/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "AliRun.h" #include "AliITS.h" #include "AliITShit.h" #include "AliITSdigit.h" #include "AliITSmodule.h" #include "AliITSpList.h" #include "AliITSMapA1.h" #include "AliITSMapA2.h" #include "AliITSetfSDD.h" #include "AliITSRawData.h" #include "AliITSHuffman.h" #include "AliITSgeom.h" #include "AliITSsegmentation.h" #include "AliITSresponse.h" #include "AliITSsegmentationSDD.h" #include "AliITSresponseSDD.h" #include "AliITSsimulationSDD.h" ClassImp(AliITSsimulationSDD) //////////////////////////////////////////////////////////////////////// // Version: 0 // Written by Piergiorgio Cerello // November 23 1999 // // AliITSsimulationSDD is the simulation of SDDs. // //Begin_Html /*

This show the relasionships between the ITS hit class and the rest of Aliroot.

*/
//End_Html
//______________________________________________________________________
Int_t power(Int_t b, Int_t e) {
    // compute b to the e power, where both b and e are Int_ts.
    Int_t power = 1,i;

    for(i=0; iGetSamples();
    Int_t l = (Int_t) ((log((Float_t) samples)/log(2.))+0.5);
    Int_t m1 = samples;
    Int_t m  = samples/2;
    Int_t m2 = samples/m1;
    Int_t i,j,k;
    for(i=1; i<=l; i++) {
        for(j=0; jGetWeightReal(p);
                Double_t wsi = alisddetf->GetWeightImag(p);
                if(direction == -1) wsi = -wsi;
                Double_t xr = *(real+k+m);
                Double_t xi = *(imag+k+m);
                *(real+k+m) = wsr*(*(real+k)-xr) - wsi*(*(imag+k)-xi);
                *(imag+k+m) = wsr*(*(imag+k)-xi) + wsi*(*(real+k)-xr);
                *(real+k) += xr;
                *(imag+k) += xi;
                p += m2;
            } // end for k
        } // end for j
        m1 = m;
        m /= 2;
        m2 += m2;
    } // end for i
  
    for(j=0; j= j) {
            Double_t xr = *(real+j);
            Double_t xi = *(imag+j);
            *(real+j) = *(real+p);
            *(imag+j) = *(imag+p);
            *(real+p) = xr;
            *(imag+p) = xi;
        } // end if p>=j
    } // end for j
    if(direction == -1) {
        for(i=0; iNpz(),
                              fScaleSize*fSegmentation->Npx() );
    fHitSigMap2 = new AliITSMapA2(fSegmentation,fScaleSize,1);
    fHitNoiMap2 = new AliITSMapA2(fSegmentation,fScaleSize,1);
    fHitMap2 = fHitSigMap2;

    fNofMaps = fSegmentation->Npz();
    fMaxNofSamples = fSegmentation->Npx();
    fAnodeFire = new Bool_t [fNofMaps];
    
    Float_t sddLength = fSegmentation->Dx();
    Float_t sddWidth  = fSegmentation->Dz();

    Int_t dummy        = 0;
    Float_t anodePitch = fSegmentation->Dpz(dummy);
    Double_t timeStep  = (Double_t)fSegmentation->Dpx(dummy);
    Float_t driftSpeed = fResponse->DriftSpeed();

    if(anodePitch*(fNofMaps/2) > sddWidth) {
        Warning("AliITSsimulationSDD",
                "Too many anodes %d or too big pitch %f \n",
                fNofMaps/2,anodePitch);
    } // end if

    if(timeStep*fMaxNofSamples < sddLength/driftSpeed) {
        Error("AliITSsimulationSDD",
              "Time Interval > Allowed Time Interval: exit\n");
        return;
    } // end if

    fElectronics = new AliITSetfSDD(timeStep/fScaleSize,
                                    fResponse->Electronics());

    char opt1[20], opt2[20];
    fResponse->ParamOptions(opt1,opt2);
    fParam = opt2;
    char *same = strstr(opt1,"same");
    if (same) {
        fNoise.Set(0);
        fBaseline.Set(0);
    } else {
        fNoise.Set(fNofMaps);
        fBaseline.Set(fNofMaps);
    } // end if

    const char *kopt=fResponse->ZeroSuppOption();
    if (strstr(fParam.Data(),"file") ) {
        fD.Set(fNofMaps);
        fT1.Set(fNofMaps);
        if (strstr(kopt,"2D")) {
            fT2.Set(fNofMaps);
            fTol.Set(0);
            Init2D();       // desactivate if param change module by module
        } else if(strstr(kopt,"1D"))  {
            fT2.Set(2);
            fTol.Set(2);
            Init1D();      // desactivate if param change module by module
        } // end if strstr
    } else {
        fD.Set(2);
        fTol.Set(2);
        fT1.Set(2);
        fT2.Set(2);
        SetCompressParam();
    } // end if else strstr

    Bool_t write = fResponse->OutputOption();
    if(write && strstr(kopt,"2D")) MakeTreeB();

    // call here if baseline does not change by module
    // ReadBaseline();

    fITS       = (AliITS*)gAlice->GetModule("ITS");
    Int_t size = fNofMaps*fMaxNofSamples;
    fStream    = new AliITSInStream(size);

    fInZR  = new Double_t [fScaleSize*fMaxNofSamples];
    fInZI  = new Double_t [fScaleSize*fMaxNofSamples];
    fOutZR = new Double_t [fScaleSize*fMaxNofSamples];
    fOutZI = new Double_t [fScaleSize*fMaxNofSamples];  

}
//______________________________________________________________________
AliITSsimulationSDD::~AliITSsimulationSDD() { 
    // destructor

//    delete fpList;
    delete fHitSigMap2;
    delete fHitNoiMap2;
    delete fStream;
    delete fElectronics;

    fITS = 0;

    if (fHis) {
        fHis->Delete(); 
        delete fHis;     
    } // end if fHis
    if(fTreeB) delete fTreeB;           
    if(fInZR)  delete [] fInZR;
    if(fInZI)  delete [] fInZI;        
    if(fOutZR) delete [] fOutZR;
    if(fOutZI) delete [] fOutZI;
    if(fAnodeFire) delete [] fAnodeFire;
}
//______________________________________________________________________
void AliITSsimulationSDD::InitSimulationModule( Int_t module, Int_t event ) {
    // create maps to build the lists of tracks for each summable digit
    fModule = module;
    fEvent  = event;
    ClearMaps();
    memset(fAnodeFire,0,sizeof(Bool_t)*fNofMaps);    
}
//______________________________________________________________________
void AliITSsimulationSDD::ClearMaps() {
    // clear maps
    fpList->ClearMap();
    fHitSigMap2->ClearMap();
    fHitNoiMap2->ClearMap();
}
//______________________________________________________________________
void AliITSsimulationSDD::SDigitiseModule( AliITSmodule *mod, Int_t md, Int_t ev){
    // digitize module using the "slow" detector simulator creating
    // summable digits.

    TObjArray *fHits = mod->GetHits();
    Int_t nhits      = fHits->GetEntriesFast();
    if( !nhits ) return;

    InitSimulationModule( md, ev );
    HitsToAnalogDigits( mod );
    ChargeToSignal( kFALSE ); // - Process signal without add noise
    fHitMap2 = fHitNoiMap2;   // - Swap to noise map
    ChargeToSignal( kTRUE );  // - Process only noise
    fHitMap2 = fHitSigMap2;   // - Return to signal map
    WriteSDigits();
    ClearMaps();
}
//______________________________________________________________________
Bool_t AliITSsimulationSDD::AddSDigitsToModule( TClonesArray *pItemArray, Int_t mask ) {
    // Add Summable digits to module maps.
    Int_t    nItems = pItemArray->GetEntries();
    Double_t maxadc = fResponse->MaxAdc();
    //Bool_t sig = kFALSE;
    
    // cout << "Adding "<< nItems <<" SDigits to module " << fModule << endl;
    for( Int_t i=0; iAt( i ));
        if( pItem->GetModule() != fModule ) {
            Error( "AliITSsimulationSDD",
                   "Error reading, SDigits module %d != current module %d: exit\n",
                    pItem->GetModule(), fModule );
            return kFALSE;
        } // end if

      //  if(pItem->GetSignal()>0.0 ) sig = kTRUE;
        
        fpList->AddItemTo( mask, pItem ); // Add SignalAfterElect + noise
        AliITSpListItem * pItem2 = fpList->GetpListItem( pItem->GetIndex() );
        Double_t sigAE = pItem2->GetSignalAfterElect();
        if( sigAE >= maxadc ) sigAE = maxadc-1; // avoid overflow signal
        Int_t ia;
        Int_t it;
        fpList->GetMapIndex( pItem->GetIndex(), ia, it );
        fHitMap2->SetHit( ia, it, sigAE );
        fAnodeFire[ia] = kTRUE;
    }
    return kTRUE;
}
//______________________________________________________________________
void AliITSsimulationSDD::FinishSDigitiseModule() {
    // digitize module using the "slow" detector simulator from
    // the sum of summable digits.
    FinishDigits() ;
    ClearMaps();
}
//______________________________________________________________________
void AliITSsimulationSDD::DigitiseModule(AliITSmodule *mod,Int_t md,Int_t ev){
    // create maps to build the lists of tracks for each digit

    TObjArray *fHits = mod->GetHits();
    Int_t nhits      = fHits->GetEntriesFast();

    InitSimulationModule( md, ev );

    if( !nhits && fCheckNoise ) {
        ChargeToSignal( kTRUE );  // process noise
        GetNoise();
        ClearMaps();
        return;
    } else 
        if( !nhits ) return;
        
    HitsToAnalogDigits( mod );
    ChargeToSignal( kTRUE );  // process signal + noise

    for( Int_t i=0; iGetHitIndex( i, j );
            AliITSpListItem pItemTmp2( fModule, index, 0. );
            // put the fScaleSize analog digits in only one
            for( Int_t ik=0; ikGetpListItem( i, jdx+ik );
                if( pItemTmp == 0 ) continue;
                pItemTmp2.Add( pItemTmp );
            }
            fpList->DeleteHit( i, j );
            fpList->AddItemTo( 0, &pItemTmp2 );
        }
    }

    FinishDigits();
    ClearMaps();
}
//______________________________________________________________________
void AliITSsimulationSDD::FinishDigits() {
    // introduce the electronics effects and do zero-suppression if required

    ApplyDeadChannels();
    if( fCrosstalkFlag ) ApplyCrosstalk();

    const char *kopt = fResponse->ZeroSuppOption();
    ZeroSuppression( kopt );
}
//______________________________________________________________________
void AliITSsimulationSDD::HitsToAnalogDigits( AliITSmodule *mod ) {
    // create maps to build the lists of tracks for each digit

    TObjArray *fHits    = mod->GetHits();
    Int_t      nhits    = fHits->GetEntriesFast();
//    Int_t      arg[6]   = {0,0,0,0,0,0};
    Int_t    dummy      = 0;
    Int_t    nofAnodes  = fNofMaps/2;
    Float_t  sddLength  = fSegmentation->Dx();
    Float_t  sddWidth   = fSegmentation->Dz();
    Float_t  anodePitch = fSegmentation->Dpz(dummy);
    Float_t  timeStep   = fSegmentation->Dpx(dummy);
    Float_t  driftSpeed = fResponse->DriftSpeed();
    Float_t  maxadc     = fResponse->MaxAdc();    
    Float_t  topValue   = fResponse->DynamicRange();
    Float_t  cHloss     = fResponse->ChargeLoss();
    Float_t  norm       = maxadc/topValue;
    Float_t  dfCoeff, s1; fResponse->DiffCoeff(dfCoeff,s1); // Signal 2d Shape
    Double_t eVpairs    = 3.6;  // electron pair energy eV.
    Float_t  nsigma     = fResponse->NSigmaIntegration(); //
    Int_t    nlookups   = fResponse->GausNLookUp();       //
    Float_t  jitter     = ((AliITSresponseSDD*)fResponse)->JitterError(); // 

    // Piergiorgio's part (apart for few variables which I made float
    // when i thought that can be done
    // Fill detector maps with GEANT hits
    // loop over hits in the module

    const Float_t kconv = 1.0e+6;  // GeV->KeV
    Int_t    itrack      = 0;
    Int_t    hitDetector; // detector number (lay,lad,hitDetector)
    Int_t    iWing;       // which detector wing/side.
    Int_t    detector;    // 2*(detector-1)+iWing
    Int_t    ii,kk,ka,kt; // loop indexs
    Int_t    ia,it,index; // sub-pixel integration indexies
    Int_t    iAnode;      // anode number.
    Int_t    timeSample;  // time buckett.
    Int_t    anodeWindow; // anode direction charge integration width
    Int_t    timeWindow;  // time direction charge integration width
    Int_t    jamin,jamax; // anode charge integration window
    Int_t    jtmin,jtmax; // time charge integration window
    Int_t    ndiv;        // Anode window division factor.
    Int_t    nsplit;      // the number of splits in anode and time windows==1.
    Int_t    nOfSplits;   // number of times track length is split into
    Float_t  nOfSplitsF;  // Floating point version of nOfSplits.
    Float_t  kkF;         // Floating point version of loop index kk.
    Float_t  pathInSDD; // Track length in SDD.
    Float_t  drPath; // average position of track in detector. in microns
    Float_t  drTime; // Drift time
    Float_t  nmul;   // drift time window multiplication factor.
    Float_t  avDrft;  // x position of path length segment in cm.
    Float_t  avAnode; // Anode for path length segment in Anode number (float)
    Float_t  xAnode;  // Floating point anode number.
    Float_t  driftPath; // avDrft in microns.
    Float_t  width;     // width of signal at anodes.
    Double_t  depEnergy; // Energy deposited in this GEANT step.
    Double_t  xL[3],dxL[3]; // local hit coordinates and diff.
    Double_t sigA; // sigma of signal at anode.
    Double_t sigT; // sigma in time/drift direction for track segment
    Double_t aStep,aConst; // sub-pixel size and offset anode
    Double_t tStep,tConst; // sub-pixel size and offset time
    Double_t amplitude; // signal amplitude for track segment in nanoAmpere
    Double_t chargeloss; // charge loss for track segment.
    Double_t anodeAmplitude; // signal amplitude in anode direction
    Double_t aExpo;          // exponent of Gaussian anode direction
    Double_t timeAmplitude;  // signal amplitude in time direction
    Double_t tExpo;          // exponent of Gaussian time direction
//  Double_t tof;            // Time of flight in ns of this step.    

    for(ii=0; iiLineSegmentL(ii,xL[0],dxL[0],xL[1],dxL[1],xL[2],dxL[2],
                              depEnergy,itrack)) continue;
        xL[0] += 0.0001*gRandom->Gaus( 0, jitter ); //
        depEnergy  *= kconv;
        hitDetector = mod->GetDet();
        //tof         = 1.E+09*(mod->GetHit(ii)->GetTOF()); // tof in ns.
        //if(tof>sddLength/driftSpeed) continue; // hit happed too late.

        // scale path to simulate a perpendicular track
        // continue if the particle did not lose energy
        // passing through detector
        if (!depEnergy) {
            Warning("HitsToAnalogDigits", 
                    "fTrack = %d hit=%d module=%d This particle has"
                    " passed without losing energy!",
                    itrack,ii,mod->GetIndex());
            continue;
        } // end if !depEnergy

        pathInSDD = TMath::Sqrt(dxL[0]*dxL[0]+dxL[1]*dxL[1]+dxL[2]*dxL[2]);

        if (fFlag && pathInSDD) { depEnergy *= (0.03/pathInSDD); }
        drPath = 10000.*(dxL[0]+2.*xL[0])*0.5;
        if(drPath < 0) drPath = -drPath;
        drPath = sddLength-drPath;
        if(drPath < 0) {
            Warning("HitsToAnalogDigits",
                    "negative drift path drPath=%e sddLength=%e dxL[0]=%e "
                    "xL[0]=%e",
                    drPath,sddLength,dxL[0],xL[0]);
            continue;
        } // end if drPath < 0

        // Compute number of segments to brake step path into
        drTime = drPath/driftSpeed;  //   Drift Time
        sigA   = TMath::Sqrt(2.*dfCoeff*drTime+s1*s1);// Sigma along the anodes
        // calcuate the number of time the path length should be split into.
        nOfSplits = (Int_t) (1. + 10000.*pathInSDD/sigA);
        if(fFlag) nOfSplits = 1;

        // loop over path segments, init. some variables.
        depEnergy /= nOfSplits;
        nOfSplitsF = (Float_t) nOfSplits;
        for(kk=0;kk fScaleSize*fMaxNofSamples) {
                Warning("HitsToAnalogDigits","Wrong Time Sample: %e",
                        timeSample);
                continue;
            } // end if timeSample > fScaleSize*fMaxNoofSamples

            //   Anode
            xAnode = 10000.*(avAnode)/anodePitch + nofAnodes/2;  // +1?
            if(xAnode*anodePitch > sddWidth || xAnode*anodePitch < 0.) 
                          Warning("HitsToAnalogDigits",
                                  "Exceedubg sddWidth=%e Z = %e",
                                  sddWidth,xAnode*anodePitch);
            iAnode = (Int_t) (1.+xAnode); // xAnode?
            if(iAnode < 1 || iAnode > nofAnodes) {
                Warning("HitToAnalogDigits","Wrong iAnode: 1<%d>%d",
                        iAnode,nofAnodes);
                continue;
            } // end if iAnode < 1 || iAnode > nofAnodes

            // store straight away the particle position in the array
            // of particles and take idhit=ii only when part is entering (this
            // requires FillModules() in the macro for analysis) :
    
            // Sigma along the anodes for track segment.
            sigA       = TMath::Sqrt(2.*dfCoeff*drTime+s1*s1);
            sigT       = sigA/driftSpeed;
            // Peak amplitude in nanoAmpere
            amplitude  = fScaleSize*160.*depEnergy/
                                 (timeStep*eVpairs*2.*acos(-1.)*sigT*sigA);
            amplitude *= timeStep/25.; // WARNING!!!!! Amplitude scaling to 
                                       // account for clock variations 
                                       // (reference value: 40 MHz)
            chargeloss = 1.-cHloss*driftPath/1000;
            amplitude *= chargeloss;
            width  = 2.*nsigma/(nlookups-1);
            // Spread the charge 
            // Pixel index
            ndiv = 2;
            nmul = 3.; 
            if(drTime > 1200.) { 
                ndiv = 4;
                nmul = 1.5;
            } // end if drTime > 1200.
            // Sub-pixel index
            nsplit = 4; // hard-wired //nsplit=4;nsplit = (nsplit+1)/2*2;
            // Sub-pixel size see computation of aExpo and tExpo.
            aStep  = anodePitch/(nsplit*fScaleSize*sigA);
            aConst = xAnode*anodePitch/sigA;
            tStep  = timeStep/(nsplit*fScaleSize*sigT);
            tConst = drTime/sigT;
            // Define SDD window corresponding to the hit
            anodeWindow = (Int_t)(fScaleSize*nsigma*sigA/anodePitch+1);
            timeWindow  = (Int_t) (fScaleSize*nsigma*sigT/timeStep+1.);
            jamin = (iAnode - anodeWindow/ndiv - 1)*fScaleSize*nsplit +1;
            jamax = (iAnode + anodeWindow/ndiv)*fScaleSize*nsplit;
            if(jamin <= 0) jamin = 1;
            if(jamax > fScaleSize*nofAnodes*nsplit) 
                                         jamax = fScaleSize*nofAnodes*nsplit;
            // jtmin and jtmax are Hard-wired
            jtmin = (Int_t)(timeSample-timeWindow*nmul-1)*nsplit+1;
            jtmax = (Int_t)(timeSample+timeWindow*nmul)*nsplit;
            if(jtmin <= 0) jtmin = 1;
            if(jtmax > fScaleSize*fMaxNofSamples*nsplit) 
                                      jtmax = fScaleSize*fMaxNofSamples*nsplit;
            // Spread the charge in the anode-time window
            for(ka=jamin; ka <=jamax; ka++) {
                ia = (ka-1)/(fScaleSize*nsplit) + 1;
                if(ia <= 0) {
                    Warning("HitsToAnalogDigits","ia < 1: ");
                    continue;
                } // end if
                if(ia > nofAnodes) ia = nofAnodes;
                aExpo     = (aStep*(ka-0.5)-aConst);
                if(TMath::Abs(aExpo) > nsigma)  anodeAmplitude = 0.;
                else {
                    dummy          = (Int_t) ((aExpo+nsigma)/width);
                    anodeAmplitude = amplitude*fResponse->GausLookUp(dummy);
                } // end if TMath::Abs(aEspo) > nsigma
                // index starts from 0
                index = ((detector+1)%2)*nofAnodes+ia-1;
                if(anodeAmplitude) for(kt=jtmin; kt<=jtmax; kt++) {
                    it = (kt-1)/nsplit+1;  // it starts from 1
                    if(it<=0){
                        Warning("HitsToAnalogDigits","it < 1:");
                        continue;
                    } // end if 
                    if(it>fScaleSize*fMaxNofSamples)
                                                it = fScaleSize*fMaxNofSamples;
                    tExpo    = (tStep*(kt-0.5)-tConst);
                    if(TMath::Abs(tExpo) > nsigma) timeAmplitude = 0.;
                    else {
                        dummy         = (Int_t) ((tExpo+nsigma)/width);
                        timeAmplitude = anodeAmplitude*
                                        fResponse->GausLookUp(dummy);
                    } // end if TMath::Abs(tExpo) > nsigma
                    // build the list of Sdigits for this module        
//                    arg[0]         = index;
//                    arg[1]         = it;
//                    arg[2]         = itrack; // track number
//                    arg[3]         = ii-1; // hit number.
                    timeAmplitude *= norm;
                    timeAmplitude *= 10;
//                    ListOfFiredCells(arg,timeAmplitude,alst,padr);
                    Double_t charge = timeAmplitude;
                    charge += fHitMap2->GetSignal(index,it-1);
                    fHitMap2->SetHit(index, it-1, charge);
                    fpList->AddSignal(index,it-1,itrack,ii-1,
                                     mod->GetIndex(),timeAmplitude);
                    fAnodeFire[index] = kTRUE;                 
                } // end if anodeAmplitude and loop over time in window
            } // loop over anodes in window
        } // end loop over "sub-hits"
    } // end loop over hits
}

/*
//______________________________________________________________________
void AliITSsimulationSDD::ListOfFiredCells(Int_t *arg,Double_t timeAmplitude,
                                          TObjArray *alist,TClonesArray *padr){
    // Returns the list of "fired" cells.

    Int_t index     = arg[0];
    Int_t ik        = arg[1];
    Int_t idtrack   = arg[2];
    Int_t idhit     = arg[3];
    Int_t counter   = arg[4];
    Int_t countadr  = arg[5];
    Double_t charge = timeAmplitude;
    charge += fHitMap2->GetSignal(index,ik-1);
    fHitMap2->SetHit(index, ik-1, charge);

    Int_t digits[3];
    Int_t it = (Int_t)((ik-1)/fScaleSize);
    digits[0] = index;
    digits[1] = it;
    digits[2] = (Int_t)timeAmplitude;
    Float_t phys;
    if (idtrack >= 0) phys = (Float_t)timeAmplitude;
    else phys = 0;

    Double_t cellcharge = 0.;
    AliITSTransientDigit* pdigit;
    // build the list of fired cells and update the info
    if (!fHitMap1->TestHit(index, it)) {
        new((*padr)[countadr++]) TVector(3);
        TVector &trinfo=*((TVector*) (*padr)[countadr-1]);
        trinfo(0) = (Float_t)idtrack;
        trinfo(1) = (Float_t)idhit;
        trinfo(2) = (Float_t)timeAmplitude;

        alist->AddAtAndExpand(new AliITSTransientDigit(phys,digits),counter);
        fHitMap1->SetHit(index, it, counter);
        counter++;
        pdigit=(AliITSTransientDigit*)alist->At(alist->GetLast());
        // list of tracks
        TObjArray *trlist=(TObjArray*)pdigit->TrackList();
        trlist->Add(&trinfo);
    } else {
        pdigit = (AliITSTransientDigit*) fHitMap1->GetHit(index, it);
        for(Int_t kk=0;kkGetSignal(index,fScaleSize*it+kk);
        }  // end for kk
        // update charge
        (*pdigit).fSignal = (Int_t)cellcharge;
        (*pdigit).fPhysics += phys;                        
        // update list of tracks
        TObjArray* trlist = (TObjArray*)pdigit->TrackList();
        Int_t lastentry = trlist->GetLast();
        TVector *ptrkp = (TVector*)trlist->At(lastentry);
        TVector &trinfo = *ptrkp;
        Int_t lasttrack = Int_t(trinfo(0));
        Float_t lastcharge=(trinfo(2));
        if (lasttrack==idtrack ) {
            lastcharge += (Float_t)timeAmplitude;
            trlist->RemoveAt(lastentry);
            trinfo(0) = lasttrack;
            trinfo(1) = idhit;
            trinfo(2) = lastcharge;
            trlist->AddAt(&trinfo,lastentry);
        } else {                  
            new((*padr)[countadr++]) TVector(3);
            TVector &trinfo=*((TVector*) (*padr)[countadr-1]);
            trinfo(0) = (Float_t)idtrack;
            trinfo(1) = (Float_t)idhit;
            trinfo(2) = (Float_t)timeAmplitude;
            trlist->Add(&trinfo);
        } // end if lasttrack==idtrack

#ifdef print
        // check the track list - debugging
        Int_t trk[20], htrk[20];
        Float_t chtrk[20];  
        Int_t nptracks = trlist->GetEntriesFast();
        if (nptracks > 2) {
            Int_t tr;
            for (tr=0;trAt(tr);
                TVector &pptrk  = *pptrkp;
                trk[tr]   = Int_t(pptrk(0));
                htrk[tr]  = Int_t(pptrk(1));
                chtrk[tr] = (pptrk(2));
                cout << "nptracks "<Do10to8() ) signal = Convert8to10( signal ); 
    digits[0] = i;
    digits[1] = j;
    digits[2] = signal;

    AliITSpListItem *pItem = fpList->GetpListItem( i, j );
    if( pItem == 0 ) {
        phys = 0.0;
        for( Int_t l=0; lGetTrack( 0 );
        if( idtrack >= 0 ) phys = pItem->GetSignal();  
        else phys = 0.0;

        for( Int_t l=0; lGetMaxKept()) {
            tracks[l]  = pItem->GetTrack( l );
            hits[l]    = pItem->GetHit( l );
            charges[l] = pItem->GetSignal( l );
        }else{
            tracks[l]  = -3;
            hits[l]    = -1;
            charges[l] = 0.0;
	}// end for if
    }

    fITS->AddSimDigit( 1, phys, digits, tracks, hits, charges ); 
    delete [] tracks;
    delete [] hits;
    delete [] charges;
}

//______________________________________________________________________
void AliITSsimulationSDD::ChargeToSignal(Bool_t bAddNoise) {
    // add baseline, noise, electronics and ADC saturation effects

    char opt1[20], opt2[20];
    fResponse->ParamOptions(opt1,opt2);
    char *read = strstr(opt1,"file");
    Float_t baseline, noise; 

    if (read) {
        static Bool_t readfile=kTRUE;
        //read baseline and noise from file
        if (readfile) ReadBaseline();
        readfile=kFALSE;
    } else fResponse->GetNoiseParam(noise,baseline);

    Float_t contrib=0;
    Int_t i,k,kk;
    Float_t maxadc = fResponse->MaxAdc();    
    if(!fDoFFT) {
        for (i=0;iGetSignal(i,k);
                if( bAddNoise ) {
                    contrib   = (baseline + noise*gRandom->Gaus());
                    fInZR[k] += contrib;
                }
            } // end for k
            for(k=0; k maxcont) maxcont = newcont;
                } // end for kk
                newcont = maxcont;
                if (newcont >= maxadc) newcont = maxadc -1;
                if(newcont >= baseline){
                    Warning("","newcont=%d>=baseline=%d",newcont,baseline);
                } // end if
                // back to analog: ?
                fHitMap2->SetHit(i,k,newcont);
            }  // end for k
        } // end for i loop over anodes
        return;
    } // end if DoFFT

    for (i=0;iGetSignal(i,k);
            if( bAddNoise ) {
                contrib   = (baseline + noise*gRandom->Gaus());
                fInZR[k] += contrib;
            }
            fInZI[k]  = 0.;
        } // end for k
        FastFourierTransform(fElectronics,&fInZR[0],&fInZI[0],1);
        for(k=0; kGetTraFunReal(k);
            Double_t iw = fElectronics->GetTraFunImag(k);
            fOutZR[k]   = fInZR[k]*rw - fInZI[k]*iw;
            fOutZI[k]   = fInZR[k]*iw + fInZI[k]*rw;
        } // end for k
        FastFourierTransform(fElectronics,&fOutZR[0],&fOutZI[0],-1);
        for(k=0; k maxcont1) maxcont1 = newcont1;
            } // end for kk
            newcont1 = maxcont1;
            if (newcont1 >= maxadc) newcont1 = maxadc -1;
            fHitMap2->SetHit(i,k,newcont1);
        } // end for k
    } // end for i loop over anodes
  return;
}
//____________________________________________________________________
void AliITSsimulationSDD::ApplyDeadChannels() {    
    // Set dead channel signal to zero
    AliITSresponseSDD * response = (AliITSresponseSDD *)fResponse;
    
    // nothing to do
    if( response->GetDeadModules() == 0 && 
        response->GetDeadChips() == 0 && 
        response->GetDeadChannels() == 0 )
        return;  
    
    static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );

    Int_t fMaxNofSamples = fSegmentation->Npx();    
    AliITSgeom *geom = iTS->GetITSgeom();
    Int_t firstSDDMod = geom->GetStartDet( 1 );
    // loop over wings
    for( Int_t j=0; j<2; j++ ) {
        Int_t mod = (fModule-firstSDDMod)*2 + j;
        for( Int_t u=0; uChips(); u++ )
            for( Int_t v=0; vChannels(); v++ ) {
                Float_t Gain = response->Gain( mod, u, v );
                for( Int_t k=0; kChips()*response->Channels() +
                              u*response->Channels() + 
                              v;
                    Double_t signal =  Gain * fHitMap2->GetSignal( i, k );
                    fHitMap2->SetHit( i, k, signal );  ///
                }
            }
    }    
}
//______________________________________________________________________
void AliITSsimulationSDD::ApplyCrosstalk() {
    // function add the crosstalk effect to signal
    // temporal function, should be checked...!!!
    
    Int_t fNofMaps = fSegmentation->Npz();
    Int_t fMaxNofSamples = fSegmentation->Npx();

    // create and inizialice crosstalk map
    Float_t* ctk = new Float_t[fNofMaps*fMaxNofSamples+1];
    if( ctk == NULL ) {
        Error( "ApplyCrosstalk", "no memory for temporal map: exit \n" );
        return;
    }
    memset( ctk, 0, sizeof(Float_t)*(fNofMaps*fMaxNofSamples+1) );
    
    Float_t noise, baseline;
    fResponse->GetNoiseParam( noise, baseline );
    
    for( Int_t z=0; zGetSignal( z, l );
            if( fadc > baseline ) {
                if( on == kFALSE && lGetSignal( z, l+1 );
                    if( fadc1 < fadc ) continue;
                    on = kTRUE;
                    nTsteps = 0;
                    tstart = l;
                }
                nTsteps++;
            }
            else { // end fadc > baseline
                if( on == kTRUE ) {        
                    if( nTsteps > 2 ) {
                        tstop = l;
                        // make smooth derivative
                        Float_t* dev = new Float_t[fMaxNofSamples+1];
                        memset( dev, 0, sizeof(Float_t)*(fMaxNofSamples+1) );
                        if( ctk == NULL ) {
                            Error( "ApplyCrosstalk", 
                                   "no memory for temporal array: exit \n" );
                            return;
                        }
                        for( Int_t i=tstart; i 2 && i < fMaxNofSamples-2 )
                                dev[i] = -0.2*fHitMap2->GetSignal( z,i-2 ) 
                                         -0.1*fHitMap2->GetSignal( z,i-1 ) 
                                         +0.1*fHitMap2->GetSignal( z,i+1 ) 
                                         +0.2*fHitMap2->GetSignal( z,i+2 );
                        }
                        
                        // add crosstalk contribution to neibourg anodes  
                        for( Int_t i=tstart; i 0 ) {
                                ctk[anode*fMaxNofSamples+i] += ctktmp;           
                            }
                            anode = z + 1;
                            if( anode < fNofMaps ) {
                                ctk[anode*fMaxNofSamples+i] += ctktmp;
                            }
                        }
                        delete [] dev;
                        
                    } // if( nTsteps > 2 )
                    on = kFALSE;
                }  // if( on == kTRUE )
            }  // else
        }
    }
    
    for( Int_t a=0; aGetSignal( a, t ) + ctk[a*fMaxNofSamples+t];
            fHitMap2->SetHit( a, t, signal );
        }
    
    delete [] ctk;
}
//______________________________________________________________________
void AliITSsimulationSDD::GetAnodeBaseline(Int_t i,Float_t &baseline,
                                           Float_t &noise){
    // Returns the Baseline for a particular anode.
    baseline = fBaseline[i];
    noise    = fNoise[i];
}
//______________________________________________________________________
void AliITSsimulationSDD::CompressionParam(Int_t i,Int_t &db,Int_t &tl,
                                           Int_t &th){
    // Returns the compression alogirthm parameters
    Int_t size = fD.GetSize();
    if (size > 2 ) {
        db=fD[i]; tl=fT1[i]; th=fT2[i];
    } else {
        if (size <= 2 && i>=fNofMaps/2) {
            db=fD[1]; tl=fT1[1]; th=fT2[1];
        } else {
            db=fD[0]; tl=fT1[0]; th=fT2[0];
        } // end if size <=2 && i>=fNofMaps/2
    } // end if size >2
}
//______________________________________________________________________
void AliITSsimulationSDD::CompressionParam(Int_t i,Int_t &db,Int_t &tl){
    // returns the compression alogirthm parameters
    Int_t size = fD.GetSize();

    if (size > 2 ) {
        db=fD[i]; tl=fT1[i];
    } else {
        if (size <= 2 && i>=fNofMaps/2) {
            db=fD[1]; tl=fT1[1]; 
        } else {
            db=fD[0]; tl=fT1[0]; 
        } // end if size <=2 && i>=fNofMaps/2
    } // end if size > 2
}
//______________________________________________________________________
void AliITSsimulationSDD::SetCompressParam(){
    // Sets the compression alogirthm parameters  
    Int_t cp[8],i;

    fResponse->GiveCompressParam(cp);
    for (i=0; i<2; i++) {
        fD[i]   = cp[i];
        fT1[i]  = cp[i+2];
        fT2[i]  = cp[i+4];
        fTol[i] = cp[i+6];
    } // end for i
}
//______________________________________________________________________
void AliITSsimulationSDD::ReadBaseline(){
    // read baseline and noise from file - either a .root file and in this
    // case data should be organised in a tree with one entry for each
    // module => reading should be done accordingly
    // or a classic file and do smth. like this:
    // Read baselines and noise for SDD

    Int_t na,pos;
    Float_t bl,n;
    char input[100], base[100], param[100];
    char *filtmp;

    fResponse->Filenames(input,base,param);
    fFileName=base;
//
    filtmp = gSystem->ExpandPathName(fFileName.Data());
    FILE *bline = fopen(filtmp,"r");
    na = 0;

    if(bline) {
        while(fscanf(bline,"%d %f %f",&pos, &bl, &n) != EOF) {
            if (pos != na+1) {
                Error("ReadBaseline","Anode number not in increasing order!",
                      filtmp);
                exit(1);
            } // end if pos != na+1
            fBaseline[na]=bl;
            fNoise[na]=n;
            na++;
        } // end while
    } else {
        Error("ReadBaseline"," THE BASELINE FILE %s DOES NOT EXIST !",filtmp);
        exit(1);
    } // end if(bline)

    fclose(bline);
    delete [] filtmp;
}
//______________________________________________________________________
Int_t AliITSsimulationSDD::Convert10to8(Int_t signal) const {
    // To the 10 to 8 bit lossive compression.
    // code from Davide C. and Albert W.

    if (signal < 128)  return signal;
    if (signal < 256)  return (128+((signal-128)>>1));
    if (signal < 512)  return (192+((signal-256)>>3));
    if (signal < 1024) return (224+((signal-512)>>4));
    return 0;
}
//______________________________________________________________________
Int_t AliITSsimulationSDD::Convert8to10(Int_t signal) const {
    // Undo the lossive 10 to 8 bit compression.
    // code from Davide C. and Albert W.
    if (signal < 0 || signal > 255) {
        Warning("Convert8to10","out of range signal=%d",signal);
        return 0;
    } // end if signal <0 || signal >255

    if (signal < 128) return signal;
    if (signal < 192) {
        if (TMath::Odd(signal)) return (128+((signal-128)<<1));
        else  return (128+((signal-128)<<1)+1);
    } // end if signal < 192
    if (signal < 224) {
        if (TMath::Odd(signal)) return (256+((signal-192)<<3)+3);
        else  return (256+((signal-192)<<3)+4);
    } // end if signal < 224
    if (TMath::Odd(signal)) return (512+((signal-224)<<4)+7);
    return (512+((signal-224)<<4)+8);
}

/*
//______________________________________________________________________
AliITSMap*   AliITSsimulationSDD::HitMap(Int_t i){
    //Return the correct map.

    return ((i==0)? fHitMap1 : fHitMap2);
}*/

//______________________________________________________________________
void AliITSsimulationSDD::ZeroSuppression(const char *option) {
    // perform the zero suppresion

    if (strstr(option,"2D")) {
        //Init2D();              // activate if param change module by module
        Compress2D();
    } else if (strstr(option,"1D")) {
        //Init1D();              // activate if param change module by module
        Compress1D();  
    } else StoreAllDigits();
}
//______________________________________________________________________
void AliITSsimulationSDD::Init2D(){
    // read in and prepare arrays: fD, fT1, fT2
    //                         savemu[nanodes], savesigma[nanodes] 
    // read baseline and noise from file - either a .root file and in this
    // case data should be organised in a tree with one entry for each
    // module => reading should be done accordingly
    // or a classic file and do smth. like this ( code from Davide C. and
    // Albert W.) :
    // Read 2D zero-suppression parameters for SDD

    if (!strstr(fParam.Data(),"file")) return;

    Int_t na,pos,tempTh;
    Float_t mu,sigma;
    Float_t *savemu    = new Float_t [fNofMaps];
    Float_t *savesigma = new Float_t [fNofMaps];
    char input[100],basel[100],par[100];
    char *filtmp;
    Int_t minval = fResponse->MinVal();

    fResponse->Filenames(input,basel,par);
    fFileName = par;
//
    filtmp = gSystem->ExpandPathName(fFileName.Data());
    FILE *param = fopen(filtmp,"r");
    na = 0;

    if(param) {
        while(fscanf(param,"%d %f %f",&pos, &mu, &sigma) != EOF) {
            if (pos != na+1) {
                Error("Init2D","Anode number not in increasing order!",filtmp);
                exit(1);
            } // end if pos != na+1
            savemu[na] = mu;
          savesigma[na] = sigma;
          if ((2.*sigma) < mu) {
              fD[na] = (Int_t)floor(mu - 2.0*sigma + 0.5);
              mu = 2.0 * sigma;
          } else fD[na] = 0;
          tempTh = (Int_t)floor(mu+2.25*sigma+0.5) - minval;
          if (tempTh < 0) tempTh=0;
          fT1[na] = tempTh;
          tempTh = (Int_t)floor(mu+3.0*sigma+0.5) - minval;
          if (tempTh < 0) tempTh=0;
          fT2[na] = tempTh;
          na++;
        } // end while
    } else {
        Error("Init2D","THE FILE %s DOES NOT EXIST !",filtmp);
        exit(1);
    } // end if(param)

    fclose(param);
    delete [] filtmp;
    delete [] savemu;
    delete [] savesigma;
}
//______________________________________________________________________
void AliITSsimulationSDD::Compress2D(){
    // simple ITS cluster finder -- online zero-suppression conditions

    Int_t db,tl,th;  
    Int_t minval   = fResponse->MinVal();
    Bool_t write   = fResponse->OutputOption();   
    Bool_t do10to8 = fResponse->Do10to8();
    Int_t nz, nl, nh, low, i, j; 

    for (i=0; iGetSignal(i,j));
            signal -= db; // if baseline eq. is done here
            if (signal <= 0) {nz++; continue;}
            if ((signal - tl) < minval) low++;
            if ((signal - th) >= minval) {
                nh++;
                Bool_t cond=kTRUE;
                FindCluster(i,j,signal,minval,cond);
                if(cond && j &&
                   ((TMath::Abs(fHitMap2->GetSignal(i,j-1))-th)>=minval)){
                    if(do10to8) signal = Convert10to8(signal);
                    AddDigit(i,j,signal);
                } // end if cond&&j&&()
            } else if ((signal - tl) >= minval) nl++;
        } // end for j loop time samples
        if (write) TreeB()->Fill(nz,nl,nh,low,i+1);
    } //end for i loop anodes

    char hname[30];
    if (write) {
        sprintf(hname,"TNtuple%d_%d",fModule,fEvent);
        TreeB()->Write(hname);
        // reset tree
        TreeB()->Reset();
    } // end if write
}
//______________________________________________________________________
void  AliITSsimulationSDD::FindCluster(Int_t i,Int_t j,Int_t signal,
                                       Int_t minval,Bool_t &cond){
    // Find clusters according to the online 2D zero-suppression algorithm
    Bool_t do10to8 = fResponse->Do10to8();
    Bool_t high    = kFALSE;

    fHitMap2->FlagHit(i,j);
//
//  check the online zero-suppression conditions
//  
    const Int_t kMaxNeighbours = 4;
    Int_t nn;
    Int_t dbx,tlx,thx;  
    Int_t xList[kMaxNeighbours], yList[kMaxNeighbours];
    fSegmentation->Neighbours(i,j,&nn,xList,yList);
    Int_t in,ix,iy,qns;
    for (in=0; inTestHit(ix,iy)==kUnused) {
            CompressionParam(ix,dbx,tlx,thx);
            Int_t qn = (Int_t)(fHitMap2->GetSignal(ix,iy));
            qn -= dbx; // if baseline eq. is done here
            if ((qn-tlx) < minval) {
                fHitMap2->FlagHit(ix,iy);
                continue;
            } else {
                if ((qn - thx) >= minval) high=kTRUE;
                if (cond) {
                    if(do10to8) signal = Convert10to8(signal);
                    AddDigit(i,j,signal);
                } // end if cond
                if(do10to8) qns = Convert10to8(qn);
                else qns=qn;
                if (!high) AddDigit(ix,iy,qns);
                cond=kFALSE;
                if(!high) fHitMap2->FlagHit(ix,iy);
            } // end if qn-tlx < minval
        } // end if  TestHit
    } // end for in loop over neighbours
}
//______________________________________________________________________
void AliITSsimulationSDD::Init1D(){
    // this is just a copy-paste of input taken from 2D algo
    // Torino people should give input
    // Read 1D zero-suppression parameters for SDD

    if (!strstr(fParam.Data(),"file")) return;

    Int_t na,pos,tempTh;
    Float_t mu,sigma;
    Float_t *savemu    = new Float_t [fNofMaps];
    Float_t *savesigma = new Float_t [fNofMaps];
    char input[100],basel[100],par[100];
    char *filtmp;
    Int_t minval = fResponse->MinVal();

    fResponse->Filenames(input,basel,par);
    fFileName=par;

//  set first the disable and tol param
    SetCompressParam();
//
    filtmp = gSystem->ExpandPathName(fFileName.Data());
    FILE *param = fopen(filtmp,"r");
    na = 0;

    if (param) {
        fscanf(param,"%d %d %d %d ", &fT2[0], &fT2[1], &fTol[0], &fTol[1]);
        while(fscanf(param,"%d %f %f",&pos, &mu, &sigma) != EOF) {
            if (pos != na+1) {
                Error("Init1D","Anode number not in increasing order!",filtmp);
                exit(1);
            } // end if pos != na+1
            savemu[na]=mu;
            savesigma[na]=sigma;
            if ((2.*sigma) < mu) {
                fD[na] = (Int_t)floor(mu - 2.0*sigma + 0.5);
                mu = 2.0 * sigma;
            } else fD[na] = 0;
            tempTh = (Int_t)floor(mu+2.25*sigma+0.5) - minval;
            if (tempTh < 0) tempTh=0;
            fT1[na] = tempTh;
            na++;
        } // end while
    } else {
        Error("Init1D","THE FILE %s DOES NOT EXIST !",filtmp);
        exit(1);
    } // end if(param)

    fclose(param);
    delete [] filtmp;
    delete [] savemu;
    delete [] savesigma;
} 
//______________________________________________________________________
void AliITSsimulationSDD::Compress1D(){
    // 1D zero-suppression algorithm (from Gianluca A.)
    Int_t    dis,tol,thres,decr,diff;
    UChar_t *str=fStream->Stream();
    Int_t    counter=0;
    Bool_t   do10to8=fResponse->Do10to8();
    Int_t    last=0;
    Int_t    k,i,j;

    for (k=0; k<2; k++) {
        tol = Tolerance(k);
        dis = Disable(k);  
        for (i=0; iGetSignal(idx,j));
                signal -= decr;  // if baseline eq.
                if(do10to8) signal = Convert10to8(signal);
                if (signal <= thres) {
                    signal=0;
                    diff=128; 
                    last=0; 
                    // write diff in the buffer for HuffT
                    str[counter]=(UChar_t)diff;
                    counter++;
                    continue;
                } // end if signal <= thres
                diff=signal-last;
                if (diff > 127) diff=127;
                if (diff < -128) diff=-128;
                if (signal < dis) {
                    // tol has changed to 8 possible cases ? - one can write
                    // this if(TMath::Abs(diff)CheckCount(counter);

    // open file and write out the stream of diff's
    static Bool_t open=kTRUE;
    static TFile *outFile;
    Bool_t write = fResponse->OutputOption();
    TDirectory *savedir = gDirectory;
 
    if (write ) {
        if(open) {
            SetFileName("stream.root");
            cout<<"filename "<cd();
        fStream->Write();
    }  // endif write        

    fStream->ClearStream();

    // back to galice.root file
    if(savedir) savedir->cd();
}
//______________________________________________________________________
void AliITSsimulationSDD::StoreAllDigits(){
    // if non-zero-suppressed data
    Bool_t do10to8 = fResponse->Do10to8();
    Int_t i, j, digits[3];

    for (i=0; iGetSignal(i,j));
            if(do10to8) signal = Convert10to8(signal);
            if(do10to8) signal = Convert8to10(signal); 
            digits[0] = i;
            digits[1] = j;
            digits[2] = signal;
            fITS->AddRealDigit(1,digits);
        } // end for j
    } // end for i
} 
//______________________________________________________________________
void AliITSsimulationSDD::CreateHistograms(Int_t scale){
    // Creates histograms of maps for debugging
    Int_t i;

      fHis=new TObjArray(fNofMaps);
      for (i=0;iAddAt(new TH1F(sddName.Data(),"SDD maps",scale*fMaxNofSamples,
                                0.,(Float_t) scale*fMaxNofSamples), i);
      } // end for i
}
//______________________________________________________________________
void AliITSsimulationSDD::FillHistograms(){
    // fill 1D histograms from map

    if (!fHis) return;

    for( Int_t i=0; iUncheckedAt(i);
        Int_t nsamples = hist->GetNbinsX();
        for( Int_t j=0; jGetSignal(i,j);
            hist->Fill((Float_t)j,signal);
        } // end for j
    } // end for i
}
//______________________________________________________________________
void AliITSsimulationSDD::ResetHistograms(){
    // Reset histograms for this detector
    Int_t i;

    for (i=0;iAt(i))    ((TH1F*)fHis->At(i))->Reset();
    } // end for i
}
//______________________________________________________________________
TH1F *AliITSsimulationSDD::GetAnode(Int_t wing, Int_t anode) { 
    // Fills a histogram from a give anode.  

    if (!fHis) return 0;

    if(wing <=0 || wing > 2) {
        Warning("GetAnode","Wrong wing number: %d",wing);
        return NULL;
    } // end if wing <=0 || wing >2
    if(anode <=0 || anode > fNofMaps/2) {
        Warning("GetAnode","Wrong anode number: %d",anode);
        return NULL;
    } // end if ampde <=0 || andoe > fNofMaps/2

    Int_t index = (wing-1)*fNofMaps/2 + anode-1;
    return (TH1F*)(fHis->At(index));
}
//______________________________________________________________________
void AliITSsimulationSDD::WriteToFile(TFile *hfile) {
    // Writes the histograms to a file

    if (!fHis) return;

    hfile->cd();
    Int_t i;
    for(i=0; iAt(i)->Write(); //fAdcs[i]->Write();
    return;
}
//______________________________________________________________________
Float_t AliITSsimulationSDD::GetNoise() {  
    // Returns the noise value
    //Bool_t do10to8=fResponse->Do10to8();
    //noise will always be in the liniar part of the signal
    Int_t decr;
    Int_t threshold = fT1[0];
    char opt1[20], opt2[20];

    fResponse->ParamOptions(opt1,opt2);
    fParam=opt2;
    char *same = strstr(opt1,"same");
    Float_t noise,baseline;
    if (same) {
        fResponse->GetNoiseParam(noise,baseline);
    } else {
        static Bool_t readfile=kTRUE;
        //read baseline and noise from file
        if (readfile) ReadBaseline();
        readfile=kFALSE;
    } // end if same

    TCanvas *c2 = (TCanvas*)gROOT->GetListOfCanvases()->FindObject("c2");
    if(c2) delete c2->GetPrimitive("noisehist");
    if(c2) delete c2->GetPrimitive("anode");
    else     c2=new TCanvas("c2");
    c2->cd();
    c2->SetFillColor(0);

    TH1F *noisehist = new TH1F("noisehist","noise",100,0.,(float)2*threshold);
    TH1F *anode = new TH1F("anode","Anode Projection",fMaxNofSamples,0.,
                           (float)fMaxNofSamples);
    Int_t i,k;
    for (i=0;iReset();
        for (k=0;kGetSignal(i,k);
            //if (signal <= (float)threshold) noisehist->Fill(signal-baseline);
            if (signal <= (float)threshold) noisehist->Fill(signal);
            anode->Fill((float)k,signal);
        } // end for k
        anode->Draw();
        c2->Update();
    } // end for i
    TF1 *gnoise = new TF1("gnoise","gaus",0.,threshold);
    noisehist->Fit("gnoise","RQ");
    noisehist->Draw();
    c2->Update();
    Float_t mnoise = gnoise->GetParameter(1);
    cout << "mnoise : " << mnoise << endl;
    Float_t rnoise = gnoise->GetParameter(2);
    cout << "rnoise : " << rnoise << endl;
    delete noisehist;
    return rnoise;
}
//______________________________________________________________________
void AliITSsimulationSDD::WriteSDigits(){
    // Fills the Summable digits Tree
    static AliITS *aliITS = (AliITS*)gAlice->GetModule("ITS");

    for( Int_t i=0; iGetSignal( i, j );
            if( sig > 0.2 ) {
                Int_t jdx = j*fScaleSize;
                Int_t index = fpList->GetHitIndex( i, j );
                AliITSpListItem pItemTmp2( fModule, index, 0. );
                // put the fScaleSize analog digits in only one
                for( Int_t ik=0; ikGetpListItem( i, jdx+ik );
                    if( pItemTmp == 0 ) continue;
                    pItemTmp2.Add( pItemTmp );
                }
                pItemTmp2.AddSignalAfterElect( fModule, index, sig );
                pItemTmp2.AddNoise( fModule, index, fHitNoiMap2->GetSignal( i, j ) );         
                aliITS->AddSumDigit( pItemTmp2 );
            } // end if (sig > 0.2)
        }
    }
    return;
}
//______________________________________________________________________
void AliITSsimulationSDD::Print() {
    // Print SDD simulation Parameters

    cout << "**************************************************" << endl;
    cout << "   Silicon Drift Detector Simulation Parameters   " << endl;
    cout << "**************************************************" << endl;
    cout << "Flag for Perpendicular tracks: " << (Int_t) fFlag << endl;
    cout << "Flag for noise checking: " << (Int_t) fCheckNoise << endl;
    cout << "Flag to switch off electronics: " << (Int_t) fDoFFT << endl;
    cout << "Number pf Anodes used: " << fNofMaps << endl;
    cout << "Number of Time Samples: " << fMaxNofSamples << endl;
    cout << "Scale size factor: " << fScaleSize << endl;
    cout << "**************************************************" << endl;
}