#ifndef ALIITSTRACKMI_H #define ALIITSTRACKMI_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ //------------------------------------------------------------------------- // ITS Track Class // // Origin: Marian Ivanov, CERN, Marian.Ivanov@cern.ch // dEdx analysis by: Boris Batyunya, JINR, Boris.Batiounia@cern.ch //------------------------------------------------------------------------- /* $Id$ */ /***************************************************************************** * December 18, 2000 * * Internal view of the ITS track parametrisation as well as the order of * * track parameters are subject for possible changes ! * * Use GetExternalParameters() and GetExternalCovariance() to access ITS * * track information regardless of its internal representation. * * This formation is now fixed in the following way: * * external param0: local Y-coordinate of a track (cm) * * external param1: local Z-coordinate of a track (cm) * * external param2: local sine of the track momentum azimuthal angle * * external param3: tangent of the track momentum dip angle * * external param4: 1/pt (1/(GeV/c)) * *****************************************************************************/ #include #include "AliITSRecoParam.h" #include "AliITStrackV2.h" class AliESDtrack; //_____________________________________________________________________________ class AliITStrackMI : public AliITStrackV2 { public: AliITStrackMI(); AliITStrackMI(AliESDtrack& t,Bool_t c=kFALSE) throw (const Char_t *); AliITStrackMI(const AliITStrackMI& t); Int_t GetProlongationFast(Double_t alpha, Double_t xr,Double_t &y, Double_t &z); Bool_t UpdateMI(const AliCluster *c, Double_t chi2, Int_t i); void SetReconstructed(Bool_t sr=kTRUE){fReconstructed = sr;} Bool_t GetReconstructed() const {return fReconstructed;} void SetChi2MIP(Int_t i,Float_t val){fChi2MIP[i]=val;} Float_t GetChi2MIP(Int_t i) const {return fChi2MIP[i];} void IncrementNSkipped(){fNSkipped++;} // increment by 1 the # of skipped cls Float_t GetNSkipped() const {return fNSkipped;} void SetNSkipped(Float_t n) {fNSkipped=n;} void IncrementNUsed(){fNUsed++;} // increment by 1 the # of shared clusters Float_t GetNUsed() const {return fNUsed;} void SetNUsed(Float_t n) {fNUsed=n;} Int_t Compare(const TObject *o) const; Double_t GetCov33() const {return GetCovariance()[9];} // cov. matrix el. 3,3 //Double_t GetCov44() const {return GetCovariance()[15];}// cov. matrix el. 4,4 Float_t GetDy(Int_t i) const {return fDy[i];} Float_t GetDz(Int_t i) const {return fDz[i];} Float_t GetD(Int_t i) const {return fD[i];} Double_t GetD(Double_t x, Double_t y) const {return AliITStrackV2::GetD(x,y);} Float_t *GetDP() {return fD;} void SetD(Int_t i, Float_t d) {fD[i]=d;} Float_t GetDnorm(Int_t i) const {return fDnorm[i];} Float_t *GetDnormP() {return fDnorm;} void SetDnorm(Int_t i, Float_t d) {fDnorm[i]=d;} Float_t GetSigmaY(Int_t i) const {return fSigmaY[i];} Float_t GetSigmaZ(Int_t i) const {return fSigmaZ[i];} Float_t GetSigmaYZ(Int_t i) const {return fSigmaYZ[i];} void SetSigmaY(Int_t i, Float_t s) {fSigmaY[i]=s;} void SetSigmaZ(Int_t i, Float_t s) {fSigmaZ[i]=s;} void SetSigmaYZ(Int_t i, Float_t s) {fSigmaYZ[i]=s;} Float_t GetNDeadZone() const {return fNDeadZone;} void SetNDeadZone(Float_t d) {fNDeadZone=d;} Int_t* ClIndex() {return fClIndex;} Int_t GetClIndex(Int_t i) const {return fClIndex[i];} void SetClIndex(Int_t i, Int_t c) {fClIndex[i]=c;} Float_t GetNormChi2(Int_t i) const {return fNormChi2[i];} void SetNormChi2(Int_t i, Float_t n) {fNormChi2[i]=n;} Bool_t GetConstrain() const {return fConstrain;} void SetConstrain(Bool_t c) {fConstrain=c;} Float_t GetExpQ() const {return fExpQ;} void SetExpQ(Float_t f) {fExpQ=f;} Float_t GetNormQ(Int_t i) const {return fNormQ[i];} void SetNormQ(Int_t i, Float_t q) {fNormQ[i]=q;} Float_t GetdEdxMismatch() const {return fdEdxMismatch;} void SetdEdxMismatch(Float_t m) {fdEdxMismatch=m;} Float_t GetNy(Int_t i) const {return fNy[i];} void SetNy(Int_t i, Float_t f) {fNy[i]=f;} Float_t GetNz(Int_t i) const {return fNz[i];} void SetNz(Int_t i, Float_t f) {fNz[i]=f;} Bool_t GetGoldV0() const {return fGoldV0;} void SetGoldV0(Bool_t g) {fGoldV0=g;} Float_t GetChi22() const {return fChi22;} void SetChi22(Float_t c) {fChi22=c;} Float_t GetDeadZoneProbability(Int_t ilayer) const {return fDeadZoneProbability[ilayer];} void SetDeadZoneProbability(Int_t ilayer,Float_t d) {fDeadZoneProbability[ilayer]=d;} Double_t GetPredictedChi2MI(Double_t cy, Double_t cz, Double_t cerry, Double_t cerrz, Double_t covyz=0.) const; Bool_t IsGoldPrimary(); protected: Float_t fNUsed; // number of shared clusters Float_t fNSkipped; // number of skipped clusters Float_t fNDeadZone; // number of clusters in dead zone Float_t fDeadZoneProbability[6]; // probability to cross dead zone Bool_t fReconstructed; // reconstructed - accepted flag Float_t fChi2MIP[12]; // MIP chi squres Float_t fDy[12]; //dy in layer Float_t fDz[12]; //dz in layer Float_t fSigmaY[12]; //sigma y Float_t fSigmaZ[12]; //sigma z Float_t fSigmaYZ[12]; //covariance of y and z Float_t fNy[6]; //expected size of cluster Float_t fNz[6]; //expected size of cluster Float_t fD[2]; //distance to the vertex Float_t fDnorm[2]; // normalized distance to the vertex Float_t fNormQ[6]; // normalized Q Float_t fExpQ; // expected Q Float_t fNormChi2[6]; // normalized chi2 Float_t fChi22; // chi22 Float_t fdEdxMismatch; Bool_t fConstrain; //indication of the vertex constrain Int_t fClIndex[6]; //cluster Index Bool_t fGoldV0; //corresponding gold V0 found ClassDef(AliITStrackMI,3) //ITS reconstructed track }; #endif