#include #include #include #include #include #include #include "AliITSmodule.h" #include "AliITSMapA2.h" #include "AliITSsegmentationSSD.h" #include "AliITSresponseSSD.h" #include "AliITSsimulationSSD.h" //#include "AliITSdictSSD.h" #include "AliITSdcsSSD.h" #include "AliITS.h" #include "AliRun.h" #include "AliITSgeom.h" ClassImp(AliITSsimulationSSD); //////////////////////////////////////////////////////////////////////// // Version: 0 // Written by Enrico Fragiacomo // July 2000 // // AliITSsimulationSSD is the simulation of SSDs. //---------------------------------------------------------------------- AliITSsimulationSSD::AliITSsimulationSSD(AliITSsegmentation *seg, AliITSresponse *resp){ // Constructor fSegmentation = seg; fResponse = resp; Float_t noise[2] = {0.,0.}; fResponse->GetNoiseParam(noise[0],noise[1]); // retrieves noise parameters fDCS = new AliITSdcsSSD(seg,resp); fNstrips = fSegmentation->Npx(); fPitch = fSegmentation->Dpx(0); fMapA2 = new AliITSMapA2(fSegmentation); fSteps = 100; // still hard-wired - set in SetDetParam and get it via // fDCS together with the others eventually } //______________________________________________________________________ AliITSsimulationSSD& AliITSsimulationSSD::operator=(AliITSsimulationSSD &source){ // Operator = if(this==&source) return *this; this->fDCS = new AliITSdcsSSD(*(source.fDCS)); this->fMapA2 = source.fMapA2; this->fNstrips = source.fNstrips; this->fPitch = source.fPitch; this->fSteps = source.fSteps; return *this; } //_____________________________________________________________--------- AliITSsimulationSSD::AliITSsimulationSSD(AliITSsimulationSSD &source){ // copy constructor *this = source; } //______________________________________________________________________ AliITSsimulationSSD::~AliITSsimulationSSD() { // destructor delete fMapA2; delete fDCS; } //_______________________________________________________________------- void AliITSsimulationSSD::DigitiseModule(AliITSmodule *mod,Int_t module, Int_t dummy) { // Digitizes hits for one SSD module Int_t lay, lad, detect; AliITS *aliITS = (AliITS*)gAlice->GetModule("ITS"); AliITSgeom *geom = aliITS->GetITSgeom(); geom->GetModuleId(module,lay, lad, detect); if ( lay == 6 )((AliITSsegmentationSSD*)fSegmentation)->SetLayer(6); if ( lay == 5 )((AliITSsegmentationSSD*)fSegmentation)->SetLayer(5); TObjArray *hits = mod->GetHits(); Int_t nhits = hits->GetEntriesFast(); if (!nhits) return; //cout<<"!! module, nhits ="<LineSegmentL(i, x0, x1, y0, y1, z0, z1, de, idtrack)) { HitToDigit(module, x0, y0, z0, x1, y1, z1, de, indexRange, first); if (lasttrack != idtrack || i==(nhits-1)) { GetList(idtrack,pList,indexRange); first=kTRUE; } // end if lasttrack=idtrack; } // end if } // end loop over hits ApplyNoise(); ApplyCoupling(); ChargeToSignal(pList); fMapA2->ClearMap(); } //---------------------------------------------------------------------- void AliITSsimulationSSD::HitToDigit(Int_t module, Double_t x0, Double_t y0, Double_t z0, Double_t x1, Double_t y1, Double_t z1, Double_t de, Int_t *indexRange, Bool_t first) { // Turns hits in SSD module into one or more digits. Float_t tang[2] = {0.0,0.0}; fSegmentation->Angles(tang[0], tang[1]);// stereo<< -> tan(stereo)~=stereo Double_t x, y, z; Double_t dex=0.0, dey=0.0, dez=0.0; Double_t pairs; Double_t ionE = 3.62E-9; // ionization energy of Si (GeV) Double_t sigma[2] = {0.,0.};// standard deviation of the diffusion gaussian Double_t D[2] = {11.,30.}; // diffusion constant {h,e} (cm**2/sec) Double_t tdrift[2] = {0.,0.}; // time of drift Double_t vdrift[2] = {0.86E6,2.28E6}; // drift velocity (cm/sec) Double_t w; Double_t inf[2], sup[2], par0[2]; // Steps in the module are determined "manually" (i.e. No Geant) // NumOfSteps divide path between entering and exiting hits in steps Int_t numOfSteps = NumOfSteps(x1, y1, z1, dex, dey, dez); // Enery loss is equally distributed among steps de = de/numOfSteps; pairs = de/ionE; // e-h pairs generated for(Int_t j=0; jDy()*1.0E-4)/2) / vdrift[0]; tdrift[1] = ((fSegmentation->Dy()*1.0E-4)/2-y) / vdrift[1]; for(Int_t k=0; k<2; k++) { // both sides remember: 0=Pside 1=Nside tang[k]=TMath::Tan(tang[k]); // w is the coord. perpendicular to the strips if(k==0) { //w=(x+(seg->Dx()*1.0E-4)/2)-(z+(seg->Dz()*1.0E-4)/2)*tang[k]; w = (x+(fSegmentation->Dx()*1.0E-4)/2) - (z+(fSegmentation->Dz()*1.0E-4)/2)*tang[k]; }else{ //w =(x+(seg->Dx()*1.0E-4)/2)+(z-(seg->Dz()*1.0E-4)/2)*tang[k]; w = (x+(fSegmentation->Dx()*1.0E-4)/2) + (z-(fSegmentation->Dz()*1.0E-4)/2)*tang[k]; //cout<<"k,x,z,w ="<(fNstrips-0.5))) { // this check rejects hits in regions not covered by strips // 0.5 takes into account boundaries if(k==0) cout<<"AliITSsimulationSSD::HitToDigit: " "Warning: no strip in this region of P side" <GetNoiseParam(noise[0],noise[1]); // retrieves noise parameters for(Int_t k=0;k<2;k++){ // both sides (0=Pside, 1=Nside) for(Int_t ix=0;ixGetSignal(k,ix);// retrieves signal // from map signal += gRandom->Gaus(0,noise[k]);// add noise to signal if(signal<0.) signal=0.0; // in case noise is negative... fMapA2->SetHit(k,ix,(Double_t)signal); // give back signal to map } // loop over strip } // loop over k (P or N side) } //______________________________________________________________________ void AliITSsimulationSSD::ApplyCoupling() { // Apply the effect of electronic coupling between channels Float_t signal, signalLeft=0, signalRight=0; for(Int_t ix=0;ix0.) signalLeft = (Float_t) fMapA2->GetSignal(0,ix-1)* fDCS->GetCouplingPL(); else signalLeft = 0.0; if(ix<(fNstrips-1)) signalRight = (Float_t) fMapA2->GetSignal(0,ix+1)* fDCS->GetCouplingPR(); else signalRight = 0.0; signal = (Float_t) fMapA2->GetSignal(0,ix); signal += signalLeft + signalRight; fMapA2->SetHit(0,ix,(Double_t)signal); if(ix>0.) signalLeft = (Float_t) fMapA2->GetSignal(1,ix-1)* fDCS->GetCouplingNL(); else signalLeft = 0.0; if(ix<(fNstrips-1)) signalRight = (Float_t) fMapA2->GetSignal(1,ix+1)* fDCS->GetCouplingNR(); else signalRight = 0.0; signal = (Float_t) fMapA2->GetSignal(1,ix); signal += signalLeft + signalRight; fMapA2->SetHit(1,ix,(Double_t)signal); } // loop over strips } //______________________________________________________________________ Float_t AliITSsimulationSSD::F(Float_t av, Float_t x, Float_t s) { // Computes the integral of a gaussian using Error Function Float_t sqrt2 = TMath::Sqrt(2.0); Float_t sigm2 = sqrt2*s; Float_t integral; integral = 0.5 * TMath::Erf( (x - av) / sigm2); return integral; } //______________________________________________________________________ void AliITSsimulationSSD::IntegrateGaussian(Int_t k,Double_t par, Double_t w, Double_t sigma, Double_t inf, Double_t sup, Int_t *indexRange, Bool_t first) { // integrate the diffusion gaussian // remind: inf and sup are w-3sigma and w+3sigma // we could define them here instead of passing them // this way we are free to introduce asimmetry Double_t a=0.0, b=0.0; Double_t signal = 0.0, dXCharge1 = 0.0, dXCharge2 = 0.0; // dXCharge1 and 2 are the charge to two neighbouring strips // Watch that we only involve at least two strips // Numbers greater than 2 of strips in a cluster depend on // geometry of the track and delta rays, not charge diffusion! Double_t strip = TMath::Floor(w); // clostest strip on the left if ( TMath::Abs((strip - w)) < 0.5) { // gaussian mean is closer to strip on the left a = inf; // integration starting point if((strip+0.5)<=sup) { // this means that the tail of the gaussian goes beyond // the middle point between strips ---> part of the signal // is given to the strip on the right b = strip + 0.5; // integration stopping point dXCharge1 = F( w, b, sigma) - F(w, a, sigma); dXCharge2 = F( w, sup, sigma) - F(w ,b, sigma); }else { // this means that all the charge is given to the strip on the left b = sup; dXCharge1 = 0.9973; // gaussian integral at 3 sigmas dXCharge2 = 0.0; } // end if dXCharge1 = par * dXCharge1;// normalize by mean of number of carriers dXCharge2 = par * dXCharge2; // for the time being, signal is the charge // in ChargeToSignal signal is converted in ADC channel signal = fMapA2->GetSignal(k,strip); signal += dXCharge1; fMapA2->SetHit(k,strip,(Double_t)signal); if(((Int_t) strip) < (fNstrips-1)) { // strip doesn't have to be the last (remind: last=fNstrips-1) // otherwise part of the charge is lost signal = fMapA2->GetSignal(k,(strip+1)); signal += dXCharge2; fMapA2->SetHit(k,(strip+1),(Double_t)signal); } // end if if(dXCharge1 > 1.) { if (first) { indexRange[k*2+0]=indexRange[k*2+1]=(Int_t) strip; first=kFALSE; } // end if first indexRange[k*2+0]=TMath::Min(indexRange[k*2+0],(Int_t) strip); indexRange[k*2+1]=TMath::Max(indexRange[k*2+1],(Int_t) strip); } // dXCharge > 1 e- }else{ // gaussian mean is closer to strip on the right strip++; // move to strip on the rigth b = sup; // now you know where to stop integrating if((strip-0.5)>=inf) { // tail of diffusion gaussian on the left goes left of // middle point between strips a = strip - 0.5; // integration starting point dXCharge1 = F(w, b, sigma) - F(w, a, sigma); dXCharge2 = F(w, a, sigma) - F(w, inf, sigma); }else { a = inf; dXCharge1 = 0.9973; // gaussian integral at 3 sigmas dXCharge2 = 0.0; } // end if dXCharge1 = par * dXCharge1; // normalize by means of carriers dXCharge2 = par * dXCharge2; // for the time being, signal is the charge // in ChargeToSignal signal is converted in ADC channel signal = fMapA2->GetSignal(k,strip); signal += dXCharge1; fMapA2->SetHit(k,strip,(Double_t)signal); if(((Int_t) strip) > 0) { // strip doesn't have to be the first // otherwise part of the charge is lost signal = fMapA2->GetSignal(k,(strip-1)); signal += dXCharge2; fMapA2->SetHit(k,(strip-1),(Double_t)signal); } // end if if(dXCharge1 > 1.) { if (first) { indexRange[k*2+0]=indexRange[k*2+1]=(Int_t) strip; first=kFALSE; } // end if first indexRange[k*2+0]=TMath::Min(indexRange[k*2+0],(Int_t) strip); indexRange[k*2+1]=TMath::Max(indexRange[k*2+1],(Int_t) strip); } // dXCharge > 1 e- } // end if } //______________________________________________________________________ Int_t AliITSsimulationSSD::NumOfSteps(Double_t x, Double_t y, Double_t z, Double_t & dex,Double_t & dey,Double_t & dez){ // number of steps // it also returns steps for each coord //AliITSsegmentationSSD *seg = new AliITSsegmentationSSD(); Double_t step = 25E-4; //step = (Double_t) seg->GetStepSize(); // step size (cm) Int_t numOfSteps = (Int_t) (TMath::Sqrt(x*x+y*y+z*z)/step); if (numOfSteps < 1) numOfSteps = 1; // one step, at least // we could condition the stepping depending on the incident angle // of the track dex = x/numOfSteps; dey = y/numOfSteps; dez = z/numOfSteps; return numOfSteps; } //---------------------------------------------------------------------- void AliITSsimulationSSD::GetList(Int_t label,Float_t **pList, Int_t *indexRange) { // loop over nonzero digits Int_t ix,globalIndex; Float_t signal=0.; Float_t highest,middle,lowest; // printf("SPD-GetList: indexRange[0] indexRange[1] indexRange[2] indexRange[3] %d %d %d %d\n",indexRange[0], indexRange[1], indexRange[2], indexRange[3]); for(Int_t k=0; k<2; k++) { for(ix=indexRange[k*2+0];ixGetSignal(k,ix); globalIndex = k*fNstrips+ix; // globalIndex starts from 0! if(!pList[globalIndex]){ // //Create new list (6 elements-3 signals and 3 tracks+total sig) // pList[globalIndex] = new Float_t [6]; // set list to -1 *pList[globalIndex] = -2.; *(pList[globalIndex]+1) = -2.; *(pList[globalIndex]+2) = -2.; *(pList[globalIndex]+3) = 0.; *(pList[globalIndex]+4) = 0.; *(pList[globalIndex]+5) = 0.; *pList[globalIndex] = (float)label; *(pList[globalIndex]+3) = signal; }else{ // check the signal magnitude highest = *(pList[globalIndex]+3); middle = *(pList[globalIndex]+4); lowest = *(pList[globalIndex]+5); signal -= (highest+middle+lowest); // // compare the new signal with already existing list // if(signalhighest){ *(pList[globalIndex]+5) = middle; *(pList[globalIndex]+4) = highest; *(pList[globalIndex]+3) = signal; *(pList[globalIndex]+2) = *(pList[globalIndex]+1); *(pList[globalIndex]+1) = *pList[globalIndex]; *pList[globalIndex] = label; }else if (signal>middle){ *(pList[globalIndex]+5) = middle; *(pList[globalIndex]+4) = signal; *(pList[globalIndex]+2) = *(pList[globalIndex]+1); *(pList[globalIndex]+1) = label; }else{ *(pList[globalIndex]+5) = signal; *(pList[globalIndex]+2) = label; } // end if } // end if } // end of loop pixels in x } // end of loop over pixels in z } //---------------------------------------------------------------------- void AliITSsimulationSSD::ChargeToSignal(Float_t **pList) { // charge to signal AliITS *aliITS = (AliITS*)gAlice->GetModule("ITS"); Float_t threshold = 0.; Int_t digits[3], tracks[3],hits[3],gi,j1; Float_t charges[3]; Float_t signal,phys; Float_t noise[2] = {0.,0.}; fResponse->GetNoiseParam(noise[0],noise[1]); for(Int_t k=0;k<2;k++){ // both sides (0=Pside, 1=Nside) // Threshold for zero-suppression // It can be defined in AliITSresponseSSD // threshold = (Float_t)fResponse->MinVal(k); // I prefer to think adjusting the threshold "manually", looking // at the scope, and considering noise standard deviation threshold = 4.0*noise[k]; // 4 times noise is a choice for(Int_t ix=0;ixGetSignal(k,ix); gi =k*fNstrips+ix; // global index if (signal > threshold) { digits[0]=k; digits[1]=ix; // convert to ADC signal // conversion factor are rather arbitrary (need tuning) // minimum ionizing particle--> ~30000 pairs--> ADC channel 50 signal = signal*50.0/30000.0; if(signal>1000.) signal = 1000.0;//if exceeding, accumulate // last one digits[2]=(Int_t) signal; //gi =k*fNstrips+ix; // global index for(j1=0;j1<3;j1++){ if (pList[gi]) { tracks[j1] = (Int_t)(*(pList[gi]+j1)); } else { tracks[j1]=-2; //noise } // end if pList charges[j1] = 0; } // end for j1 phys=0; hits[0]=0; hits[1]=0; hits[2]=0; // finally add digit aliITS->AddSimDigit(2,phys,digits,tracks,hits,charges); //if(pList[gi]) delete [] pList[gi]; } // end if signal > threshold if(pList[gi]) delete [] pList[gi]; } // end for ix } // end for k delete [] pList; }