/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ #include #include #include #include #include "AliITSmodule.h" #include "AliITSMapA2.h" #include "AliITSpList.h" #include "AliITSCalibrationSSD.h" #include "AliITSsegmentationSSD.h" //#include "AliITSdcsSSD.h" #include "AliITS.h" #include "AliITShit.h" #include "AliITSdigitSSD.h" #include "AliRun.h" #include "AliITSgeom.h" #include "AliITSsimulationSSD.h" #include "AliITSTableSSD.h" //#include "AliITSresponseSSD.h" ClassImp(AliITSsimulationSSD) //////////////////////////////////////////////////////////////////////// // // // Author: Enrico Fragiacomo // // enrico.fragiacomo@ts.infn.it // // Last revised: march 2006 // // // // AliITSsimulationSSD is the simulation of SSD. // //////////////////////////////////////////////////////////////////////// //---------------------------------------------------------------------- AliITSsimulationSSD::AliITSsimulationSSD():AliITSsimulation(), //fDCS(0), fMapA2(0), fIonE(0.0), fDifConst(), fDriftVel(){ //default Constructor //Inputs: // none. // Outputs: // none. // Return: // A default construction AliITSsimulationSSD class } //---------------------------------------------------------------------- AliITSsimulationSSD::AliITSsimulationSSD(AliITSDetTypeSim* dettyp): AliITSsimulation(dettyp), //fDCS(0), fMapA2(0), fIonE(0.0), fDifConst(), fDriftVel(){ // Constructor // Input: // AliITSDetTypeSim Pointer to the SSD dettype to be used // Outputs: // none. // Return // A standard constructed AliITSsimulationSSD class Init(); } //---------------------------------------------------------------------- void AliITSsimulationSSD::Init(){ // Inilizer, Inilizes all of the variable as needed in a standard place. // Input: // AliITSsegmentationSSD *seg Pointer to the SSD segmentation to be used // AliITSCalibrationSSD *resp Pointer to the SSD responce class to be used // Outputs: // none. // Return // none. AliITSsegmentationSSD* seg = (AliITSsegmentationSSD*)GetSegmentationModel(2); SetDriftVelocity(); // use default values in .h file SetIonizeE(); // use default values in .h file SetDiffConst(); // use default values in .h file fpList = new AliITSpList(2,GetNStrips()); fMapA2 = new AliITSMapA2(seg); } //______________________________________________________________________ AliITSsimulationSSD& AliITSsimulationSSD::operator=( const AliITSsimulationSSD &s){ // Operator = if(this==&s) return *this; // this->fDCS = new AliITSdcsSSD(*(s.fDCS)); this->fMapA2 = s.fMapA2; this->fIonE = s.fIonE; this->fDifConst[0] = s.fDifConst[0]; this->fDifConst[1] = s.fDifConst[1]; this->fDriftVel[0] = s.fDriftVel[0]; this->fDriftVel[1] = s.fDriftVel[1]; return *this; } //______________________________________________________________________ AliITSsimulation& AliITSsimulationSSD::operator=( const AliITSsimulation &s){ // Operator = if(this==&s) return *this; Error("AliITSsimulationSSD","Not allowed to make a = with " "AliITSsimulationSSD Using default creater instead"); return *this; } //______________________________________________________________________ AliITSsimulationSSD::AliITSsimulationSSD(const AliITSsimulationSSD &source): AliITSsimulation(source){ // copy constructor *this = source; } //______________________________________________________________________ AliITSsimulationSSD::~AliITSsimulationSSD() { // destructor delete fMapA2; //delete fDCS; } //______________________________________________________________________ void AliITSsimulationSSD::InitSimulationModule(Int_t module,Int_t event){ // Creates maps to build the list of tracks for each sumable digit // Inputs: // Int_t module // Module number to be simulated // Int_t event // Event number to be simulated // Outputs: // none. // Return // none. SetModuleNumber(module); SetEventNumber(event); fMapA2->ClearMap(); fpList->ClearMap(); } //______________________________________________________________________ void AliITSsimulationSSD::FinishSDigitiseModule(){ // Does the Sdigits to Digits work // Inputs: // none. // Outputs: // none. // Return: // none. FillMapFrompList(fpList); // need to check if needed here or not???? SDigitToDigit(fModule,fpList); fpList->ClearMap(); fMapA2->ClearMap(); } //______________________________________________________________________ void AliITSsimulationSSD::DigitiseModule(AliITSmodule *mod,Int_t,Int_t) { // Digitizes hits for one SSD module SetModuleNumber(mod->GetIndex()); HitsToAnalogDigits(mod,fpList); SDigitToDigit(GetModuleNumber(),fpList); fpList->ClearMap(); fMapA2->ClearMap(); } //______________________________________________________________________ void AliITSsimulationSSD::SDigitiseModule(AliITSmodule *mod,Int_t,Int_t) { // Produces Summable/Analog digits and writes them to the SDigit tree. HitsToAnalogDigits(mod,fpList); WriteSDigits(fpList); fpList->ClearMap(); fMapA2->ClearMap(); } //______________________________________________________________________ void AliITSsimulationSSD::SDigitToDigit(Int_t module,AliITSpList *pList){ // Takes the pList and finishes the digitization. ApplyNoise(pList,module); ApplyCoupling(pList,module); ApplyDeadChannels(module); ChargeToSignal(module,pList); } //______________________________________________________________________ void AliITSsimulationSSD::HitsToAnalogDigits(AliITSmodule *mod, AliITSpList *pList){ // Loops over all hits to produce Analog/floating point digits. This // is also the first task in producing standard digits. Int_t lasttrack = -2; Int_t idtrack = -2; Double_t x0=0.0, y0=0.0, z0=0.0; Double_t x1=0.0, y1=0.0, z1=0.0; Double_t de=0.0; Int_t module = mod->GetIndex(); AliITSsegmentationSSD* seg = (AliITSsegmentationSSD*)GetSegmentationModel(2); TObjArray *hits = mod->GetHits(); Int_t nhits = hits->GetEntriesFast(); if (nhits<=0) return; AliITSTableSSD * tav = new AliITSTableSSD(GetNStrips()); module = mod->GetIndex(); if ( mod->GetLayer() == 6 ) seg->SetLayer(6); if ( mod->GetLayer() == 5 ) seg->SetLayer(5); for(Int_t i=0; iGetHit(i)->GetXL() << " "<GetHit(i)->GetYL(); cout << " " << mod->GetHit(i)->GetZL(); cout << endl; } // end if if (mod->LineSegmentL(i, x0, x1, y0, y1, z0, z1, de, idtrack)) { HitToDigit(module, x0, y0, z0, x1, y1, z1, de,tav); if (lasttrack != idtrack || i==(nhits-1)) { GetList(idtrack,i,module,pList,tav); } // end if lasttrack=idtrack; } // end if } // end loop over hits delete tav; tav=0; return; } //---------------------------------------------------------------------- void AliITSsimulationSSD::HitToDigit(Int_t module, Double_t x0, Double_t y0, Double_t z0, Double_t x1, Double_t y1, Double_t z1, Double_t de, AliITSTableSSD *tav) { // hit to digit conversion AliITSsegmentationSSD* seg = (AliITSsegmentationSSD*)GetSegmentationModel(2); // Turns hits in SSD module into one or more digits. Float_t tang[2] = {0.0,0.0}; seg->Angles(tang[0], tang[1]);//stereo<<->tan(stereo)~=stereo Double_t x, y, z; Double_t dex=0.0, dey=0.0, dez=0.0; Double_t pairs; // pair generation energy per step. Double_t sigma[2] = {0.,0.};// standard deviation of the diffusion gaussian Double_t tdrift[2] = {0.,0.}; // time of drift Double_t w; Double_t inf[2], sup[2], par0[2]; // Steps in the module are determined "manually" (i.e. No Geant) // NumOfSteps divide path between entering and exiting hits in steps Int_t numOfSteps = NumOfSteps(x1, y1, z1, dex, dey, dez); // Enery loss is equally distributed among steps de = de/numOfSteps; pairs = de/GetIonizeE(); // e-h pairs generated for(Int_t j=0; j (seg->Dy()/2+10)*1.0E-4 ) { // check if particle is within the detector Warning("HitToDigit", "hit out of detector y0=%e,y=%e,dey=%e,j =%e module=%d", y0,y,dey,j,module); return; } // end if z = z0 + (j+0.5)*dez; if(GetDebug(4)) cout <<"HitToDigit "<Dy()*1.0E-4)/2)/GetDriftVelocity(0); tdrift[1] = ((seg->Dy()*1.0E-4)/2-y)/GetDriftVelocity(1); for(Int_t k=0; k<2; k++) { // both sides remember: 0=Pside 1=Nside tang[k]=TMath::Tan(tang[k]); // w is the coord. perpendicular to the strips Float_t xp=x*1.e+4,zp=z*1.e+4; // microns seg->GetPadTxz(xp,zp); if(k==0) w = xp; // P side strip number else w = zp; // N side strip number if((w<(-0.5)) || (w>(GetNStrips()-0.5))) { // this check rejects hits in regions not covered by strips // 0.5 takes into account boundaries if(GetDebug(4)) cout << "x,z="<Gaus(0,res->GetNoiseP().At(ix)); // need to calibrate noise // NOTE. noise from the calibration database comes uncalibrated, // it needs to be calibrated in order to be added // to the signal. It will be decalibrated later on together with the noise noise *= (Double_t) res->GetGainP(ix); // noise comes in ADC channels from the calibration database // It needs to be converted back to electronVolts noise /= res->GetDEvToADC(1.); // Finally, noise is added to the signal signal = noise + fMapA2->GetSignal(0,ix);//get signal from map fMapA2->SetHit(0,ix,signal); // give back signal to map if(signal>0.0) pList->AddNoise(0,ix,module,noise); } // loop over strip // Nside for(ix=0;ixGaus(0,res->GetNoiseN().At(ix));// give noise to signal noise *= (Double_t) res->GetGainN(ix); noise /= res->GetDEvToADC(1.); signal = noise + fMapA2->GetSignal(1,ix);//get signal from map fMapA2->SetHit(1,ix,signal); // give back signal to map if(signal>0.0) pList->AddNoise(1,ix,module,noise); } // loop over strip } //______________________________________________________________________ void AliITSsimulationSSD::ApplyCoupling(AliITSpList *pList,Int_t module) { // Apply the effect of electronic coupling between channels Int_t ix; Double_t signal=0; AliITSCalibrationSSD* res =(AliITSCalibrationSSD*)GetCalibrationModel(module); Double_t *contrLeft = new Double_t[GetNStrips()]; Double_t *contrRight = new Double_t[GetNStrips()]; // P side coupling for(ix=0;ix0) contrLeft[ix] = fMapA2->GetSignal(0,ix-1)*res->GetCouplingPL(); else contrLeft[ix] = 0.0; if(ix<(GetNStrips()-1)) contrRight[ix] = fMapA2->GetSignal(0,ix+1)*res->GetCouplingPR(); else contrRight[ix] = 0.0; } // loop over strips for(ix=0;ixGetCouplingPL() * fMapA2->GetSignal(0,ix) - res->GetCouplingPR() * fMapA2->GetSignal(0,ix); fMapA2->AddSignal(0,ix,signal); if(signal>0.0) pList->AddNoise(0,ix,module,signal); } // loop over strips // N side coupling for(ix=0;ix0) contrLeft[ix] = fMapA2->GetSignal(1,ix-1)*res->GetCouplingNL(); else contrLeft[ix] = 0.0; if(ix<(GetNStrips()-1)) contrRight[ix] = fMapA2->GetSignal(1,ix+1)*res->GetCouplingNR(); else contrRight[ix] = 0.0; } // loop over strips for(ix=0;ixGetCouplingNL() * fMapA2->GetSignal(0,ix) - res->GetCouplingNR() * fMapA2->GetSignal(0,ix); fMapA2->AddSignal(1,ix,signal); if(signal>0.0) pList->AddNoise(1,ix,module,signal); } // loop over strips delete [] contrLeft; delete [] contrRight; } //______________________________________________________________________ void AliITSsimulationSSD::ApplyDeadChannels(Int_t module) { // Kill dead channels setting gain to zero Int_t deadentries; AliITSCalibrationSSD* res = (AliITSCalibrationSSD*)GetCalibrationModel(module); deadentries = res->GetDeadPChannelsList().GetSize(); //cout<AddGainP(res->GetDeadPChannelsList().At(i),0.0); } deadentries = res->GetDeadNChannelsList().GetSize(); for(Int_t i=0; iAddGainN(res->GetDeadNChannelsList().At(i),0.0); } } //______________________________________________________________________ Float_t AliITSsimulationSSD::F(Float_t av, Float_t x, Float_t s) { // Computes the integral of a gaussian using Error Function Float_t sqrt2 = TMath::Sqrt(2.0); Float_t sigm2 = sqrt2*s; Float_t integral; integral = 0.5 * TMath::Erf( (x - av) / sigm2); return integral; } //______________________________________________________________________ void AliITSsimulationSSD::IntegrateGaussian(Int_t k,Double_t par, Double_t w, Double_t sigma, Double_t inf, Double_t sup, AliITSTableSSD *tav) { // integrate the diffusion gaussian // remind: inf and sup are w-3sigma and w+3sigma // we could define them here instead of passing them // this way we are free to introduce asimmetry Double_t a=0.0, b=0.0; Double_t dXCharge1 = 0.0, dXCharge2 = 0.0; // dXCharge1 and 2 are the charge to two neighbouring strips // Watch that we only involve at least two strips // Numbers greater than 2 of strips in a cluster depend on // geometry of the track and delta rays, not charge diffusion! Double_t strip = TMath::Floor(w); // closest strip on the left if ( TMath::Abs((strip - w)) < 0.5) { // gaussian mean is closer to strip on the left a = inf; // integration starting point if((strip+0.5)<=sup) { // this means that the tail of the gaussian goes beyond // the middle point between strips ---> part of the signal // is given to the strip on the right b = strip + 0.5; // integration stopping point dXCharge1 = F( w, b, sigma) - F(w, a, sigma); dXCharge2 = F( w, sup, sigma) - F(w ,b, sigma); }else { // this means that all the charge is given to the strip on the left b = sup; dXCharge1 = 0.9973; // gaussian integral at 3 sigmas dXCharge2 = 0.0; } // end if dXCharge1 = par * dXCharge1;// normalize by mean of number of carriers dXCharge2 = par * dXCharge2; // for the time being, signal is the charge // in ChargeToSignal signal is converted in ADC channel fMapA2->AddSignal(k,(Int_t)strip,dXCharge1); tav->Add(k,(Int_t)strip); if(((Int_t) strip) < (GetNStrips()-1)) { // strip doesn't have to be the last (remind: last=GetNStrips()-1) // otherwise part of the charge is lost fMapA2->AddSignal(k,((Int_t)strip+1),dXCharge2); tav->Add(k,((Int_t)(strip+1))); } // end if }else{ // gaussian mean is closer to strip on the right strip++; // move to strip on the rigth b = sup; // now you know where to stop integrating if((strip-0.5)>=inf) { // tail of diffusion gaussian on the left goes left of // middle point between strips a = strip - 0.5; // integration starting point dXCharge1 = F(w, b, sigma) - F(w, a, sigma); dXCharge2 = F(w, a, sigma) - F(w, inf, sigma); }else { a = inf; dXCharge1 = 0.9973; // gaussian integral at 3 sigmas dXCharge2 = 0.0; } // end if dXCharge1 = par * dXCharge1; // normalize by means of carriers dXCharge2 = par * dXCharge2; // for the time being, signal is the charge // in ChargeToSignal signal is converted in ADC channel fMapA2->AddSignal(k,(Int_t)strip,dXCharge1); tav->Add(k,(Int_t)strip); if(((Int_t) strip) > 0) { // strip doesn't have to be the first // otherwise part of the charge is lost fMapA2->AddSignal(k,((Int_t)strip-1),dXCharge2); tav->Add(k,((Int_t)(strip-1))); } // end if } // end if } //______________________________________________________________________ Int_t AliITSsimulationSSD::NumOfSteps(Double_t x, Double_t y, Double_t z, Double_t &dex,Double_t &dey, Double_t &dez){ // number of steps // it also returns steps for each coord //AliITSsegmentationSSD *seg = new AliITSsegmentationSSD(); Double_t step = 25E-4; //step = (Double_t) seg->GetStepSize(); // step size (cm) Int_t numOfSteps = (Int_t) (TMath::Sqrt(x*x+y*y+z*z)/step); if (numOfSteps < 1) numOfSteps = 1; // one step, at least //numOfSteps=1; // we could condition the stepping depending on the incident angle // of the track dex = x/numOfSteps; dey = y/numOfSteps; dez = z/numOfSteps; return numOfSteps; } //---------------------------------------------------------------------- void AliITSsimulationSSD::GetList(Int_t label,Int_t hit,Int_t mod, AliITSpList *pList,AliITSTableSSD *tav) { // loop over nonzero digits Int_t ix,i; Double_t signal=0.; for(Int_t k=0; k<2; k++) { ix=tav->Use(k); while(ix>-1){ signal = fMapA2->GetSignal(k,ix); if(signal==0.0) { ix=tav->Use(k); continue; } // end if signal==0.0 // check the signal magnitude for(i=0;iGetNSignals(k,ix);i++){ signal -= pList->GetTSignal(k,ix,i); } // end for i // compare the new signal with already existing list if(signal>0)pList->AddSignal(k,ix,label,hit,mod,signal); ix=tav->Use(k); } // end of loop on strips } // end of loop on P/N side tav->Clear(); } //---------------------------------------------------------------------- void AliITSsimulationSSD::ChargeToSignal(Int_t module,AliITSpList *pList) { // charge to signal static AliITS *aliITS = (AliITS*)gAlice->GetModule("ITS"); Float_t threshold = 0.; Int_t size = AliITSdigitSSD::GetNTracks(); Int_t * digits = new Int_t[size]; Int_t * tracks = new Int_t[size]; Int_t * hits = new Int_t[size]; Int_t j1; Float_t charges[3] = {0.0,0.0,0.0}; Float_t signal; AliITSCalibrationSSD* res =(AliITSCalibrationSSD*)GetCalibrationModel(module); for(Int_t k=0;k<2;k++){ // both sides (0=Pside, 1=Nside) for(Int_t ix=0;ix gain=0 if( ((k==0)&&(res->GetGainP(ix)==0)) || ((k==1)&&(res->GetGainN(ix)==0))) continue; // signal has to be uncalibrated // In real life, gains are supposed to be calculated from calibration runs, // stored in the calibration DB and used in the reconstruction // (see AliITSClusterFinderSSD.cxx) if(k==0) signal /= res->GetGainP(ix); else signal /= res->GetGainN(ix); // signal is converted in unit of ADC signal = res->GetDEvToADC(fMapA2->GetSignal(k,ix)); if(signal>4096.) signal = 4096.;//if exceeding, accumulate last one // threshold for zero suppression is set on the basis of the noise // A good value is 3*sigma_noise if(k==0) threshold = res->GetNoiseP().At(ix); else threshold = res->GetNoiseN().At(ix); threshold *= res->GetZSThreshold(); // threshold at 3 sigma noise if(signal < threshold) continue; digits[0] = k; digits[1] = ix; digits[2] = TMath::Nint(signal); for(j1=0;j1GetNEntries()){ // only three in digit. tracks[j1] = pList->GetTrack(k,ix,j1); hits[j1] = pList->GetHit(k,ix,j1); }else{ tracks[j1] = -3; hits[j1] = -1; } // end for j1 // finally add digit aliITS->AddSimDigit(2,0,digits,tracks,hits,charges); } // end for ix } // end for k delete [] digits; delete [] tracks; delete [] hits; } //______________________________________________________________________ void AliITSsimulationSSD::WriteSDigits(AliITSpList *pList){ // Fills the Summable digits Tree Int_t i,ni,j,nj; static AliITS *aliITS = (AliITS*)gAlice->GetModule("ITS"); pList->GetMaxMapIndex(ni,nj); for(i=0;iGetSignalOnly(i,j)>0.0){ aliITS->AddSumDigit(*(pList->GetpListItem(i,j))); if(GetDebug(4)) cout << "pListSSD: "<<*(pList->GetpListItem(i,j)) << endl; } // end if } // end for i,j return; } //______________________________________________________________________ void AliITSsimulationSSD::FillMapFrompList(AliITSpList *pList){ // Fills fMap2A from the pList of Summable digits Int_t k,ix; for(k=0;k<2;k++)for(ix=0;ixAddSignal(k,ix,pList->GetSignal(k,ix)); return; } //______________________________________________________________________ void AliITSsimulationSSD::Print(ostream *os){ //Standard output format for this class //AliITSsimulation::Print(os); *os << fIonE <<","; *os << fDifConst[0] <<","<< fDifConst[1] <<","; *os << fDriftVel[0] <<","<< fDriftVel[1]; //*os <<","; fDCS->Print(os); //*os <<","; fMapA2->Print(os); } //______________________________________________________________________ void AliITSsimulationSSD::Read(istream *is){ // Standard output streaming function. //AliITSsimulation::Read(is); *is >> fIonE; *is >> fDifConst[0] >> fDifConst[1]; *is >> fDriftVel[0] >> fDriftVel[1]; //fDCS->Read(is); //fMapA2->Read(is); } //______________________________________________________________________ ostream &operator<<(ostream &os,AliITSsimulationSSD &source){ // Standard output streaming function. source.Print(&os); return os; } //______________________________________________________________________ istream &operator>>(istream &os,AliITSsimulationSSD &source){ // Standard output streaming function. source.Read(&os); return os; } //______________________________________________________________________