJitterError=jitter;} Float_t JitterError() {// set Jitter error return fJitterError;} void SetDo10to8(Bool_t bitcomp=kTRUE) { // set the option for 10 to 8 bit compression fBitComp = bitcomp;} Bool_t Do10to8() {// get 10 to 8 compression option return fBitComp;} void SetZeroSupp (const char *opt="1D") { // Zero-suppression option - could be 1D, 2D or non-ZS fOption=opt;} const char *ZeroSuppOption() const {// Get zero-suppression option return fOption.Data();} void SetMinVal(Int_t mv=4) { // Min value used in 2D - could be used as a threshold setting fMinVal = mv;} Int_t MinVal() {// min val return fMinVal;} void SetFilenames(const char *f1="",const char *f2="",const char *f3=""){ // Set filenames - input, output, parameters .... fFileName1=f1; fFileName2=f2; fFileName3=f3;} void Filenames(char *input,char *baseline,char *param) {// Filenames strcpy(input,fFileName1.Data()); strcpy(baseline,fFileName2.Data()); strcpy(param,fFileName3.Data());} void SetOutputOption(Bool_t write=kFALSE) {// set output option fWrite = write;} Bool_t OutputOption() {// output option return fWrite;} // // Compression parameters void SetCompressParam(Int_t cp[8]); void GiveCompressParam(Int_t *x); // // Detector type response methods void SetNSigmaIntegration(Float_t p1=3.) { // Set number of sigmas over which cluster disintegration is performed fNsigmas=p1;} Float_t NSigmaIntegration() { // Get number of sigmas over which cluster disintegration is performed return fNsigmas;} void SetNLookUp(Int_t p1=121) { // Set number of sigmas over which cluster disintegration is performed fNcomps=p1; fGaus = new TArrayF(fNcomps+1); for(Int_t i=0; i<=fNcomps; i++) { Float_t x = -fNsigmas + (2.*i*fNsigmas)/(fNcomps-1); (*fGaus)[i] = exp(-((x*x)/2)); // cout << "fGaus[" << i << "]: " << fGaus->At(i) << endl; } } // Get number of intervals in which the gaussian lookup table is divided Int_t GausNLookUp() {return fNcomps;} Float_t IntPH(Float_t eloss) {// Pulse height from scored quantity (eloss) return 0.;} Float_t IntXZ(AliITSsegmentation *) {// Charge disintegration return 0.;} Float_t GausLookUp(Int_t i) { if(i<0 || i>=fNcomps) return 0.;return fGaus->At(i);} void SetDeadChannels(Int_t nmodules=0, Int_t nchips=0, Int_t nchannels=0); Int_t GetDeadModules() { return fDeadModules; } Int_t GetDeadChips() { return fDeadChips; } Int_t GetDeadChannels() { return fDeadChannels; } Float_t Gain(Int_t mod,Int_t chip,Int_t ch){return fGain[mod][chip][ch]; } // these functions should be move to AliITSsegmentationSDD const Int_t Modules() const{return fModules;}// Total number of SDD modules const Int_t Chips() const{return fChips;} // Number of chips/module const Int_t Channels() const { return fChannels;}// Number of channels/chip //******** void PrintGains(); void Print(); private: AliITSresponseSDD(const AliITSresponseSDD &source); // copy constructor AliITSresponseSDD& operator=(const AliITSresponseSDD &source); // ass. op. protected: // these statis const should be move to AliITSsegmentationSDD static const Int_t fModules = 520; // Total number of SDD modules static const Int_t fChips = 4; // Number of chips/module static const Int_t fChannels = 64; // Number of channels/chip //******* Int_t fDeadModules; // Total number of dead SDD modules Int_t fDeadChips; // Number of dead chips Int_t fDeadChannels; // Number of dead channels Float_t fGain[fModules][fChips][fChannels]; // Array for channel gains Int_t fCPar[8]; // Hardware compression parameters Float_t fNoise; // Noise Float_t fBaseline; // Baseline Float_t fNoiseAfterEl; // Noise after electronics Float_t fJitterError; // jitter error Float_t fDynamicRange; // Set Dynamic Range Float_t fChargeLoss; // Set Linear Coefficient for Charge Loss Float_t fTemperature; // Temperature Float_t fDriftSpeed; // Drift velocity Int_t fElectronics; // Electronics Float_t fMaxAdc; // Adc saturation value Float_t fDiffCoeff; // Diffusion Coefficient (scaling the time) Float_t fDiffCoeff1; // Diffusion Coefficient (constant term) Float_t fNsigmas; // Number of sigmas over which charge disintegration // is performed TArrayF *fGaus; // Gaussian lookup table for signal generation Int_t fNcomps; // Number of samplings along the gaussian Int_t fMinVal; // Min value used in 2D zero-suppression algo Bool_t fWrite; // Write option for the compression algorithms Bool_t fBitComp; // 10 to 8 bit compression option TString fOption; // Zero-suppresion option (1D, 2D or none) TString fParam1; // Read baselines from file option TString fParam2; // Read compression algo thresholds from file TString fDataType; // data type - real or simulated TString fFileName1; // input keys : run, module # TString fFileName2; // baseline & noise val or output code // signal or monitored bgr. TString fFileName3; // param values or output coded signal ClassDef(AliITSresponseSDD,3) // SDD response }; #endif