/************************************************************************** * Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id:$ */ //------------------------------------------------------------------------- // Implementation of the ITS tracker class // It reads AliITSRecPoint clusters and creates AliITStrackMI tracks // and fills with them the ESD // Origin: Marian Ivanov, CERN, Marian.Ivanov@cern.ch // dE/dx analysis by: Boris Batyunya, JINR, Boris.Batiounia@cern.ch // Params moved to AliITSRecoParam by: Andrea Dainese, INFN // Material budget from TGeo by: Ludovic Gaudichet & Andrea Dainese, INFN //------------------------------------------------------------------------- #include #include #include #include #include #include #include "AliESDEvent.h" #include "AliESDtrack.h" #include "AliESDVertex.h" #include "AliV0.h" #include "AliHelix.h" #include "AliITSRecPoint.h" #include "AliITSgeomTGeo.h" #include "AliITSReconstructor.h" #include "AliTrackPointArray.h" #include "AliAlignObj.h" #include "AliITSClusterParam.h" #include "AliCDBManager.h" #include "AliCDBEntry.h" #include "AliITSCalibrationSPD.h" #include "AliITSCalibrationSDD.h" #include "AliITSCalibrationSSD.h" #include "AliITSPlaneEff.h" #include "AliITSPlaneEffSPD.h" #include "AliITSPlaneEffSDD.h" #include "AliITSPlaneEffSSD.h" #include "AliITStrackerMI.h" ClassImp(AliITStrackerMI) AliITStrackerMI::AliITSlayer AliITStrackerMI::fgLayers[AliITSgeomTGeo::kNLayers]; // ITS layers AliITStrackerMI::AliITStrackerMI():AliTracker(), fI(0), fBestTrack(), fTrackToFollow(), fTrackHypothesys(), fBestHypothesys(), fOriginal(), fCurrentEsdTrack(), fPass(0), fAfterV0(kFALSE), fLastLayerToTrackTo(0), fCoefficients(0), fEsd(0), fTrackingPhase("Default"), fUseTGeo(3), fNtracks(0), fxOverX0Pipe(-1.), fxTimesRhoPipe(-1.), fxOverX0PipeTrks(0), fxTimesRhoPipeTrks(0), fxOverX0ShieldTrks(0), fxTimesRhoShieldTrks(0), fxOverX0LayerTrks(0), fxTimesRhoLayerTrks(0), fDebugStreamer(0), fPlaneEff(0) { //Default constructor Int_t i; for(i=0;i<4;i++) fSPDdetzcentre[i]=0.; for(i=0;i<2;i++) {fxOverX0Shield[i]=-1.;fxTimesRhoShield[i]=-1.;} for(i=0;i<6;i++) {fxOverX0Layer[i]=-1.;fxTimesRhoLayer[i]=-1.;} } //------------------------------------------------------------------------ AliITStrackerMI::AliITStrackerMI(const Char_t *geom) : AliTracker(), fI(AliITSgeomTGeo::GetNLayers()), fBestTrack(), fTrackToFollow(), fTrackHypothesys(), fBestHypothesys(), fOriginal(), fCurrentEsdTrack(), fPass(0), fAfterV0(kFALSE), fLastLayerToTrackTo(AliITSRecoParam::GetLastLayerToTrackTo()), fCoefficients(0), fEsd(0), fTrackingPhase("Default"), fUseTGeo(3), fNtracks(0), fxOverX0Pipe(-1.), fxTimesRhoPipe(-1.), fxOverX0PipeTrks(0), fxTimesRhoPipeTrks(0), fxOverX0ShieldTrks(0), fxTimesRhoShieldTrks(0), fxOverX0LayerTrks(0), fxTimesRhoLayerTrks(0), fDebugStreamer(0), fPlaneEff(0) { //-------------------------------------------------------------------- //This is the AliITStrackerMI constructor //-------------------------------------------------------------------- if (geom) { AliWarning("\"geom\" is actually a dummy argument !"); } fCoefficients = 0; fAfterV0 = kFALSE; for (Int_t i=1; i=TMath::TwoPi()) phi-=TMath::TwoPi(); AliITSdetector &det=fgLayers[i-1].GetDetector((j-1)*ndet + k-1); new(&det) AliITSdetector(r,phi); } } } fI=AliITSgeomTGeo::GetNLayers(); fPass=0; fConstraint[0]=1; fConstraint[1]=0; Double_t xyzVtx[]={AliITSReconstructor::GetRecoParam()->GetXVdef(), AliITSReconstructor::GetRecoParam()->GetYVdef(), AliITSReconstructor::GetRecoParam()->GetZVdef()}; Double_t ersVtx[]={AliITSReconstructor::GetRecoParam()->GetSigmaXVdef(), AliITSReconstructor::GetRecoParam()->GetSigmaYVdef(), AliITSReconstructor::GetRecoParam()->GetSigmaZVdef()}; SetVertex(xyzVtx,ersVtx); for (Int_t i=0; iGetUseTGeoInTracker(); if(AliITSReconstructor::GetRecoParam()->GetExtendedEtaAcceptance() && fUseTGeo!=1 && fUseTGeo!=3) { AliWarning("fUseTGeo changed to 3 because fExtendedEtaAcceptance is kTRUE"); fUseTGeo = 3; } for(Int_t i=0;i<2;i++) {fxOverX0Shield[i]=-1.;fxTimesRhoShield[i]=-1.;} for(Int_t i=0;i<6;i++) {fxOverX0Layer[i]=-1.;fxTimesRhoLayer[i]=-1.;} fDebugStreamer = new TTreeSRedirector("ITSdebug.root"); // only for plane efficiency evaluation if (AliITSReconstructor::GetRecoParam()->GetComputePlaneEff()) { for(Int_t ilay=0;ilay<6;ilay++) { if(AliITSReconstructor::GetRecoParam()->GetLayersToSkip(ilay)) { if (ilay<2) fPlaneEff = new AliITSPlaneEffSPD(); else if (ilay<4) fPlaneEff = new AliITSPlaneEffSDD(); else fPlaneEff = new AliITSPlaneEffSSD(); break; // only one layer type to skip at once } } if(!fPlaneEff->ReadFromCDB()) {AliWarning("AliITStrackerMI reading of AliITSPlaneEff from OCDB failed") ;} if(AliITSReconstructor::GetRecoParam()->GetHistoPlaneEff()) { fPlaneEff->SetCreateHistos(kTRUE); //fPlaneEff->ReadHistosFromFile(); } } } //------------------------------------------------------------------------ AliITStrackerMI::AliITStrackerMI(const AliITStrackerMI &tracker):AliTracker(tracker), fI(tracker.fI), fBestTrack(tracker.fBestTrack), fTrackToFollow(tracker.fTrackToFollow), fTrackHypothesys(tracker.fTrackHypothesys), fBestHypothesys(tracker.fBestHypothesys), fOriginal(tracker.fOriginal), fCurrentEsdTrack(tracker.fCurrentEsdTrack), fPass(tracker.fPass), fAfterV0(tracker.fAfterV0), fLastLayerToTrackTo(tracker.fLastLayerToTrackTo), fCoefficients(tracker.fCoefficients), fEsd(tracker.fEsd), fTrackingPhase(tracker.fTrackingPhase), fUseTGeo(tracker.fUseTGeo), fNtracks(tracker.fNtracks), fxOverX0Pipe(tracker.fxOverX0Pipe), fxTimesRhoPipe(tracker.fxTimesRhoPipe), fxOverX0PipeTrks(0), fxTimesRhoPipeTrks(0), fxOverX0ShieldTrks(0), fxTimesRhoShieldTrks(0), fxOverX0LayerTrks(0), fxTimesRhoLayerTrks(0), fDebugStreamer(tracker.fDebugStreamer), fPlaneEff(tracker.fPlaneEff) { //Copy constructor Int_t i; for(i=0;i<4;i++) { fSPDdetzcentre[i]=tracker.fSPDdetzcentre[i]; } for(i=0;i<6;i++) { fxOverX0Layer[i]=tracker.fxOverX0Layer[i]; fxTimesRhoLayer[i]=tracker.fxTimesRhoLayer[i]; } for(i=0;i<2;i++) { fxOverX0Shield[i]=tracker.fxOverX0Shield[i]; fxTimesRhoShield[i]=tracker.fxTimesRhoShield[i]; } } //------------------------------------------------------------------------ AliITStrackerMI & AliITStrackerMI::operator=(const AliITStrackerMI &tracker){ //Assignment operator this->~AliITStrackerMI(); new(this) AliITStrackerMI(tracker); return *this; } //------------------------------------------------------------------------ AliITStrackerMI::~AliITStrackerMI() { // //destructor // if (fCoefficients) delete [] fCoefficients; DeleteTrksMaterialLUT(); if (fDebugStreamer) { //fDebugStreamer->Close(); delete fDebugStreamer; } } //------------------------------------------------------------------------ void AliITStrackerMI::SetLayersNotToSkip(Int_t *l) { //-------------------------------------------------------------------- //This function set masks of the layers which must be not skipped //-------------------------------------------------------------------- for (Int_t i=0; iGetBranch("ITSRecPoints"); if (!branch) { Error("LoadClusters"," can't get the branch !\n"); return 1; } TClonesArray dummy("AliITSRecPoint",10000), *clusters=&dummy; branch->SetAddress(&clusters); Int_t j=0; Int_t detector=0; for (Int_t i=0; iGetEvent(j)) continue; Int_t ncl=clusters->GetEntriesFast(); SignDeltas(clusters,GetZ()); while (ncl--) { AliITSRecPoint *c=(AliITSRecPoint*)clusters->UncheckedAt(ncl); detector=c->GetDetectorIndex(); if (!c->Misalign()) AliWarning("Can't misalign this cluster !"); fgLayers[i].InsertCluster(new AliITSRecPoint(*c)); } clusters->Delete(); // add dead zone "virtual" cluster in SPD, if there is a cluster within // zwindow cm from the dead zone if (i<2 && AliITSReconstructor::GetRecoParam()->GetAddVirtualClustersInDeadZone()) { for (Float_t xdead = 0; xdead < AliITSRecoParam::GetSPDdetxlength(); xdead += (i+1.)*AliITSReconstructor::GetRecoParam()->GetXPassDeadZoneHits()) { Int_t lab[4] = {0,0,0,detector}; Int_t info[3] = {0,0,i}; Float_t q = 0.; // this identifies virtual clusters Float_t hit[5] = {xdead, 0., AliITSReconstructor::GetRecoParam()->GetSigmaXDeadZoneHit2(), AliITSReconstructor::GetRecoParam()->GetSigmaZDeadZoneHit2(), q}; Bool_t local = kTRUE; Double_t zwindow = AliITSReconstructor::GetRecoParam()->GetZWindowDeadZone(); hit[1] = fSPDdetzcentre[0]+0.5*AliITSRecoParam::GetSPDdetzlength(); if (TMath::Abs(fgLayers[i].GetDetector(detector).GetZmax()-hit[1])GetX() > AliITSRecoParam::Getriw()) { // inward direction if (!t->PropagateToTGeo(AliITSRecoParam::Getriw(),1)) return 0;// TPC inner wall if (!t->PropagateToTGeo(AliITSRecoParam::Getrcd(),1)) return 0;// TPC central drum if (!t->PropagateToTGeo(AliITSRecoParam::Getrs(),1)) return 0;// ITS screen } else if (t->GetX() < AliITSRecoParam::Getrs()) { // outward direction if (!t->PropagateToTGeo(AliITSRecoParam::Getrs(),1)) return 0;// ITS screen if (!t->PropagateToTGeo(AliITSRecoParam::Getrcd(),1)) return 0;// TPC central drum if (!t->PropagateToTGeo(AliITSRecoParam::Getriw()+0.001,1)) return 0;// TPC inner wall } else { Error("CorrectForTPCtoITSDeadZoneMaterial","Track is already in the dead zone !"); return 0; } return 1; } //------------------------------------------------------------------------ Int_t AliITStrackerMI::Clusters2Tracks(AliESDEvent *event) { //-------------------------------------------------------------------- // This functions reconstructs ITS tracks // The clusters must be already loaded ! //-------------------------------------------------------------------- fTrackingPhase="Clusters2Tracks"; TObjArray itsTracks(15000); fOriginal.Clear(); fEsd = event; // store pointer to the esd // temporary (for cosmics) if(event->GetVertex()) { TString title = event->GetVertex()->GetTitle(); if(title.Contains("cosmics")) { Double_t xyz[3]={GetX(),GetY(),GetZ()}; Double_t exyz[3]={0.1,0.1,0.1}; SetVertex(xyz,exyz); } } // temporary {/* Read ESD tracks */ Double_t pimass = TDatabasePDG::Instance()->GetParticle(211)->Mass(); Int_t nentr=event->GetNumberOfTracks(); Info("Clusters2Tracks", "Number of ESD tracks: %d\n", nentr); while (nentr--) { AliESDtrack *esd=event->GetTrack(nentr); if ((esd->GetStatus()&AliESDtrack::kTPCin)==0) continue; if (esd->GetStatus()&AliESDtrack::kTPCout) continue; if (esd->GetStatus()&AliESDtrack::kITSin) continue; if (esd->GetKinkIndex(0)>0) continue; //kink daughter AliITStrackMI *t=0; try { t=new AliITStrackMI(*esd); } catch (const Char_t *msg) { //Warning("Clusters2Tracks",msg); delete t; continue; } t->GetDZ(GetX(),GetY(),GetZ(),t->GetDP()); //I.B. Double_t vdist = TMath::Sqrt(t->GetD(0)*t->GetD(0)+t->GetD(1)*t->GetD(1)); // look at the ESD mass hypothesys ! if (t->GetMass()<0.9*pimass) t->SetMass(pimass); // write expected q t->SetExpQ(TMath::Max(0.8*t->GetESDtrack()->GetTPCsignal(),30.)); if (esd->GetV0Index(0)>0 && t->GetD(0)GetMaxDforV0dghtrForProlongation()){ //track - can be V0 according to TPC } else { if (TMath::Abs(t->GetD(0))>AliITSReconstructor::GetRecoParam()->GetMaxDForProlongation()) { delete t; continue; } if (TMath::Abs(vdist)>AliITSReconstructor::GetRecoParam()->GetMaxDZForProlongation()) { delete t; continue; } if (t->Pt()GetMinPtForProlongation()) { delete t; continue; } if (!CorrectForTPCtoITSDeadZoneMaterial(t)) { delete t; continue; } } t->SetReconstructed(kFALSE); itsTracks.AddLast(t); fOriginal.AddLast(t); } } /* End Read ESD tracks */ itsTracks.Sort(); fOriginal.Sort(); Int_t nentr=itsTracks.GetEntriesFast(); fTrackHypothesys.Expand(nentr); fBestHypothesys.Expand(nentr); MakeCoefficients(nentr); if(fUseTGeo==3 || fUseTGeo==4) MakeTrksMaterialLUT(event->GetNumberOfTracks()); Int_t ntrk=0; // THE TWO TRACKING PASSES for (fPass=0; fPass<2; fPass++) { Int_t &constraint=fConstraint[fPass]; if (constraint<0) continue; for (fCurrentEsdTrack=0; fCurrentEsdTrackGetReconstructed()&&(t->GetNUsed()<1.5)) continue; //this track was already "succesfully" reconstructed Float_t dz[2]; t->GetDZ(GetX(),GetY(),GetZ(),dz); //I.B. if (fConstraint[fPass]) { if (TMath::Abs(dz[0])>AliITSReconstructor::GetRecoParam()->GetMaxDZToUseConstraint() || TMath::Abs(dz[1])>AliITSReconstructor::GetRecoParam()->GetMaxDZToUseConstraint()) continue; } Int_t tpcLabel=t->GetLabel(); //save the TPC track label fI = 6; ResetTrackToFollow(*t); ResetBestTrack(); FollowProlongationTree(t,fCurrentEsdTrack,fConstraint[fPass]); SortTrackHypothesys(fCurrentEsdTrack,20,0); //MI change // AliITStrackMI *besttrack = GetBestHypothesys(fCurrentEsdTrack,t,15); if (!besttrack) continue; besttrack->SetLabel(tpcLabel); // besttrack->CookdEdx(); CookdEdx(besttrack); besttrack->SetFakeRatio(1.); CookLabel(besttrack,0.); //For comparison only UpdateESDtrack(besttrack,AliESDtrack::kITSin); if (fConstraint[fPass]&&(!besttrack->IsGoldPrimary())) continue; //to be tracked also without vertex constrain t->SetReconstructed(kTRUE); ntrk++; } GetBestHypothesysMIP(itsTracks); } // end loop on the two tracking passes //GetBestHypothesysMIP(itsTracks); if(event->GetNumberOfV0s()>0) UpdateTPCV0(event); if(AliITSReconstructor::GetRecoParam()->GetFindV0s()) FindV02(event); fAfterV0 = kTRUE; //GetBestHypothesysMIP(itsTracks); // itsTracks.Delete(); // Int_t entries = fTrackHypothesys.GetEntriesFast(); for (Int_t ientry=0; ientryDelete(); delete fTrackHypothesys.RemoveAt(ientry); } fTrackHypothesys.Delete(); fBestHypothesys.Delete(); fOriginal.Clear(); delete [] fCoefficients; fCoefficients=0; DeleteTrksMaterialLUT(); Info("Clusters2Tracks","Number of prolonged tracks: %d\n",ntrk); fTrackingPhase="Default"; return 0; } //------------------------------------------------------------------------ Int_t AliITStrackerMI::PropagateBack(AliESDEvent *event) { //-------------------------------------------------------------------- // This functions propagates reconstructed ITS tracks back // The clusters must be loaded ! //-------------------------------------------------------------------- fTrackingPhase="PropagateBack"; Int_t nentr=event->GetNumberOfTracks(); Info("PropagateBack", "Number of ESD tracks: %d\n", nentr); Int_t ntrk=0; for (Int_t i=0; iGetTrack(i); if ((esd->GetStatus()&AliESDtrack::kITSin)==0) continue; if (esd->GetStatus()&AliESDtrack::kITSout) continue; AliITStrackMI *t=0; try { t=new AliITStrackMI(*esd); } catch (const Char_t *msg) { //Warning("PropagateBack",msg); delete t; continue; } t->SetExpQ(TMath::Max(0.8*t->GetESDtrack()->GetTPCsignal(),30.)); ResetTrackToFollow(*t); // propagate to vertex [SR, GSI 17.02.2003] // Start Time measurement [SR, GSI 17.02.2003], corrected by I.Belikov if (CorrectForPipeMaterial(&fTrackToFollow,"inward")) { if (fTrackToFollow.PropagateToVertex(event->GetVertex())) fTrackToFollow.StartTimeIntegral(); // from vertex to outside pipe CorrectForPipeMaterial(&fTrackToFollow,"outward"); } fTrackToFollow.ResetCovariance(10.); fTrackToFollow.ResetClusters(); if (RefitAt(AliITSRecoParam::GetrInsideITSscreen(),&fTrackToFollow,t)) { if (!CorrectForTPCtoITSDeadZoneMaterial(&fTrackToFollow)) { delete t; continue; } fTrackToFollow.SetLabel(t->GetLabel()); //fTrackToFollow.CookdEdx(); CookLabel(&fTrackToFollow,0.); //For comparison only fTrackToFollow.UpdateESDtrack(AliESDtrack::kITSout); //UseClusters(&fTrackToFollow); ntrk++; } delete t; } Info("PropagateBack","Number of back propagated ITS tracks: %d\n",ntrk); fTrackingPhase="Default"; return 0; } //------------------------------------------------------------------------ Int_t AliITStrackerMI::RefitInward(AliESDEvent *event) { //-------------------------------------------------------------------- // This functions refits ITS tracks using the // "inward propagated" TPC tracks // The clusters must be loaded ! //-------------------------------------------------------------------- fTrackingPhase="RefitInward"; if(AliITSReconstructor::GetRecoParam()->GetFindV0s()) RefitV02(event); Int_t nentr=event->GetNumberOfTracks(); Info("RefitInward", "Number of ESD tracks: %d\n", nentr); Int_t ntrk=0; for (Int_t i=0; iGetTrack(i); if ((esd->GetStatus()&AliESDtrack::kITSout) == 0) continue; if (esd->GetStatus()&AliESDtrack::kITSrefit) continue; if (esd->GetStatus()&AliESDtrack::kTPCout) if ((esd->GetStatus()&AliESDtrack::kTPCrefit)==0) continue; AliITStrackMI *t=0; try { t=new AliITStrackMI(*esd); } catch (const Char_t *msg) { //Warning("RefitInward",msg); delete t; continue; } t->SetExpQ(TMath::Max(0.8*t->GetESDtrack()->GetTPCsignal(),30.)); if (!CorrectForTPCtoITSDeadZoneMaterial(t)) { delete t; continue; } ResetTrackToFollow(*t); fTrackToFollow.ResetClusters(); if ((esd->GetStatus()&AliESDtrack::kTPCin)==0) fTrackToFollow.ResetCovariance(10.); //Refitting... Bool_t pe=AliITSReconstructor::GetRecoParam()->GetComputePlaneEff(); if (RefitAt(AliITSRecoParam::GetrInsideSPD1(),&fTrackToFollow,t,kTRUE,pe)) { fTrackToFollow.SetLabel(t->GetLabel()); // fTrackToFollow.CookdEdx(); CookdEdx(&fTrackToFollow); CookLabel(&fTrackToFollow,0.0); //For comparison only //The beam pipe if (CorrectForPipeMaterial(&fTrackToFollow,"inward")) { fTrackToFollow.UpdateESDtrack(AliESDtrack::kITSrefit); AliESDtrack *esdTrack =fTrackToFollow.GetESDtrack(); //printf(" %d\n",esdTrack->GetITSModuleIndex(0)); //esdTrack->UpdateTrackParams(&fTrackToFollow,AliESDtrack::kITSrefit); //original line Float_t r[3]={0.,0.,0.}; Double_t maxD=3.; esdTrack->RelateToVertex(event->GetVertex(),GetBz(r),maxD); ntrk++; } } delete t; } Info("RefitInward","Number of refitted tracks: %d\n",ntrk); fTrackingPhase="Default"; return 0; } //------------------------------------------------------------------------ AliCluster *AliITStrackerMI::GetCluster(Int_t index) const { //-------------------------------------------------------------------- // Return pointer to a given cluster //-------------------------------------------------------------------- Int_t l=(index & 0xf0000000) >> 28; Int_t c=(index & 0x0fffffff) >> 00; return fgLayers[l].GetCluster(c); } //------------------------------------------------------------------------ Bool_t AliITStrackerMI::GetTrackPoint(Int_t index, AliTrackPoint& p) const { //-------------------------------------------------------------------- // Get track space point with index i //-------------------------------------------------------------------- Int_t l=(index & 0xf0000000) >> 28; Int_t c=(index & 0x0fffffff) >> 00; AliITSRecPoint *cl = fgLayers[l].GetCluster(c); Int_t idet = cl->GetDetectorIndex(); Float_t xyz[3]; Float_t cov[6]; cl->GetGlobalXYZ(xyz); cl->GetGlobalCov(cov); p.SetXYZ(xyz, cov); AliGeomManager::ELayerID iLayer = AliGeomManager::kInvalidLayer; switch (l) { case 0: iLayer = AliGeomManager::kSPD1; break; case 1: iLayer = AliGeomManager::kSPD2; break; case 2: iLayer = AliGeomManager::kSDD1; break; case 3: iLayer = AliGeomManager::kSDD2; break; case 4: iLayer = AliGeomManager::kSSD1; break; case 5: iLayer = AliGeomManager::kSSD2; break; default: AliWarning(Form("Wrong layer index in ITS (%d) !",l)); break; }; UShort_t volid = AliGeomManager::LayerToVolUID(iLayer,idet); p.SetVolumeID((UShort_t)volid); return kTRUE; } //------------------------------------------------------------------------ Bool_t AliITStrackerMI::GetTrackPointTrackingError(Int_t index, AliTrackPoint& p, const AliESDtrack *t) { //-------------------------------------------------------------------- // Get track space point with index i // (assign error estimated during the tracking) //-------------------------------------------------------------------- Int_t l=(index & 0xf0000000) >> 28; Int_t c=(index & 0x0fffffff) >> 00; const AliITSRecPoint *cl = fgLayers[l].GetCluster(c); Int_t idet = cl->GetDetectorIndex(); const AliITSdetector &det=fgLayers[l].GetDetector(idet); // tgphi and tglambda of the track in tracking frame with alpha=det.GetPhi Float_t detxy[2]; detxy[0] = det.GetR()*TMath::Cos(det.GetPhi()); detxy[1] = det.GetR()*TMath::Sin(det.GetPhi()); Double_t alpha = t->GetAlpha(); Double_t xdetintrackframe = detxy[0]*TMath::Cos(alpha)+detxy[1]*TMath::Sin(alpha); Float_t phi = TMath::ASin(t->GetSnpAt(xdetintrackframe,AliTracker::GetBz())); phi += alpha-det.GetPhi(); Float_t tgphi = TMath::Tan(phi); Float_t tgl = t->GetTgl(); // tgl about const along track Float_t expQ = TMath::Max(0.8*t->GetTPCsignal(),30.); Float_t errlocalx,errlocalz; AliITSClusterParam::GetError(l,cl,tgl,tgphi,expQ,errlocalx,errlocalz); Float_t xyz[3]; Float_t cov[6]; cl->GetGlobalXYZ(xyz); // cl->GetGlobalCov(cov); Float_t pos[3] = {0.,0.,0.}; AliCluster tmpcl((UShort_t)cl->GetVolumeId(),pos[0],pos[1],pos[2],errlocalx*errlocalx,errlocalz*errlocalz,0); tmpcl.GetGlobalCov(cov); p.SetXYZ(xyz, cov); AliGeomManager::ELayerID iLayer = AliGeomManager::kInvalidLayer; switch (l) { case 0: iLayer = AliGeomManager::kSPD1; break; case 1: iLayer = AliGeomManager::kSPD2; break; case 2: iLayer = AliGeomManager::kSDD1; break; case 3: iLayer = AliGeomManager::kSDD2; break; case 4: iLayer = AliGeomManager::kSSD1; break; case 5: iLayer = AliGeomManager::kSSD2; break; default: AliWarning(Form("Wrong layer index in ITS (%d) !",l)); break; }; UShort_t volid = AliGeomManager::LayerToVolUID(iLayer,idet); p.SetVolumeID((UShort_t)volid); return kTRUE; } //------------------------------------------------------------------------ void AliITStrackerMI::FollowProlongationTree(AliITStrackMI * otrack, Int_t esdindex, Bool_t constrain) { //-------------------------------------------------------------------- // Follow prolongation tree //-------------------------------------------------------------------- // Double_t xyzVtx[]={GetX(),GetY(),GetZ()}; Double_t ersVtx[]={GetSigmaX(),GetSigmaY(),GetSigmaZ()}; AliESDtrack * esd = otrack->GetESDtrack(); if (esd->GetV0Index(0)>0) { // TEMPORARY SOLLUTION: map V0 indexes to point to proper track // mapping of ESD track is different as ITS track in Containers // Need something more stable // Indexes are set back again to the ESD track indexes in UpdateTPCV0 for (Int_t i=0;i<3;i++){ Int_t index = esd->GetV0Index(i); if (index==0) break; AliESDv0 * vertex = fEsd->GetV0(index); if (vertex->GetStatus()<0) continue; // rejected V0 // if (esd->GetSign()>0) { vertex->SetIndex(0,esdindex); } else { vertex->SetIndex(1,esdindex); } } } TObjArray *bestarray = (TObjArray*)fBestHypothesys.At(esdindex); if (!bestarray){ bestarray = new TObjArray(5); fBestHypothesys.AddAt(bestarray,esdindex); } // //setup tree of the prolongations // static AliITStrackMI tracks[7][100]; AliITStrackMI *currenttrack; static AliITStrackMI currenttrack1; static AliITStrackMI currenttrack2; static AliITStrackMI backuptrack; Int_t ntracks[7]; Int_t nindexes[7][100]; Float_t normalizedchi2[100]; for (Int_t ilayer=0;ilayer<6;ilayer++) ntracks[ilayer]=0; otrack->SetNSkipped(0); new (&(tracks[6][0])) AliITStrackMI(*otrack); ntracks[6]=1; for (Int_t i=0;i<7;i++) nindexes[i][0]=0; Int_t modstatus = 1; // found Float_t xloc,zloc; // // // follow prolongations for (Int_t ilayer=5; ilayer>=0; ilayer--) { fI = ilayer; // AliITSlayer &layer=fgLayers[ilayer]; Double_t r = layer.GetR(); ntracks[ilayer]=0; // // Int_t nskipped=0; Float_t nused =0; for (Int_t itrack =0; itrack=100) break; if (tracks[ilayer+1][nindexes[ilayer+1][itrack]].GetNSkipped()>0) nskipped++; if (tracks[ilayer+1][nindexes[ilayer+1][itrack]].GetNUsed()>2.) nused++; if (ntracks[ilayer]>15+ilayer){ if (itrack>1&&tracks[ilayer+1][nindexes[ilayer+1][itrack]].GetNSkipped()>0 && nskipped>4+ilayer) continue; if (itrack>1&&tracks[ilayer+1][nindexes[ilayer+1][itrack]].GetNUsed()>2. && nused>3) continue; } new(¤ttrack1) AliITStrackMI(tracks[ilayer+1][nindexes[ilayer+1][itrack]]); // material between SSD and SDD, SDD and SPD if (ilayer==3) if(!CorrectForShieldMaterial(¤ttrack1,"SDD","inward")) continue; if (ilayer==1) if(!CorrectForShieldMaterial(¤ttrack1,"SPD","inward")) continue; // detector number Double_t phi,z; if (!currenttrack1.GetPhiZat(r,phi,z)) continue; Int_t idet=layer.FindDetectorIndex(phi,z); Double_t trackGlobXYZ1[3]; currenttrack1.GetXYZ(trackGlobXYZ1); // Get the budget to the primary vertex for the current track being prolonged Double_t budgetToPrimVertex = GetEffectiveThickness(); // check if we allow a prolongation without point Int_t skip = CheckSkipLayer(¤ttrack1,ilayer,idet); if (skip) { AliITStrackMI* vtrack = new (&tracks[ilayer][ntracks[ilayer]]) AliITStrackMI(currenttrack1); // propagate to the layer radius Double_t xToGo; vtrack->GetLocalXat(r,xToGo); vtrack->AliExternalTrackParam::PropagateTo(xToGo,GetBz()); // apply correction for material of the current layer CorrectForLayerMaterial(vtrack,ilayer,trackGlobXYZ1,"inward"); vtrack->SetNDeadZone(vtrack->GetNDeadZone()+1); vtrack->SetClIndex(ilayer,0); modstatus = (skip==1 ? 3 : 4); // skipped : out in z LocalModuleCoord(ilayer,idet,vtrack,xloc,zloc); // local module coords vtrack->SetModuleIndexInfo(ilayer,idet,modstatus,xloc,zloc); if(constrain) vtrack->Improve(budgetToPrimVertex,xyzVtx,ersVtx); ntracks[ilayer]++; continue; } // track outside layer acceptance in z if (idet<0) continue; //propagate to the intersection with the detector plane const AliITSdetector &det=layer.GetDetector(idet); new(¤ttrack2) AliITStrackMI(currenttrack1); if (!currenttrack1.Propagate(det.GetPhi(),det.GetR())) continue; LocalModuleCoord(ilayer,idet,¤ttrack1,xloc,zloc); // local module coords currenttrack2.Propagate(det.GetPhi(),det.GetR()); currenttrack1.SetDetectorIndex(idet); currenttrack2.SetDetectorIndex(idet); //*************** // DEFINITION OF SEARCH ROAD FOR CLUSTERS SELECTION // Double_t dz=AliITSReconstructor::GetRecoParam()->GetNSigmaRoadZ()* TMath::Sqrt(currenttrack1.GetSigmaZ2() + AliITSReconstructor::GetRecoParam()->GetNSigmaZLayerForRoadZ()* AliITSReconstructor::GetRecoParam()->GetNSigmaZLayerForRoadZ()* AliITSReconstructor::GetRecoParam()->GetSigmaZ2(ilayer)); Double_t dy=AliITSReconstructor::GetRecoParam()->GetNSigmaRoadY()* TMath::Sqrt(currenttrack1.GetSigmaY2() + AliITSReconstructor::GetRecoParam()->GetNSigmaYLayerForRoadY()* AliITSReconstructor::GetRecoParam()->GetNSigmaYLayerForRoadY()* AliITSReconstructor::GetRecoParam()->GetSigmaY2(ilayer)); // track at boundary between detectors, enlarge road Double_t boundaryWidth=AliITSRecoParam::GetBoundaryWidth(); if ( (currenttrack1.GetY()-dy < det.GetYmin()+boundaryWidth) || (currenttrack1.GetY()+dy > det.GetYmax()-boundaryWidth) || (currenttrack1.GetZ()-dz < det.GetZmin()+boundaryWidth) || (currenttrack1.GetZ()+dz > det.GetZmax()-boundaryWidth) ) { Float_t tgl = TMath::Abs(currenttrack1.GetTgl()); if (tgl > 1.) tgl=1.; Double_t deltaXNeighbDets=AliITSRecoParam::GetDeltaXNeighbDets(); dz = TMath::Sqrt(dz*dz+deltaXNeighbDets*deltaXNeighbDets*tgl*tgl); Float_t snp = TMath::Abs(currenttrack1.GetSnp()); if (snp > AliITSReconstructor::GetRecoParam()->GetMaxSnp()) continue; dy = TMath::Sqrt(dy*dy+deltaXNeighbDets*deltaXNeighbDets*snp*snp); } // boundary // road in global (rphi,z) [i.e. in tracking ref. system] Double_t zmin = currenttrack1.GetZ() - dz; Double_t zmax = currenttrack1.GetZ() + dz; Double_t ymin = currenttrack1.GetY() + r*det.GetPhi() - dy; Double_t ymax = currenttrack1.GetY() + r*det.GetPhi() + dy; // select clusters in road layer.SelectClusters(zmin,zmax,ymin,ymax); //******************** // Define criteria for track-cluster association Double_t msz = currenttrack1.GetSigmaZ2() + AliITSReconstructor::GetRecoParam()->GetNSigmaZLayerForRoadZ()* AliITSReconstructor::GetRecoParam()->GetNSigmaZLayerForRoadZ()* AliITSReconstructor::GetRecoParam()->GetSigmaZ2(ilayer); Double_t msy = currenttrack1.GetSigmaY2() + AliITSReconstructor::GetRecoParam()->GetNSigmaYLayerForRoadY()* AliITSReconstructor::GetRecoParam()->GetNSigmaYLayerForRoadY()* AliITSReconstructor::GetRecoParam()->GetSigmaY2(ilayer); if (constrain) { msz *= AliITSReconstructor::GetRecoParam()->GetNSigma2RoadZC(); msy *= AliITSReconstructor::GetRecoParam()->GetNSigma2RoadYC(); } else { msz *= AliITSReconstructor::GetRecoParam()->GetNSigma2RoadZNonC(); msy *= AliITSReconstructor::GetRecoParam()->GetNSigma2RoadYNonC(); } msz = 1./msz; // 1/RoadZ^2 msy = 1./msy; // 1/RoadY^2 // // // LOOP OVER ALL POSSIBLE TRACK PROLONGATIONS ON THIS LAYER // const AliITSRecPoint *cl=0; Int_t clidx=-1; Double_t chi2trkcl=AliITSReconstructor::GetRecoParam()->GetMaxChi2(); // init with big value Bool_t deadzoneSPD=kFALSE; currenttrack = ¤ttrack1; // check if the road contains a dead zone Int_t dead = CheckDeadZone(ilayer,idet,zmin,zmax); // create a prolongation without clusters (check also if there are no clusters in the road) if (dead || ((layer.GetNextCluster(clidx,kTRUE))==0 && AliITSReconstructor::GetRecoParam()->GetAllowProlongationWithEmptyRoad())) { AliITStrackMI * updatetrack = new (&tracks[ilayer][ntracks[ilayer]]) AliITStrackMI(*currenttrack); updatetrack->SetClIndex(ilayer,0); if (dead==0) { modstatus = 5; // no cls in road } else if (dead==1) { modstatus = 7; // holes in z in SPD } else if (dead==2) { modstatus = 2; // dead from OCDB } updatetrack->SetModuleIndexInfo(ilayer,idet,modstatus,xloc,zloc); // apply correction for material of the current layer CorrectForLayerMaterial(updatetrack,ilayer,trackGlobXYZ1,"inward"); if (constrain) { // apply vertex constrain updatetrack->SetConstrain(constrain); Bool_t isPrim = kTRUE; if (ilayer<4) { // check that it's close to the vertex updatetrack->GetDZ(GetX(),GetY(),GetZ(),updatetrack->GetDP()); //I.B. if (TMath::Abs(updatetrack->GetD(0)/(1.+ilayer)) > // y AliITSReconstructor::GetRecoParam()->GetMaxDZforPrimTrk() || TMath::Abs(updatetrack->GetD(1)/(1.+ilayer)) > // z AliITSReconstructor::GetRecoParam()->GetMaxDZforPrimTrk()) isPrim=kFALSE; } if (isPrim) updatetrack->Improve(budgetToPrimVertex,xyzVtx,ersVtx); } if (dead) { updatetrack->SetNDeadZone(updatetrack->GetNDeadZone()+1); if (dead==1) { // dead zone at z=0,+-7cm in SPD updatetrack->SetDeadZoneProbability(GetSPDDeadZoneProbability(updatetrack->GetZ(),TMath::Sqrt(updatetrack->GetSigmaZ2()))); deadzoneSPD=kTRUE; } } ntracks[ilayer]++; } clidx=-1; // loop over clusters in the road while ((cl=layer.GetNextCluster(clidx))!=0) { if (ntracks[ilayer]>95) break; //space for skipped clusters Bool_t changedet =kFALSE; if (cl->GetQ()==0 && deadzoneSPD==kTRUE) continue; Int_t idet=cl->GetDetectorIndex(); if (currenttrack->GetDetectorIndex()==idet) { // track already on the cluster's detector // a first cut on track-cluster distance if ( (currenttrack->GetZ()-cl->GetZ())*(currenttrack->GetZ()-cl->GetZ())*msz + (currenttrack->GetY()-cl->GetY())*(currenttrack->GetY()-cl->GetY())*msy > 1. ) continue; // cluster not associated to track } else { // have to move track to cluster's detector const AliITSdetector &det=layer.GetDetector(idet); // a first cut on track-cluster distance Double_t y,z; if (!currenttrack2.GetProlongationFast(det.GetPhi(),det.GetR(),y,z)) continue; if ( (z-cl->GetZ())*(z-cl->GetZ())*msz + (y-cl->GetY())*(y-cl->GetY())*msy > 1. ) continue; // cluster not associated to track // new (&backuptrack) AliITStrackMI(currenttrack2); changedet = kTRUE; currenttrack =¤ttrack2; if (!currenttrack->Propagate(det.GetPhi(),det.GetR())) { new (currenttrack) AliITStrackMI(backuptrack); changedet = kFALSE; continue; } currenttrack->SetDetectorIndex(idet); // Get again the budget to the primary vertex // for the current track being prolonged, if had to change detector //budgetToPrimVertex = GetEffectiveThickness();// not needed at the moment because anyway we take a mean material for this correction } // calculate track-clusters chi2 chi2trkcl = GetPredictedChi2MI(currenttrack,cl,ilayer); // chi2 cut if (chi2trkcl < AliITSReconstructor::GetRecoParam()->GetMaxChi2s(ilayer)) { if (cl->GetQ()==0) deadzoneSPD=kTRUE; // only 1 prolongation with virtual cluster if (ntracks[ilayer]>=100) continue; AliITStrackMI * updatetrack = new (&tracks[ilayer][ntracks[ilayer]]) AliITStrackMI(*currenttrack); updatetrack->SetClIndex(ilayer,0); if (changedet) new (¤ttrack2) AliITStrackMI(backuptrack); if (cl->GetQ()!=0) { // real cluster if (!UpdateMI(updatetrack,cl,chi2trkcl,(ilayer<<28)+clidx)) continue; updatetrack->SetSampledEdx(cl->GetQ(),updatetrack->GetNumberOfClusters()-1); //b.b. modstatus = 1; // found } else { // virtual cluster in dead zone updatetrack->SetNDeadZone(updatetrack->GetNDeadZone()+1); updatetrack->SetDeadZoneProbability(GetSPDDeadZoneProbability(updatetrack->GetZ(),TMath::Sqrt(updatetrack->GetSigmaZ2()))); modstatus = 7; // holes in z in SPD } if (changedet) { Float_t xlocnewdet,zlocnewdet; LocalModuleCoord(ilayer,idet,updatetrack,xlocnewdet,zlocnewdet); // local module coords updatetrack->SetModuleIndexInfo(ilayer,idet,modstatus,xlocnewdet,zlocnewdet); } else { updatetrack->SetModuleIndexInfo(ilayer,idet,modstatus,xloc,zloc); } if (cl->IsUsed()) updatetrack->IncrementNUsed(); // apply correction for material of the current layer CorrectForLayerMaterial(updatetrack,ilayer,trackGlobXYZ1,"inward"); if (constrain) { // apply vertex constrain updatetrack->SetConstrain(constrain); Bool_t isPrim = kTRUE; if (ilayer<4) { // check that it's close to the vertex updatetrack->GetDZ(GetX(),GetY(),GetZ(),updatetrack->GetDP()); //I.B. if (TMath::Abs(updatetrack->GetD(0)/(1.+ilayer)) > // y AliITSReconstructor::GetRecoParam()->GetMaxDZforPrimTrk() || TMath::Abs(updatetrack->GetD(1)/(1.+ilayer)) > // z AliITSReconstructor::GetRecoParam()->GetMaxDZforPrimTrk()) isPrim=kFALSE; } if (isPrim) updatetrack->Improve(budgetToPrimVertex,xyzVtx,ersVtx); } //apply vertex constrain ntracks[ilayer]++; } // create new hypothesis } // loop over possible prolongations // allow one prolongation without clusters if (constrain && itrack<=1 && currenttrack1.GetNSkipped()==0 && deadzoneSPD==kFALSE && ntracks[ilayer]<100) { AliITStrackMI* vtrack = new (&tracks[ilayer][ntracks[ilayer]]) AliITStrackMI(currenttrack1); // apply correction for material of the current layer CorrectForLayerMaterial(vtrack,ilayer,trackGlobXYZ1,"inward"); vtrack->SetClIndex(ilayer,0); modstatus = 3; // skipped vtrack->SetModuleIndexInfo(ilayer,idet,modstatus,xloc,zloc); vtrack->Improve(budgetToPrimVertex,xyzVtx,ersVtx); vtrack->IncrementNSkipped(); ntracks[ilayer]++; } // allow one prolongation without clusters for tracks with |tgl|>1.1 if (constrain && itrack==0 && TMath::Abs(currenttrack1.GetTgl())>1.1) { //big theta - for low flux AliITStrackMI* vtrack = new (&tracks[ilayer][ntracks[ilayer]]) AliITStrackMI(currenttrack1); // apply correction for material of the current layer CorrectForLayerMaterial(vtrack,ilayer,trackGlobXYZ1,"inward"); vtrack->SetClIndex(ilayer,0); modstatus = 3; // skipped vtrack->SetModuleIndexInfo(ilayer,idet,modstatus,xloc,zloc); vtrack->Improve(budgetToPrimVertex,xyzVtx,ersVtx); vtrack->SetNDeadZone(vtrack->GetNDeadZone()+1); ntracks[ilayer]++; } } // loop over tracks in layer ilayer+1 //loop over track candidates for the current layer // // Int_t accepted=0; Int_t golden=0; for (Int_t itrack=0;itrackGetMaxNormChi2ForGolden(ilayer)) golden++; if (ilayer>4) { accepted++; } else { if (constrain) { // constrain if (normalizedchi2[itrack]GetMaxNormChi2C(ilayer)+1) accepted++; } else { // !constrain if (normalizedchi2[itrack]GetMaxNormChi2NonC(ilayer)+1) accepted++; } } } // sort tracks by increasing normalized chi2 TMath::Sort(ntracks[ilayer],normalizedchi2,nindexes[ilayer],kFALSE); ntracks[ilayer] = TMath::Min(accepted,7+2*ilayer); if (ntracks[ilayer]90) ntracks[ilayer]=90; } // end loop over layers // // Now select tracks to be kept // Int_t max = constrain ? 20 : 5; // tracks that reach layer 0 (SPD inner) for (Int_t i=0; i AliITSReconstructor::GetRecoParam()->GetMaxNormChi2NonCForHypothesis()) { continue; } AddTrackHypothesys(new AliITStrackMI(track), esdindex); } // tracks that reach layer 1 (SPD outer) for (Int_t i=0;i AliITSReconstructor::GetRecoParam()->GetMaxNormChi2NonCForHypothesis()) continue; if (constrain) track.IncrementNSkipped(); if (!constrain) { track.SetD(0,track.GetD(GetX(),GetY())); track.SetNSkipped(track.GetNSkipped()+4./(4.+8.*TMath::Abs(track.GetD(0)))); if (track.GetNumberOfClusters()+track.GetNDeadZone()+track.GetNSkipped()>6) { track.SetNSkipped(6-track.GetNumberOfClusters()+track.GetNDeadZone()); } } AddTrackHypothesys(new AliITStrackMI(track), esdindex); } // tracks that reach layer 2 (SDD inner), only during non-constrained pass if (!constrain){ for (Int_t i=0;i AliITSReconstructor::GetRecoParam()->GetMaxNormChi2NonCForHypothesis()) continue; if (constrain) track.SetNSkipped(track.GetNSkipped()+2); if (!constrain){ track.SetD(0,track.GetD(GetX(),GetY())); track.SetNSkipped(track.GetNSkipped()+7./(7.+8.*TMath::Abs(track.GetD(0)))); if (track.GetNumberOfClusters()+track.GetNDeadZone()+track.GetNSkipped()>6) { track.SetNSkipped(6-track.GetNumberOfClusters()+track.GetNDeadZone()); } } AddTrackHypothesys(new AliITStrackMI(track), esdindex); } } if (!constrain) { // // register best track of each layer - important for V0 finder // for (Int_t ilayer=0;ilayer<5;ilayer++){ if (ntracks[ilayer]==0) continue; AliITStrackMI & track= tracks[ilayer][nindexes[ilayer][0]]; if (track.GetNumberOfClusters()<1) continue; CookLabel(&track,0); bestarray->AddAt(new AliITStrackMI(track),ilayer); } } // // update TPC V0 information // if (otrack->GetESDtrack()->GetV0Index(0)>0){ Float_t fprimvertex[3]={GetX(),GetY(),GetZ()}; for (Int_t i=0;i<3;i++){ Int_t index = otrack->GetESDtrack()->GetV0Index(i); if (index==0) break; AliV0 *vertex = (AliV0*)fEsd->GetV0(index); if (vertex->GetStatus()<0) continue; // rejected V0 // if (otrack->GetSign()>0) { vertex->SetIndex(0,esdindex); } else{ vertex->SetIndex(1,esdindex); } //find nearest layer with track info Double_t xrp[3]; vertex->GetXYZ(xrp[0],xrp[1],xrp[2]); //I.B. Int_t nearestold = GetNearestLayer(xrp); //I.B. Int_t nearest = nearestold; for (Int_t ilayer =nearest;ilayer<8;ilayer++){ if (ntracks[nearest]==0){ nearest = ilayer; } } // AliITStrackMI & track= tracks[nearest][nindexes[nearest][0]]; if (nearestold<5&&nearest<5){ Bool_t accept = track.GetNormChi2(nearest)<10; if (accept){ if (track.GetSign()>0) { vertex->SetParamP(track); vertex->Update(fprimvertex); //vertex->SetIndex(0,track.fESDtrack->GetID()); if (track.GetNumberOfClusters()>2) AddTrackHypothesys(new AliITStrackMI(track), esdindex); }else{ vertex->SetParamN(track); vertex->Update(fprimvertex); //vertex->SetIndex(1,track.fESDtrack->GetID()); if (track.GetNumberOfClusters()>2) AddTrackHypothesys(new AliITStrackMI(track), esdindex); } vertex->SetStatus(vertex->GetStatus()+1); }else{ //vertex->SetStatus(-2); // reject V0 - not enough clusters } } } } } //------------------------------------------------------------------------ AliITStrackerMI::AliITSlayer & AliITStrackerMI::GetLayer(Int_t layer) const { //-------------------------------------------------------------------- // // return fgLayers[layer]; } //------------------------------------------------------------------------ AliITStrackerMI::AliITSlayer::AliITSlayer(): fR(0), fPhiOffset(0), fNladders(0), fZOffset(0), fNdetectors(0), fDetectors(0), fN(0), fDy5(0), fDy10(0), fDy20(0), fClustersCs(0), fClusterIndexCs(0), fYcs(0), fZcs(0), fNcs(0), fCurrentSlice(-1), fZmax(0), fYmin(0), fYmax(0), fI(0), fImax(0), fSkip(0), fAccepted(0), fRoad(0){ //-------------------------------------------------------------------- //default AliITSlayer constructor //-------------------------------------------------------------------- for (Int_t i=0; iIsUsed()) cl->Use(); } } //------------------------------------------------------------------------ void AliITStrackerMI::AliITSlayer::ResetRoad() { //-------------------------------------------------------------------- // This function calculates the road defined by the cluster density //-------------------------------------------------------------------- Int_t n=0; for (Int_t i=0; iGetZ())1) fRoad=2*fR*TMath::Sqrt(TMath::Pi()/n); } //------------------------------------------------------------------------ Int_t AliITStrackerMI::AliITSlayer::InsertCluster(AliITSRecPoint *cl) { //-------------------------------------------------------------------- //This function adds a cluster to this layer //-------------------------------------------------------------------- if (fN==AliITSRecoParam::GetMaxClusterPerLayer()) { ::Error("InsertCluster","Too many clusters !\n"); return 1; } fCurrentSlice=-1; fClusters[fN]=cl; fN++; AliITSdetector &det=GetDetector(cl->GetDetectorIndex()); if (cl->GetY()GetY()); if (cl->GetY()>det.GetYmax()) det.SetYmax(cl->GetY()); if (cl->GetZ()GetZ()); if (cl->GetZ()>det.GetZmax()) det.SetZmax(cl->GetZ()); return 0; } //------------------------------------------------------------------------ void AliITStrackerMI::AliITSlayer::SortClusters() { // //sort clusters // AliITSRecPoint **clusters = new AliITSRecPoint*[fN]; Float_t *z = new Float_t[fN]; Int_t * index = new Int_t[fN]; // for (Int_t i=0;iGetZ(); } TMath::Sort(fN,z,index,kFALSE); for (Int_t i=0;iGetZ(); AliITSdetector &det=GetDetector(fClusters[i]->GetDetectorIndex()); Double_t y=fR*det.GetPhi() + fClusters[i]->GetY(); if (y>2.*fR*TMath::Pi()) y -= 2.*fR*TMath::Pi(); fY[i] = y; } delete[] index; delete[] z; delete[] clusters; // fYB[0]=10000000; fYB[1]=-10000000; for (Int_t i=0;ifYB[1]) fYB[1]=fY[i]; fClusterIndex[i] = i; } // // fill slices fDy5 = (fYB[1]-fYB[0])/5.; fDy10 = (fYB[1]-fYB[0])/10.; fDy20 = (fYB[1]-fYB[0])/20.; for (Int_t i=0;i<6;i++) fN5[i] =0; for (Int_t i=0;i<11;i++) fN10[i]=0; for (Int_t i=0;i<21;i++) fN20[i]=0; // for (Int_t i=0;i<6;i++) {fBy5[i][0] = fYB[0]+(i-0.75)*fDy5; fBy5[i][1] = fYB[0]+(i+0.75)*fDy5;} for (Int_t i=0;i<11;i++) {fBy10[i][0] = fYB[0]+(i-0.75)*fDy10; fBy10[i][1] = fYB[0]+(i+0.75)*fDy10;} for (Int_t i=0;i<21;i++) {fBy20[i][0] = fYB[0]+(i-0.75)*fDy20; fBy20[i][1] = fYB[0]+(i+0.75)*fDy20;} // // for (Int_t i=0;ifZ[i+1]){ printf("Bug\n"); } } // for (Int_t slice=0;slice<21;slice++) for (Int_t i=0;ifZ20[slice][i+1]){ printf("Bug\n"); } } } //------------------------------------------------------------------------ Int_t AliITStrackerMI::AliITSlayer::FindClusterIndex(Float_t z) const { //-------------------------------------------------------------------- // This function returns the index of the nearest cluster //-------------------------------------------------------------------- Int_t ncl=0; const Float_t *zcl; if (fCurrentSlice<0) { ncl = fN; zcl = fZ; } else{ ncl = fNcs; zcl = fZcs;; } if (ncl==0) return 0; Int_t b=0, e=ncl-1, m=(b+e)/2; for (; b fClusters[m]->GetZ()) b=m+1; if (z > zcl[m]) b=m+1; else e=m; } return m; } //------------------------------------------------------------------------ void AliITStrackerMI::AliITSlayer:: SelectClusters(Double_t zmin,Double_t zmax,Double_t ymin, Double_t ymax) { //-------------------------------------------------------------------- // This function sets the "window" //-------------------------------------------------------------------- Double_t circle=2*TMath::Pi()*fR; fYmin = ymin; fYmax =ymax; Float_t ymiddle = (fYmin+fYmax)*0.5; if (ymiddlefYB[1]) { fYmin-=circle; fYmax-=circle; ymiddle-=circle; } // fCurrentSlice =-1; // defualt take all fClustersCs = fClusters; fClusterIndexCs = fClusterIndex; fYcs = fY; fZcs = fZ; fNcs = fN; // //is in 20 slice? if (fCurrentSlice<0&&TMath::Abs(fYmax-fYmin)<1.49*fDy20){ Int_t slice = int(0.5+(ymiddle-fYB[0])/fDy20); if (slice<0) slice=0; if (slice>20) slice=20; Bool_t isOK = (fYmin>fBy20[slice][0]&&fYmax10) slice=10; Bool_t isOK = (fYmin>fBy10[slice][0]&&fYmax5) slice=5; Bool_t isOK = (fYmin>fBy5[slice][0]&&fYmax= 2*TMath::Pi()) dphi -= 2*TMath::Pi(); Int_t np=Int_t(dphi*fNladders*0.5/TMath::Pi()+0.5); if (np>=fNladders) np-=fNladders; if (np<0) np+=fNladders; Double_t dz=fZOffset-z; Double_t nnz = dz*(fNdetectors-1)*0.5/fZOffset+0.5; Int_t nz = (nnz<0 ? -1 : (Int_t)nnz); if (nz>=fNdetectors) return -1; if (nz<0) return -1; return np*fNdetectors + nz; } //------------------------------------------------------------------------ const AliITSRecPoint *AliITStrackerMI::AliITSlayer::GetNextCluster(Int_t &ci,Bool_t test) { //-------------------------------------------------------------------- // This function returns clusters within the "window" //-------------------------------------------------------------------- if (fCurrentSlice<0) { Double_t rpi2 = 2.*fR*TMath::Pi(); for (Int_t i=fI; iy) y += rpi2; if (yfYmax) continue; if (fClusters[i]->GetQ()==0&&fSkip==2) continue; ci=i; if (!test) fI=i+1; return fClusters[i]; } } else { for (Int_t i=fI; ifYmax) continue; if (fClustersCs[i]->GetQ()==0&&fSkip==2) continue; ci=fClusterIndexCs[i]; if (!test) fI=i+1; return fClustersCs[i]; } } return 0; } //------------------------------------------------------------------------ Double_t AliITStrackerMI::AliITSlayer::GetThickness(Double_t y,Double_t z,Double_t &x0) const { //-------------------------------------------------------------------- // This function returns the layer thickness at this point (units X0) //-------------------------------------------------------------------- Double_t d=0.0085; x0=AliITSRecoParam::GetX0Air(); if (433.40) d+=dd; if (TMath::Abs(y-1.90)<0.45) {d+=(0.013-0.0034);} if (TMath::Abs(y+1.90)<0.45) {d+=(0.013-0.0034);} for (Int_t i=0; i<12; i++) { if (TMath::Abs(z-3.9*(i+0.5))<0.15) { if (TMath::Abs(y-0.00)>3.40) d+=dd; d+=0.0034; break; } if (TMath::Abs(z+3.9*(i+0.5))<0.15) { if (TMath::Abs(y-0.00)>3.40) d+=dd; d+=0.0034; break; } if (TMath::Abs(z-3.4-3.9*i)<0.50) {d+=(0.016-0.0034); break;} if (TMath::Abs(z+0.5+3.9*i)<0.50) {d+=(0.016-0.0034); break;} } } else if (373.40) d+=dd; if (TMath::Abs(y-1.90)<0.45) {d+=(0.013-0.0034);} if (TMath::Abs(y+1.90)<0.45) {d+=(0.013-0.0034);} for (Int_t i=0; i<11; i++) { if (TMath::Abs(z-3.9*i)<0.15) { if (TMath::Abs(y-0.00)>3.40) d+=dd; d+=dd; break; } if (TMath::Abs(z+3.9*i)<0.15) { if (TMath::Abs(y-0.00)>3.40) d+=dd; d+=dd; break; } if (TMath::Abs(z-1.85-3.9*i)<0.50) {d+=(0.016-0.0034); break;} if (TMath::Abs(z+2.05+3.9*i)<0.50) {d+=(0.016-0.0034); break;} } } else if (133.30) d+=dd; if (TMath::Abs(y-1.80)<0.55) { d+=0.016; for (Int_t j=0; j<20; j++) { if (TMath::Abs(z+0.7+1.47*j)<0.12) {d+=0.08; x0=9.; break;} if (TMath::Abs(z-0.7-1.47*j)<0.12) {d+=0.08; x0=9.; break;} } } if (TMath::Abs(y+1.80)<0.55) { d+=0.016; for (Int_t j=0; j<20; j++) { if (TMath::Abs(z-0.7-1.47*j)<0.12) {d+=0.08; x0=9.; break;} if (TMath::Abs(z+0.7+1.47*j)<0.12) {d+=0.08; x0=9.; break;} } } for (Int_t i=0; i<4; i++) { if (TMath::Abs(z-7.3*i)<0.60) { d+=dd; if (TMath::Abs(y-0.00)>3.30) d+=dd; break; } if (TMath::Abs(z+7.3*i)<0.60) { d+=dd; if (TMath::Abs(y-0.00)>3.30) d+=dd; break; } } } else if (60.5) d+=dd; if (TMath::Abs(y-3.03)<0.10) d+=0.014; } else if (30.6) d+=dd; if (TMath::Abs(y+0.10)<0.10) d+=0.014; } return d; } //------------------------------------------------------------------------ Double_t AliITStrackerMI::GetEffectiveThickness() { //-------------------------------------------------------------------- // Returns the thickness between the current layer and the vertex (units X0) //-------------------------------------------------------------------- if(fUseTGeo!=0) { if(fxOverX0Layer[0]<0) BuildMaterialLUT("Layers"); if(fxOverX0Shield[0]<0) BuildMaterialLUT("Shields"); if(fxOverX0Pipe<0) BuildMaterialLUT("Pipe"); } // beam pipe Double_t dPipe = (fUseTGeo==0 ? AliITSRecoParam::GetdPipe() : fxOverX0Pipe); Double_t d=dPipe*AliITSRecoParam::GetrPipe()*AliITSRecoParam::GetrPipe(); // layers Double_t x0=0; Double_t xn=fgLayers[fI].GetR(); for (Int_t i=0; i1) { Double_t dshieldSPD = (fUseTGeo==0 ? AliITSRecoParam::Getdshield(0) : fxOverX0Shield[0]); d+=dshieldSPD*AliITSRecoParam::GetrInsideShield(0)*AliITSRecoParam::GetrInsideShield(0); } if (fI>3) { Double_t dshieldSDD = (fUseTGeo==0 ? AliITSRecoParam::Getdshield(1) : fxOverX0Shield[1]); d+=dshieldSDD*AliITSRecoParam::GetrInsideShield(1)*AliITSRecoParam::GetrInsideShield(1); } return d/(xn*xn); } //------------------------------------------------------------------------ Int_t AliITStrackerMI::AliITSlayer::InRoad() const { //------------------------------------------------------------------- // This function returns number of clusters within the "window" //-------------------------------------------------------------------- Int_t ncl=0; for (Int_t i=fI; iGetZ() > fZmax) break; if (c->IsUsed()) continue; const AliITSdetector &det=GetDetector(c->GetDetectorIndex()); Double_t y=fR*det.GetPhi() + c->GetY(); if (y>2.*fR*TMath::Pi()) y -= 2*fR*TMath::Pi(); if (y>1.*fR*TMath::Pi() && fYmaxfYmax) continue; ncl++; } return ncl; } //------------------------------------------------------------------------ Bool_t AliITStrackerMI::RefitAt(Double_t xx,AliITStrackMI *track, const AliITStrackMI *clusters,Bool_t extra, Bool_t planeeff) { //-------------------------------------------------------------------- // This function refits the track "track" at the position "x" using // the clusters from "clusters" // If "extra"==kTRUE, // the clusters from overlapped modules get attached to "track" // If "planeff"==kTRUE, // special approach for plane efficiency evaluation is applyed //-------------------------------------------------------------------- Int_t index[AliITSgeomTGeo::kNLayers]; Int_t k; for (k=0; kGetNumberOfClusters(); for (k=0; kGetClusterIndex(k); Int_t ilayer=(idx&0xf0000000)>>28; index[ilayer]=idx; } return RefitAt(xx,track,index,extra,planeeff); // call the method below } //------------------------------------------------------------------------ Bool_t AliITStrackerMI::RefitAt(Double_t xx,AliITStrackMI *track, const Int_t *clusters,Bool_t extra, Bool_t planeeff) { //-------------------------------------------------------------------- // This function refits the track "track" at the position "x" using // the clusters from array // If "extra"==kTRUE, // the clusters from overlapped modules get attached to "track" // If "planeff"==kTRUE, // special approach for plane efficiency evaluation is applyed //-------------------------------------------------------------------- Int_t index[AliITSgeomTGeo::kNLayers]; Int_t k; for (k=0; kGetD(0.,0.)); for(innermostlayer=0; innermostlayer track->GetX()) { from=innermostlayer; to=AliITSgeomTGeo::GetNLayers(); step=+1; } else { from=AliITSgeomTGeo::GetNLayers()-1; to=innermostlayer-1; step=-1; } TString dir = (step>0 ? "outward" : "inward"); for (Int_t ilayer = from; ilayer != to; ilayer += step) { AliITSlayer &layer=fgLayers[ilayer]; Double_t r=layer.GetR(); if (step<0 && xx>r) break; // material between SSD and SDD, SDD and SPD Double_t hI=ilayer-0.5*step; if (TMath::Abs(hI-3.5)<0.01) // SDDouter if(!CorrectForShieldMaterial(track,"SDD",dir)) return kFALSE; if (TMath::Abs(hI-1.5)<0.01) // SPDouter if(!CorrectForShieldMaterial(track,"SPD",dir)) return kFALSE; // remember old position [SR, GSI 18.02.2003] Double_t oldX=0., oldY=0., oldZ=0.; if (track->IsStartedTimeIntegral() && step==1) { track->GetGlobalXYZat(track->GetX(),oldX,oldY,oldZ); } // Double_t oldGlobXYZ[3]; track->GetXYZ(oldGlobXYZ); Double_t phi,z; if (!track->GetPhiZat(r,phi,z)) return kFALSE; Int_t idet=layer.FindDetectorIndex(phi,z); // check if we allow a prolongation without point for large-eta tracks Int_t skip = CheckSkipLayer(track,ilayer,idet); if (skip==2) { // propagate to the layer radius Double_t xToGo; track->GetLocalXat(r,xToGo); track->AliExternalTrackParam::PropagateTo(xToGo,GetBz()); // apply correction for material of the current layer CorrectForLayerMaterial(track,ilayer,oldGlobXYZ,dir); modstatus = 4; // out in z LocalModuleCoord(ilayer,idet,track,xloc,zloc); // local module coords track->SetModuleIndexInfo(ilayer,idet,modstatus,xloc,zloc); // track time update [SR, GSI 17.02.2003] if (track->IsStartedTimeIntegral() && step==1) { Double_t newX, newY, newZ; track->GetGlobalXYZat(track->GetX(),newX,newY,newZ); Double_t dL2 = (oldX-newX)*(oldX-newX) + (oldY-newY)*(oldY-newY) + (oldZ-newZ)*(oldZ-newZ); track->AddTimeStep(TMath::Sqrt(dL2)); } continue; } if (idet<0) return kFALSE; const AliITSdetector &det=layer.GetDetector(idet); phi=det.GetPhi(); if (!track->Propagate(phi,det.GetR())) return kFALSE; track->SetDetectorIndex(idet); LocalModuleCoord(ilayer,idet,track,xloc,zloc); // local module coords Double_t dz,zmin,zmax; const AliITSRecPoint *clAcc=0; Double_t maxchi2=1000.*AliITSReconstructor::GetRecoParam()->GetMaxChi2(); Int_t idx=index[ilayer]; if (idx>=0) { // cluster in this layer modstatus = 6; // no refit const AliITSRecPoint *cl=(AliITSRecPoint *)GetCluster(idx); if (cl) { if (idet != cl->GetDetectorIndex()) { idet=cl->GetDetectorIndex(); const AliITSdetector &det=layer.GetDetector(idet); if (!track->Propagate(det.GetPhi(),det.GetR())) return kFALSE; track->SetDetectorIndex(idet); LocalModuleCoord(ilayer,idet,track,xloc,zloc); // local module coords } //Double_t chi2=track->GetPredictedChi2(cl); Int_t cllayer = (idx & 0xf0000000) >> 28;; Double_t chi2=GetPredictedChi2MI(track,cl,cllayer); if (chi2GetLayersToSkip(ilayer)) { if (IsOKForPlaneEff(track,ilayer)) // only adequate track for plane eff. evaluation UseTrackForPlaneEff(track,ilayer); } } else { modstatus = 5; // no cls in road // check dead dz=AliITSReconstructor::GetRecoParam()->GetNSigmaRoadZ()* TMath::Sqrt(track->GetSigmaZ2() + AliITSReconstructor::GetRecoParam()->GetNSigmaZLayerForRoadZ()* AliITSReconstructor::GetRecoParam()->GetNSigmaZLayerForRoadZ()* AliITSReconstructor::GetRecoParam()->GetSigmaZ2(ilayer)); zmin=track->GetZ() - dz; zmax=track->GetZ() + dz; Int_t dead = CheckDeadZone(ilayer,idet,zmin,zmax); if (dead==1) modstatus = 7; // holes in z in SPD if (dead==2) modstatus = 2; // dead from OCDB } } if (clAcc) { if (!UpdateMI(track,clAcc,maxchi2,idx)) return kFALSE; track->SetSampledEdx(clAcc->GetQ(),track->GetNumberOfClusters()-1); } track->SetModuleIndexInfo(ilayer,idet,modstatus,xloc,zloc); if (extra) { // search for extra clusters in overlapped modules AliITStrackV2 tmp(*track); Double_t dy,ymin,ymax; dz=4*TMath::Sqrt(tmp.GetSigmaZ2()+AliITSReconstructor::GetRecoParam()->GetSigmaZ2(ilayer)); if (dz < 0.5*TMath::Abs(tmp.GetTgl())) dz=0.5*TMath::Abs(tmp.GetTgl()); dy=4*TMath::Sqrt(track->GetSigmaY2()+AliITSReconstructor::GetRecoParam()->GetSigmaY2(ilayer)); if (dy < 0.5*TMath::Abs(tmp.GetSnp())) dy=0.5*TMath::Abs(tmp.GetSnp()); zmin=track->GetZ() - dz; zmax=track->GetZ() + dz; ymin=track->GetY() + phi*r - dy; ymax=track->GetY() + phi*r + dy; layer.SelectClusters(zmin,zmax,ymin,ymax); const AliITSRecPoint *clExtra=0; Int_t ci=-1,cci=-1; Int_t idetExtra=-1; Double_t maxchi2=1000.*AliITSReconstructor::GetRecoParam()->GetMaxChi2(), tolerance=0.1; while ((clExtra=layer.GetNextCluster(ci))!=0) { // only clusters in another module! (overlaps) idetExtra = clExtra->GetDetectorIndex(); if (idet == idetExtra) continue; const AliITSdetector &det=layer.GetDetector(idetExtra); if (!tmp.Propagate(det.GetPhi(),det.GetR())) continue; if (TMath::Abs(tmp.GetZ() - clExtra->GetZ()) > tolerance) continue; if (TMath::Abs(tmp.GetY() - clExtra->GetY()) > tolerance) continue; Double_t chi2=tmp.GetPredictedChi2(clExtra); if (chi2=0) { track->SetExtraCluster(ilayer,(ilayer<<28)+cci); track->SetExtraModule(ilayer,idetExtra); } } // end search for extra clusters in overlapped modules // Correct for material of the current layer if(!CorrectForLayerMaterial(track,ilayer,oldGlobXYZ,dir)) return kFALSE; // track time update [SR, GSI 17.02.2003] if (track->IsStartedTimeIntegral() && step==1) { Double_t newX, newY, newZ; track->GetGlobalXYZat(track->GetX(),newX,newY,newZ); Double_t dL2 = (oldX-newX)*(oldX-newX) + (oldY-newY)*(oldY-newY) + (oldZ-newZ)*(oldZ-newZ); track->AddTimeStep(TMath::Sqrt(dL2)); } // } // end loop on layers if (!track->PropagateTo(xx,0.,0.)) return kFALSE; return kTRUE; } //------------------------------------------------------------------------ Double_t AliITStrackerMI::GetNormalizedChi2(AliITStrackMI * track, Int_t mode) { // // calculate normalized chi2 // return NormalizedChi2(track,0); Float_t chi2 = 0; Float_t sum=0; Float_t *erry = GetErrY(fCurrentEsdTrack), *errz = GetErrZ(fCurrentEsdTrack); // track->fdEdxMismatch=0; Float_t dedxmismatch =0; Float_t *ny = GetNy(fCurrentEsdTrack), *nz = GetNz(fCurrentEsdTrack); if (mode<100){ for (Int_t i = 0;i<6;i++){ if (track->GetClIndex(i)>0){ Float_t cerry, cerrz; if (ny[i]>0) {cerry = erry[i]; cerrz=errz[i];} else { cerry= track->GetSigmaY(i); cerrz = track->GetSigmaZ(i);} cerry*=cerry; cerrz*=cerrz; Float_t cchi2 = (track->GetDy(i)*track->GetDy(i)/cerry)+(track->GetDz(i)*track->GetDz(i)/cerrz); if (i>1 && AliITSReconstructor::GetRecoParam()->GetUseAmplitudeInfo(i)) { Float_t ratio = track->GetNormQ(i)/track->GetExpQ(); if (ratio<0.5) { cchi2+=(0.5-ratio)*10.; //track->fdEdxMismatch+=(0.5-ratio)*10.; dedxmismatch+=(0.5-ratio)*10.; } } if (i<2 ||i>3){ AliITSRecPoint * cl = (AliITSRecPoint*)GetCluster( track->GetClIndex(i)); Double_t delta = cl->GetNy()+cl->GetNz()-ny[i]-nz[i]; if (delta>1) chi2 +=0.5*TMath::Min(delta/2,2.); if (i<2) chi2+=2*cl->GetDeltaProbability(); } chi2+=cchi2; sum++; } } if (TMath::Abs(track->GetdEdxMismatch()-dedxmismatch)>0.0001){ track->SetdEdxMismatch(dedxmismatch); } } else{ for (Int_t i = 0;i<4;i++){ if (track->GetClIndex(i)>0){ Float_t cerry, cerrz; if (ny[i]>0) {cerry = erry[i]; cerrz=errz[i];} else { cerry= track->GetSigmaY(i); cerrz = track->GetSigmaZ(i);} cerry*=cerry; cerrz*=cerrz; chi2+= (track->GetDy(i)*track->GetDy(i)/cerry); chi2+= (track->GetDz(i)*track->GetDz(i)/cerrz); sum++; } } for (Int_t i = 4;i<6;i++){ if (track->GetClIndex(i)>0){ Float_t cerry, cerrz; if (ny[i]>0) {cerry = erry[i]; cerrz=errz[i];} else { cerry= track->GetSigmaY(i); cerrz = track->GetSigmaZ(i);} cerry*=cerry; cerrz*=cerrz; Float_t cerryb, cerrzb; if (ny[i+6]>0) {cerryb = erry[i+6]; cerrzb=errz[i+6];} else { cerryb= track->GetSigmaY(i+6); cerrzb = track->GetSigmaZ(i+6);} cerryb*=cerryb; cerrzb*=cerrzb; chi2+= TMath::Min((track->GetDy(i+6)*track->GetDy(i+6)/cerryb),track->GetDy(i)*track->GetDy(i)/cerry); chi2+= TMath::Min((track->GetDz(i+6)*track->GetDz(i+6)/cerrzb),track->GetDz(i)*track->GetDz(i)/cerrz); sum++; } } } if (track->GetESDtrack()->GetTPCsignal()>85){ Float_t ratio = track->GetdEdx()/track->GetESDtrack()->GetTPCsignal(); if (ratio<0.5) { chi2+=(0.5-ratio)*5.; } if (ratio>2){ chi2+=(ratio-2.0)*3; } } // Double_t match = TMath::Sqrt(track->GetChi22()); if (track->GetConstrain()) match/=track->GetNumberOfClusters(); if (!track->GetConstrain()) { if (track->GetNumberOfClusters()>2) { match/=track->GetNumberOfClusters()-2.; } else { match=0; } } if (match<0) match=0; Float_t deadzonefactor = (track->GetNDeadZone()>0) ? 3*(1.1-track->GetDeadZoneProbability()):0.; Double_t normchi2 = 2*track->GetNSkipped()+match+deadzonefactor+(1+(2*track->GetNSkipped()+deadzonefactor)/track->GetNumberOfClusters())* (chi2)/TMath::Max(double(sum-track->GetNSkipped()), 1./(1.+track->GetNSkipped())); return normchi2; } //------------------------------------------------------------------------ Double_t AliITStrackerMI::GetMatchingChi2(AliITStrackMI * track1, AliITStrackMI * track2) { // // return matching chi2 between two tracks AliITStrackMI track3(*track2); track3.Propagate(track1->GetAlpha(),track1->GetX()); TMatrixD vec(5,1); vec(0,0)=track1->GetY() - track3.GetY(); vec(1,0)=track1->GetZ() - track3.GetZ(); vec(2,0)=track1->GetSnp() - track3.GetSnp(); vec(3,0)=track1->GetTgl() - track3.GetTgl(); vec(4,0)=track1->GetSigned1Pt() - track3.GetSigned1Pt(); // TMatrixD cov(5,5); cov(0,0) = track1->GetSigmaY2()+track3.GetSigmaY2(); cov(1,1) = track1->GetSigmaZ2()+track3.GetSigmaZ2(); cov(2,2) = track1->GetSigmaSnp2()+track3.GetSigmaSnp2(); cov(3,3) = track1->GetSigmaTgl2()+track3.GetSigmaTgl2(); cov(4,4) = track1->GetSigma1Pt2()+track3.GetSigma1Pt2(); cov(0,1)=cov(1,0) = track1->GetSigmaZY()+track3.GetSigmaZY(); cov(0,2)=cov(2,0) = track1->GetSigmaSnpY()+track3.GetSigmaSnpY(); cov(0,3)=cov(3,0) = track1->GetSigmaTglY()+track3.GetSigmaTglY(); cov(0,4)=cov(4,0) = track1->GetSigma1PtY()+track3.GetSigma1PtY(); // cov(1,2)=cov(2,1) = track1->GetSigmaSnpZ()+track3.GetSigmaSnpZ(); cov(1,3)=cov(3,1) = track1->GetSigmaTglZ()+track3.GetSigmaTglZ(); cov(1,4)=cov(4,1) = track1->GetSigma1PtZ()+track3.GetSigma1PtZ(); // cov(2,3)=cov(3,2) = track1->GetSigmaTglSnp()+track3.GetSigmaTglSnp(); cov(2,4)=cov(4,2) = track1->GetSigma1PtSnp()+track3.GetSigma1PtSnp(); // cov(3,4)=cov(4,3) = track1->GetSigma1PtTgl()+track3.GetSigma1PtTgl(); cov.Invert(); TMatrixD vec2(cov,TMatrixD::kMult,vec); TMatrixD chi2(vec2,TMatrixD::kTransposeMult,vec); return chi2(0,0); } //------------------------------------------------------------------------ Double_t AliITStrackerMI::GetSPDDeadZoneProbability(Double_t zpos, Double_t zerr) { // // return probability that given point (characterized by z position and error) // is in SPD dead zone // Double_t probability = 0.; Double_t absz = TMath::Abs(zpos); Double_t nearestz = (absz<2.) ? 0.5*(fSPDdetzcentre[1]+fSPDdetzcentre[2]) : 0.5*(fSPDdetzcentre[2]+fSPDdetzcentre[3]); if (TMath::Abs(absz-nearestz)>0.25+3.*zerr) return probability; Double_t zmin, zmax; if (zpos<-6.) { // dead zone at z = -7 zmin = fSPDdetzcentre[0] + 0.5*AliITSRecoParam::GetSPDdetzlength(); zmax = fSPDdetzcentre[1] - 0.5*AliITSRecoParam::GetSPDdetzlength(); } else if (zpos>6.) { // dead zone at z = +7 zmin = fSPDdetzcentre[2] + 0.5*AliITSRecoParam::GetSPDdetzlength(); zmax = fSPDdetzcentre[3] - 0.5*AliITSRecoParam::GetSPDdetzlength(); } else if (absz<2.) { // dead zone at z = 0 zmin = fSPDdetzcentre[1] + 0.5*AliITSRecoParam::GetSPDdetzlength(); zmax = fSPDdetzcentre[2] - 0.5*AliITSRecoParam::GetSPDdetzlength(); } else { zmin = 0.; zmax = 0.; } // probability that the true z is in the range [zmin,zmax] (i.e. inside // dead zone) probability = 0.5*( TMath::Erf((zpos-zmin)/zerr/TMath::Sqrt(2.)) - TMath::Erf((zpos-zmax)/zerr/TMath::Sqrt(2.)) ); return probability; } //------------------------------------------------------------------------ Double_t AliITStrackerMI::GetTruncatedChi2(AliITStrackMI * track, Float_t fac) { // // calculate normalized chi2 Float_t chi2[6]; Float_t *erry = GetErrY(fCurrentEsdTrack), *errz = GetErrZ(fCurrentEsdTrack); Float_t ncl = 0; for (Int_t i = 0;i<6;i++){ if (TMath::Abs(track->GetDy(i))>0){ chi2[i]= (track->GetDy(i)/erry[i])*(track->GetDy(i)/erry[i]); chi2[i]+= (track->GetDz(i)/errz[i])*(track->GetDz(i)/errz[i]); ncl++; } else{chi2[i]=10000;} } Int_t index[6]; TMath::Sort(6,chi2,index,kFALSE); Float_t max = float(ncl)*fac-1.; Float_t sumchi=0, sumweight=0; for (Int_t i=0;ifNUsed>0.3*float(forwardtrack->GetNumberOfClusters())) return 10000; Int_t npoints = 0; Double_t res =0; for (Int_t i=0;i<6;i++){ if ( (backtrack->GetSigmaY(i)<0.000000001) || (forwardtrack->GetSigmaY(i)<0.000000001)) continue; Double_t sy1 = forwardtrack->GetSigmaY(i); Double_t sz1 = forwardtrack->GetSigmaZ(i); Double_t sy2 = backtrack->GetSigmaY(i); Double_t sz2 = backtrack->GetSigmaZ(i); if (i<2){ sy2=1000.;sz2=1000;} // Double_t dy0 = (forwardtrack->GetDy(i)/(sy1*sy1) +backtrack->GetDy(i)/(sy2*sy2))/(1./(sy1*sy1)+1./(sy2*sy2)); Double_t dz0 = (forwardtrack->GetDz(i)/(sz1*sz1) +backtrack->GetDz(i)/(sz2*sz2))/(1./(sz1*sz1)+1./(sz2*sz2)); // Double_t nz0 = dz0*TMath::Sqrt((1./(sz1*sz1)+1./(sz2*sz2))); Double_t ny0 = dy0*TMath::Sqrt((1./(sy1*sy1)+1./(sy2*sy2))); // res+= nz0*nz0+ny0*ny0; npoints++; } if (npoints>1) return TMath::Max(0.3*forwardtrack->OneOverPt()-0.5,0.)+ //2*forwardtrack->fNUsed+ res/TMath::Max(double(npoints-forwardtrack->GetNSkipped()), 1./(1.+forwardtrack->GetNSkipped())); return 1000; } //------------------------------------------------------------------------ Float_t *AliITStrackerMI::GetWeight(Int_t index) { //-------------------------------------------------------------------- // Return pointer to a given cluster //-------------------------------------------------------------------- Int_t l=(index & 0xf0000000) >> 28; Int_t c=(index & 0x0fffffff) >> 00; return fgLayers[l].GetWeight(c); } //------------------------------------------------------------------------ void AliITStrackerMI::RegisterClusterTracks(AliITStrackMI* track,Int_t id) { //--------------------------------------------- // register track to the list // if (track->GetESDtrack()->GetKinkIndex(0)!=0) return; //don't register kink tracks // // for (Int_t icluster=0;iclusterGetNumberOfClusters();icluster++){ Int_t index = track->GetClusterIndex(icluster); Int_t l=(index & 0xf0000000) >> 28; Int_t c=(index & 0x0fffffff) >> 00; if (c>fgLayers[l].GetNumberOfClusters()) continue; for (Int_t itrack=0;itrack<4;itrack++){ if (fgLayers[l].GetClusterTracks(itrack,c)<0){ fgLayers[l].SetClusterTracks(itrack,c,id); break; } } } } //------------------------------------------------------------------------ void AliITStrackerMI::UnRegisterClusterTracks(AliITStrackMI* track, Int_t id) { //--------------------------------------------- // unregister track from the list for (Int_t icluster=0;iclusterGetNumberOfClusters();icluster++){ Int_t index = track->GetClusterIndex(icluster); Int_t l=(index & 0xf0000000) >> 28; Int_t c=(index & 0x0fffffff) >> 00; if (c>fgLayers[l].GetNumberOfClusters()) continue; for (Int_t itrack=0;itrack<4;itrack++){ if (fgLayers[l].GetClusterTracks(itrack,c)==id){ fgLayers[l].SetClusterTracks(itrack,c,-1); } } } } //------------------------------------------------------------------------ Float_t AliITStrackerMI::GetNumberOfSharedClusters(AliITStrackMI* track,Int_t id, Int_t list[6], AliITSRecPoint *clist[6]) { //------------------------------------------------------------- //get number of shared clusters //------------------------------------------------------------- Float_t shared=0; for (Int_t i=0;i<6;i++) { list[i]=-1, clist[i]=0;} // mean number of clusters Float_t *ny = GetNy(id), *nz = GetNz(id); for (Int_t icluster=0;iclusterGetNumberOfClusters();icluster++){ Int_t index = track->GetClusterIndex(icluster); Int_t l=(index & 0xf0000000) >> 28; Int_t c=(index & 0x0fffffff) >> 00; if (c>fgLayers[l].GetNumberOfClusters()) continue; if (ny[l]==0){ printf("problem\n"); } AliITSRecPoint *cl = (AliITSRecPoint*)GetCluster(index); Float_t weight=1; // Float_t deltan = 0; if (l>3&&cl->GetNy()+cl->GetNz()>6) continue; if (l>2&&AliITSReconstructor::GetRecoParam()->GetUseAmplitudeInfo(l)) if (track->GetNormQ(l)/track->GetExpQ()>3.5) continue; if (l<2 || l>3){ deltan = (cl->GetNy()+cl->GetNz()-ny[l]-nz[l]); } else{ deltan = (cl->GetNz()-nz[l]); } if (deltan>2.0) continue; // extended - highly probable shared cluster weight = 2./TMath::Max(3.+deltan,2.); // for (Int_t itrack=0;itrack<4;itrack++){ if (fgLayers[l].GetClusterTracks(itrack,c)>=0 && fgLayers[l].GetClusterTracks(itrack,c)!=id){ list[l]=index; clist[l] = (AliITSRecPoint*)GetCluster(index); shared+=weight; break; } } } track->SetNUsed(shared); return shared; } //------------------------------------------------------------------------ Int_t AliITStrackerMI::GetOverlapTrack(AliITStrackMI *track, Int_t trackID, Int_t &shared, Int_t clusterlist[6],Int_t overlist[6]) { // // find first shared track // // mean number of clusters Float_t *ny = GetNy(trackID), *nz = GetNz(trackID); // for (Int_t i=0;i<6;i++) overlist[i]=-1; Int_t sharedtrack=100000; Int_t tracks[24],trackindex=0; for (Int_t i=0;i<24;i++) {tracks[i]=-1;} // for (Int_t icluster=0;icluster<6;icluster++){ if (clusterlist[icluster]<0) continue; Int_t index = clusterlist[icluster]; Int_t l=(index & 0xf0000000) >> 28; Int_t c=(index & 0x0fffffff) >> 00; if (ny[l]==0){ printf("problem\n"); } if (c>fgLayers[l].GetNumberOfClusters()) continue; //if (l>3) continue; AliITSRecPoint *cl = (AliITSRecPoint*)GetCluster(index); // Float_t deltan = 0; if (l>3&&cl->GetNy()+cl->GetNz()>6) continue; if (l>2&&AliITSReconstructor::GetRecoParam()->GetUseAmplitudeInfo(l)) if (track->GetNormQ(l)/track->GetExpQ()>3.5) continue; if (l<2 || l>3){ deltan = (cl->GetNy()+cl->GetNz()-ny[l]-nz[l]); } else{ deltan = (cl->GetNz()-nz[l]); } if (deltan>2.0) continue; // extended - highly probable shared cluster // for (Int_t itrack=3;itrack>=0;itrack--){ if (fgLayers[l].GetClusterTracks(itrack,c)<0) continue; if (fgLayers[l].GetClusterTracks(itrack,c)!=trackID){ tracks[trackindex] = fgLayers[l].GetClusterTracks(itrack,c); trackindex++; } } } if (trackindex==0) return -1; if (trackindex==1){ sharedtrack = tracks[0]; }else{ if (trackindex==2) sharedtrack =TMath::Min(tracks[0],tracks[1]); else{ // Int_t track[24], cluster[24]; for (Int_t i=0;imax) { sharedtrack=track[index]; max=cluster[index]; } } } } if (sharedtrack>=100000) return -1; // // make list of overlaps shared =0; for (Int_t icluster=0;icluster<6;icluster++){ if (clusterlist[icluster]<0) continue; Int_t index = clusterlist[icluster]; Int_t l=(index & 0xf0000000) >> 28; Int_t c=(index & 0x0fffffff) >> 00; if (c>fgLayers[l].GetNumberOfClusters()) continue; AliITSRecPoint *cl = (AliITSRecPoint*)GetCluster(index); if (l==0 || l==1){ if (cl->GetNy()>2) continue; if (cl->GetNz()>2) continue; } if (l==4 || l==5){ if (cl->GetNy()>3) continue; if (cl->GetNz()>3) continue; } // for (Int_t itrack=3;itrack>=0;itrack--){ if (fgLayers[l].GetClusterTracks(itrack,c)<0) continue; if (fgLayers[l].GetClusterTracks(itrack,c)==sharedtrack){ overlist[l]=index; shared++; } } } return sharedtrack; } //------------------------------------------------------------------------ AliITStrackMI * AliITStrackerMI::GetBest2Tracks(Int_t trackID1, Int_t trackID2, Float_t th0, Float_t th1){ // // try to find track hypothesys without conflicts // with minimal chi2; TClonesArray *arr1 = (TClonesArray*)fTrackHypothesys.At(trackID1); Int_t entries1 = arr1->GetEntriesFast(); TClonesArray *arr2 = (TClonesArray*)fTrackHypothesys.At(trackID2); if (!arr2) return (AliITStrackMI*) arr1->UncheckedAt(0); Int_t entries2 = arr2->GetEntriesFast(); if (entries2<=0) return (AliITStrackMI*) arr1->UncheckedAt(0); // AliITStrackMI * track10=(AliITStrackMI*) arr1->UncheckedAt(0); AliITStrackMI * track20=(AliITStrackMI*) arr2->UncheckedAt(0); if (track10->Pt()>0.5+track20->Pt()) return track10; for (Int_t itrack=0;itrackUncheckedAt(itrack); UnRegisterClusterTracks(track,trackID1); } // for (Int_t itrack=0;itrackUncheckedAt(itrack); UnRegisterClusterTracks(track,trackID2); } Int_t index1=0; Int_t index2=0; Float_t maxconflicts=6; Double_t maxchi2 =1000.; // // get weight of hypothesys - using best hypothesy Double_t w1,w2; Int_t list1[6],list2[6]; AliITSRecPoint *clist1[6], *clist2[6] ; RegisterClusterTracks(track10,trackID1); RegisterClusterTracks(track20,trackID2); Float_t conflict1 = GetNumberOfSharedClusters(track10,trackID1,list1,clist1); Float_t conflict2 = GetNumberOfSharedClusters(track20,trackID2,list2,clist2); UnRegisterClusterTracks(track10,trackID1); UnRegisterClusterTracks(track20,trackID2); // // normalized chi2 Float_t chi21 =0,chi22=0,ncl1=0,ncl2=0; Float_t nerry[6],nerrz[6]; Float_t *erry1=GetErrY(trackID1),*errz1 = GetErrZ(trackID1); Float_t *erry2=GetErrY(trackID2),*errz2 = GetErrZ(trackID2); for (Int_t i=0;i<6;i++){ if ( (erry1[i]>0) && (erry2[i]>0)) { nerry[i] = TMath::Min(erry1[i],erry2[i]); nerrz[i] = TMath::Min(errz1[i],errz2[i]); }else{ nerry[i] = TMath::Max(erry1[i],erry2[i]); nerrz[i] = TMath::Max(errz1[i],errz2[i]); } if (TMath::Abs(track10->GetDy(i))>0.000000000000001){ chi21 += track10->GetDy(i)*track10->GetDy(i)/(nerry[i]*nerry[i]); chi21 += track10->GetDz(i)*track10->GetDz(i)/(nerrz[i]*nerrz[i]); ncl1++; } if (TMath::Abs(track20->GetDy(i))>0.000000000000001){ chi22 += track20->GetDy(i)*track20->GetDy(i)/(nerry[i]*nerry[i]); chi22 += track20->GetDz(i)*track20->GetDz(i)/(nerrz[i]*nerrz[i]); ncl2++; } } chi21/=ncl1; chi22/=ncl2; // // Float_t d1 = TMath::Sqrt(track10->GetD(0)*track10->GetD(0)+track10->GetD(1)*track10->GetD(1))+0.1; Float_t d2 = TMath::Sqrt(track20->GetD(0)*track20->GetD(0)+track20->GetD(1)*track20->GetD(1))+0.1; Float_t s1 = TMath::Sqrt(track10->GetSigmaY2()*track10->GetSigmaZ2()); Float_t s2 = TMath::Sqrt(track20->GetSigmaY2()*track20->GetSigmaZ2()); // w1 = (d2/(d1+d2)+ 2*s2/(s1+s2)+ +s2/(s1+s2)*0.5*(chi22+2.)/(chi21+chi22+4.) +1.*track10->Pt()/(track10->Pt()+track20->Pt()) ); w2 = (d1/(d1+d2)+ 2*s1/(s1+s2)+ s1/(s1+s2)*0.5*(chi21+2.)/(chi21+chi22+4.) +1.*track20->Pt()/(track10->Pt()+track20->Pt()) ); Double_t sumw = w1+w2; w1/=sumw; w2/=sumw; if (w1fChi2MIP[0]+w2*track20->fChi2MIP[0]+w1*conflict1+w2*conflict2+1.; //Float_t maxconflicts0 = w1*conflict1+w2*conflict2; // // get pair of "best" hypothesys // Float_t * ny1 = GetNy(trackID1), * nz1 = GetNz(trackID1); Float_t * ny2 = GetNy(trackID2), * nz2 = GetNz(trackID2); for (Int_t itrack1=0;itrack1UncheckedAt(itrack1); //if (track1->fFakeRatio>0) continue; RegisterClusterTracks(track1,trackID1); for (Int_t itrack2=0;itrack2UncheckedAt(itrack2); // Float_t current = w1*track1->fChi2MIP[0]+w2*track2->fChi2MIP[0]; //if (track2->fFakeRatio>0) continue; Float_t nskipped=0; RegisterClusterTracks(track2,trackID2); Int_t list1[6],list2[6]; AliITSRecPoint *clist1[6], *clist2[6] ; Float_t cconflict1 = GetNumberOfSharedClusters(track1,trackID1,list1,clist1); Float_t cconflict2 = GetNumberOfSharedClusters(track2,trackID2,list2,clist2); UnRegisterClusterTracks(track2,trackID2); // if (track1->GetConstrain()) nskipped+=w1*track1->GetNSkipped(); if (track2->GetConstrain()) nskipped+=w2*track2->GetNSkipped(); if (nskipped>0.5) continue; // //if ( w1*conflict1+w2*conflict2>maxconflicts0) continue; if (conflict1+13){ deltan = (clist1[i]->GetNy()+clist1[i]->GetNz()-TMath::Max(ny1[i],ny2[i])-TMath::Max(nz1[i],nz2[i])); } else{ deltan = (clist1[i]->GetNz()-TMath::Max(nz1[i],nz2[i])); } c1 = 2./TMath::Max(3.+deltan,2.); c2 = 2./TMath::Max(3.+deltan,2.); } else{ if (clist1[i]){ Float_t deltan = 0; if (i<2 || i>3){ deltan = (clist1[i]->GetNy()+clist1[i]->GetNz()-ny1[i]-nz1[i]); } else{ deltan = (clist1[i]->GetNz()-nz1[i]); } c1 = 2./TMath::Max(3.+deltan,2.); c2 = 0; } if (clist2[i]){ Float_t deltan = 0; if (i<2 || i>3){ deltan = (clist2[i]->GetNy()+clist2[i]->GetNz()-ny2[i]-nz2[i]); } else{ deltan = (clist2[i]->GetNz()-nz2[i]); } c2 = 2./TMath::Max(3.+deltan,2.); c1 = 0; } } // Double_t chi21=0,chi22=0; if (TMath::Abs(track1->GetDy(i))>0.) { chi21 = (track1->GetDy(i)/track1->GetSigmaY(i))*(track1->GetDy(i)/track1->GetSigmaY(i))+ (track1->GetDz(i)/track1->GetSigmaZ(i))*(track1->GetDz(i)/track1->GetSigmaZ(i)); //chi21 = (track1->fDy[i]*track1->fDy[i])/(nerry[i]*nerry[i])+ // (track1->GetDz(i)*track1->GetDz(i))/(nerrz[i]*nerrz[i]); }else{ if (TMath::Abs(track1->GetSigmaY(i)>0.)) c1=1; } // if (TMath::Abs(track2->GetDy(i))>0.) { chi22 = (track2->GetDy(i)/track2->GetSigmaY(i))*(track2->GetDy(i)/track2->GetSigmaY(i))+ (track2->GetDz(i)/track2->GetSigmaZ(i))*(track2->GetDz(i)/track2->GetSigmaZ(i)); //chi22 = (track2->fDy[i]*track2->fDy[i])/(nerry[i]*nerry[i])+ // (track2->fDz[i]*track2->fDz[i])/(nerrz[i]*nerrz[i]); } else{ if (TMath::Abs(track2->GetSigmaY(i)>0.)) c2=1; } sumchi2+=w1*(1.+c1)*(1+c1)*(chi21+c1)+w2*(1.+c2)*(1+c2)*(chi22+c2); if (chi21>0) sum+=w1; if (chi22>0) sum+=w2; conflict+=(c1+c2); } Double_t norm = sum-w1*track1->GetNSkipped()-w2*track2->GetNSkipped(); if (norm<0) norm =1/(w1*track1->GetNSkipped()+w2*track2->GetNSkipped()); Double_t normchi2 = 2*conflict+sumchi2/sum; if ( normchi2 GetFakeRatio()*track10->GetNumberOfClusters(); AliITStrackMI* track1=(AliITStrackMI*) arr1->UncheckedAt(index1); track1->SetChi2MIP(5,maxconflicts); track1->SetChi2MIP(6,maxchi2); track1->SetChi2MIP(7,0.01+orig-(track1->GetFakeRatio()*track1->GetNumberOfClusters())); // track1->UpdateESDtrack(AliESDtrack::kITSin); track1->SetChi2MIP(8,index1); fBestTrackIndex[trackID1] =index1; UpdateESDtrack(track1, AliESDtrack::kITSin); } else if (track10->GetChi2MIP(0)SetChi2MIP(5,maxconflicts); track10->SetChi2MIP(6,maxchi2); // track10->UpdateESDtrack(AliESDtrack::kITSin); UpdateESDtrack(track10,AliESDtrack::kITSin); } for (Int_t itrack=0;itrackUncheckedAt(itrack); UnRegisterClusterTracks(track,trackID1); } // for (Int_t itrack=0;itrackUncheckedAt(itrack); UnRegisterClusterTracks(track,trackID2); } if (track10->GetConstrain()&&track10->GetChi2MIP(0)GetMaxChi2PerCluster(0)&&track10->GetChi2MIP(1)GetMaxChi2PerCluster(1) &&track10->GetChi2MIP(2)GetMaxChi2PerCluster(2)&&track10->GetChi2MIP(3)GetMaxChi2PerCluster(3)){ // if (track10->fChi2MIP[0]GetMaxChi2PerCluster(0)&&track10->fChi2MIP[1]GetMaxChi2PerCluster(1) // &&track10->fChi2MIP[2]GetMaxChi2PerCluster(2)&&track10->fChi2MIP[3]GetMaxChi2PerCluster(3)){ RegisterClusterTracks(track10,trackID1); } if (track20->GetConstrain()&&track20->GetChi2MIP(0)GetMaxChi2PerCluster(0)&&track20->GetChi2MIP(1)GetMaxChi2PerCluster(1) &&track20->GetChi2MIP(2)GetMaxChi2PerCluster(2)&&track20->GetChi2MIP(3)GetMaxChi2PerCluster(3)){ //if (track20->fChi2MIP[0]GetMaxChi2PerCluster(0)&&track20->fChi2MIP[1]GetMaxChi2PerCluster(1) // &&track20->fChi2MIP[2]GetMaxChi2PerCluster(2)&&track20->fChi2MIP[3]GetMaxChi2PerCluster(3)){ RegisterClusterTracks(track20,trackID2); } return track10; } //------------------------------------------------------------------------ void AliITStrackerMI::UseClusters(const AliKalmanTrack *t, Int_t from) const { //-------------------------------------------------------------------- // This function marks clusters assigned to the track //-------------------------------------------------------------------- AliTracker::UseClusters(t,from); AliITSRecPoint *c=(AliITSRecPoint *)GetCluster(t->GetClusterIndex(0)); //if (c->GetQ()>2) c->Use(); if (c->GetSigmaZ2()>0.1) c->Use(); c=(AliITSRecPoint *)GetCluster(t->GetClusterIndex(1)); //if (c->GetQ()>2) c->Use(); if (c->GetSigmaZ2()>0.1) c->Use(); } //------------------------------------------------------------------------ void AliITStrackerMI::AddTrackHypothesys(AliITStrackMI * track, Int_t esdindex) { //------------------------------------------------------------------ // add track to the list of hypothesys //------------------------------------------------------------------ if (esdindex>=fTrackHypothesys.GetEntriesFast()) fTrackHypothesys.Expand(esdindex*2+10); // TObjArray * array = (TObjArray*) fTrackHypothesys.At(esdindex); if (!array) { array = new TObjArray(10); fTrackHypothesys.AddAt(array,esdindex); } array->AddLast(track); } //------------------------------------------------------------------------ void AliITStrackerMI::SortTrackHypothesys(Int_t esdindex, Int_t maxcut, Int_t mode) { //------------------------------------------------------------------- // compress array of track hypothesys // keep only maxsize best hypothesys //------------------------------------------------------------------- if (esdindex>fTrackHypothesys.GetEntriesFast()) return; if (! (fTrackHypothesys.At(esdindex)) ) return; TObjArray * array = (TObjArray*) fTrackHypothesys.At(esdindex); Int_t entries = array->GetEntriesFast(); // //- find preliminary besttrack as a reference Float_t minchi2=10000; Int_t maxn=0; AliITStrackMI * besttrack=0; for (Int_t itrack=0;itrackGetEntriesFast();itrack++){ AliITStrackMI * track = (AliITStrackMI*)array->At(itrack); if (!track) continue; Float_t chi2 = NormalizedChi2(track,0); // Int_t tpcLabel=track->GetESDtrack()->GetTPCLabel(); track->SetLabel(tpcLabel); CookdEdx(track); track->SetFakeRatio(1.); CookLabel(track,0.); //For comparison only // //if (chi2GetMaxChi2PerCluster(0)&&track->fFakeRatio==0){ if (chi2GetMaxChi2PerCluster(0)){ if (track->GetNumberOfClusters()GetNumberOfClusters(); if (chi2GetConstrain() || track->GetNumberOfClusters()>5){ //keep best short tracks - without vertex constrain delete array->RemoveAt(itrack); } } } if (!besttrack) return; // // //take errors of best track as a reference Float_t *erry = GetErrY(esdindex), *errz = GetErrZ(esdindex); Float_t *ny = GetNy(esdindex), *nz = GetNz(esdindex); for (Int_t i=0;i<6;i++) { if (besttrack->GetClIndex(i)>0){ erry[i] = besttrack->GetSigmaY(i); erry[i+6] = besttrack->GetSigmaY(i+6); errz[i] = besttrack->GetSigmaZ(i); errz[i+6] = besttrack->GetSigmaZ(i+6); ny[i] = besttrack->GetNy(i); nz[i] = besttrack->GetNz(i); } } // // calculate normalized chi2 // Float_t * chi2 = new Float_t[entries]; Int_t * index = new Int_t[entries]; for (Int_t i=0;iAt(itrack); if (track){ track->SetChi2MIP(0,GetNormalizedChi2(track, mode)); if (track->GetChi2MIP(0)GetMaxChi2PerCluster(0)) chi2[itrack] = track->GetChi2MIP(0); else{ if (track->GetConstrain() || track->GetNumberOfClusters()>5){ //keep best short tracks - without vertex constrain delete array->RemoveAt(itrack); } } } } // TMath::Sort(entries,chi2,index,kFALSE); besttrack = (AliITStrackMI*)array->At(index[0]); if (besttrack&&besttrack->GetChi2MIP(0)GetMaxChi2PerCluster(0)){ for (Int_t i=0;i<6;i++){ if (besttrack->GetClIndex(i)>0){ erry[i] = besttrack->GetSigmaY(i); erry[i+6] = besttrack->GetSigmaY(i+6); errz[i] = besttrack->GetSigmaZ(i); erry[i+6] = besttrack->GetSigmaY(i+6); ny[i] = besttrack->GetNy(i); nz[i] = besttrack->GetNz(i); } } } // // calculate one more time with updated normalized errors for (Int_t i=0;iAt(itrack); if (track){ track->SetChi2MIP(0,GetNormalizedChi2(track,mode)); if (track->GetChi2MIP(0)GetMaxChi2PerCluster(0)) chi2[itrack] = track->GetChi2MIP(0)-0*(track->GetNumberOfClusters()+track->GetNDeadZone()); else { if (track->GetConstrain() || track->GetNumberOfClusters()>5){ //keep best short tracks - without vertex constrain delete array->RemoveAt(itrack); } } } } entries = array->GetEntriesFast(); // // if (entries>0){ TObjArray * newarray = new TObjArray(); TMath::Sort(entries,chi2,index,kFALSE); besttrack = (AliITStrackMI*)array->At(index[0]); if (besttrack){ // for (Int_t i=0;i<6;i++){ if (besttrack->GetNz(i)>0&&besttrack->GetNy(i)>0){ erry[i] = besttrack->GetSigmaY(i); erry[i+6] = besttrack->GetSigmaY(i+6); errz[i] = besttrack->GetSigmaZ(i); errz[i+6] = besttrack->GetSigmaZ(i+6); ny[i] = besttrack->GetNy(i); nz[i] = besttrack->GetNz(i); } } besttrack->SetChi2MIP(0,GetNormalizedChi2(besttrack,mode)); Float_t minchi2 = TMath::Min(besttrack->GetChi2MIP(0)+5.+besttrack->GetNUsed(), double(AliITSReconstructor::GetRecoParam()->GetMaxChi2PerCluster(0))); Float_t minn = besttrack->GetNumberOfClusters()-3; Int_t accepted=0; for (Int_t i=0;iAt(index[i]); if (!track) continue; if (accepted>maxcut) break; track->SetChi2MIP(0,GetNormalizedChi2(track,mode)); if (track->GetConstrain() || track->GetNumberOfClusters()>5){ //keep best short tracks - without vertex constrain if (track->GetNumberOfClusters()<6 && (track->GetChi2MIP(0)+track->GetNUsed()>minchi2)){ delete array->RemoveAt(index[i]); continue; } } Bool_t shortbest = !track->GetConstrain() && track->GetNumberOfClusters()<6; if ((track->GetChi2MIP(0)+track->GetNUsed()GetNumberOfClusters()>=minn) ||shortbest){ if (!shortbest) accepted++; // newarray->AddLast(array->RemoveAt(index[i])); for (Int_t i=0;i<6;i++){ if (nz[i]==0){ erry[i] = track->GetSigmaY(i); erry[i+6] = track->GetSigmaY(i+6); errz[i] = track->GetSigmaZ(i); errz[i] = track->GetSigmaZ(i+6); ny[i] = track->GetNy(i); nz[i] = track->GetNz(i); } } } else{ delete array->RemoveAt(index[i]); } } array->Delete(); delete fTrackHypothesys.RemoveAt(esdindex); fTrackHypothesys.AddAt(newarray,esdindex); } else{ array->Delete(); delete fTrackHypothesys.RemoveAt(esdindex); } } delete [] chi2; delete [] index; } //------------------------------------------------------------------------ AliITStrackMI * AliITStrackerMI::GetBestHypothesys(Int_t esdindex, AliITStrackMI * original, Int_t checkmax) { //------------------------------------------------------------- // try to find best hypothesy // currently - minimal chi2 of track+backpropagated track+matching to the tpc track //------------------------------------------------------------- if (fTrackHypothesys.GetEntriesFast()<=esdindex) return 0; TObjArray * array = (TObjArray*) fTrackHypothesys.At(esdindex); if (!array) return 0; Int_t entries = array->GetEntriesFast(); if (!entries) return 0; Float_t minchi2 = 100000; AliITStrackMI * besttrack=0; // AliITStrackMI * backtrack = new AliITStrackMI(*original); AliITStrackMI * forwardtrack = new AliITStrackMI(*original); Double_t xyzVtx[]={GetX(),GetY(),GetZ()}; Double_t ersVtx[]={GetSigmaX()/3.,GetSigmaY()/3.,GetSigmaZ()/3.}; // for (Int_t i=0;iAt(i); if (!track) continue; Float_t sigmarfi,sigmaz; GetDCASigma(track,sigmarfi,sigmaz); track->SetDnorm(0,sigmarfi); track->SetDnorm(1,sigmaz); // track->SetChi2MIP(1,1000000); track->SetChi2MIP(2,1000000); track->SetChi2MIP(3,1000000); // // backtrack backtrack = new(backtrack) AliITStrackMI(*track); if (track->GetConstrain()) { if (!CorrectForPipeMaterial(backtrack,"inward")) continue; if (!backtrack->Improve(0,xyzVtx,ersVtx)) continue; backtrack->ResetCovariance(10.); }else{ backtrack->ResetCovariance(10.); } backtrack->ResetClusters(); Double_t x = original->GetX(); if (!RefitAt(x,backtrack,track)) continue; // track->SetChi2MIP(1,NormalizedChi2(backtrack,0)); //for (Int_t i=2;i<6;i++){track->fDy[i]+=backtrack->fDy[i]; track->fDz[i]+=backtrack->fDz[i];} if (track->GetChi2MIP(1)>AliITSReconstructor::GetRecoParam()->GetMaxChi2PerCluster(1)*6.) continue; track->SetChi22(GetMatchingChi2(backtrack,original)); if ((track->GetConstrain()) && track->GetChi22()>90.) continue; if ((!track->GetConstrain()) && track->GetChi22()>30.) continue; if ( track->GetChi22()/track->GetNumberOfClusters()>11.) continue; if (!(track->GetConstrain())&&track->GetChi2MIP(1)>AliITSReconstructor::GetRecoParam()->GetMaxChi2PerCluster(1)) continue; // //forward track - without constraint forwardtrack = new(forwardtrack) AliITStrackMI(*original); forwardtrack->ResetClusters(); x = track->GetX(); RefitAt(x,forwardtrack,track); track->SetChi2MIP(2,NormalizedChi2(forwardtrack,0)); if (track->GetChi2MIP(2)>AliITSReconstructor::GetRecoParam()->GetMaxChi2PerCluster(2)*6.0) continue; if (!(track->GetConstrain())&&track->GetChi2MIP(2)>AliITSReconstructor::GetRecoParam()->GetMaxChi2PerCluster(2)) continue; //track->fD[0] = forwardtrack->GetD(GetX(),GetY()); //track->fD[1] = forwardtrack->GetZat(GetX())-GetZ(); forwardtrack->GetDZ(GetX(),GetY(),GetZ(),track->GetDP()); //I.B. forwardtrack->SetD(0,track->GetD(0)); forwardtrack->SetD(1,track->GetD(1)); { Int_t list[6]; AliITSRecPoint* clist[6]; track->SetChi2MIP(4,GetNumberOfSharedClusters(track,esdindex,list,clist)); if ( (!track->GetConstrain()) && track->GetChi2MIP(4)>1.0) continue; } track->SetChi2MIP(3,GetInterpolatedChi2(forwardtrack,backtrack)); if ( (track->GetChi2MIP(3)>6.*AliITSReconstructor::GetRecoParam()->GetMaxChi2PerCluster(3))) continue; if ( (!track->GetConstrain()) && (track->GetChi2MIP(3)>2*AliITSReconstructor::GetRecoParam()->GetMaxChi2PerCluster(3))) { track->SetChi2MIP(3,1000); continue; } Double_t chi2 = track->GetChi2MIP(0)+track->GetNUsed(); // for (Int_t ichi=0;ichi<5;ichi++){ forwardtrack->SetChi2MIP(ichi, track->GetChi2MIP(ichi)); } if (chi2 < minchi2){ //besttrack = new AliITStrackMI(*forwardtrack); besttrack = track; besttrack->SetLabel(track->GetLabel()); besttrack->SetFakeRatio(track->GetFakeRatio()); minchi2 = chi2; //original->fD[0] = forwardtrack->GetD(GetX(),GetY()); //original->fD[1] = forwardtrack->GetZat(GetX())-GetZ(); forwardtrack->GetDZ(GetX(),GetY(),GetZ(),original->GetDP()); //I.B. } } delete backtrack; delete forwardtrack; Int_t accepted=0; for (Int_t i=0;iAt(i); if (!track) continue; if (accepted>checkmax || track->GetChi2MIP(3)>AliITSReconstructor::GetRecoParam()->GetMaxChi2PerCluster(3)*6. || (track->GetNumberOfClusters()GetNumberOfClusters()-1.)|| track->GetChi2MIP(0)>besttrack->GetChi2MIP(0)+2.*besttrack->GetNUsed()+3.){ if (track->GetConstrain() || track->GetNumberOfClusters()>5){ //keep best short tracks - without vertex constrain delete array->RemoveAt(i); continue; } } else{ accepted++; } } // array->Compress(); SortTrackHypothesys(esdindex,checkmax,1); array = (TObjArray*) fTrackHypothesys.At(esdindex); if (!array) return 0; // PH What can be the reason? Check SortTrackHypothesys besttrack = (AliITStrackMI*)array->At(0); if (!besttrack) return 0; besttrack->SetChi2MIP(8,0); fBestTrackIndex[esdindex]=0; entries = array->GetEntriesFast(); AliITStrackMI *longtrack =0; minchi2 =1000; Float_t minn=besttrack->GetNumberOfClusters()+besttrack->GetNDeadZone(); for (Int_t itrack=entries-1;itrack>0;itrack--) { AliITStrackMI * track = (AliITStrackMI*)array->At(itrack); if (!track->GetConstrain()) continue; if (track->GetNumberOfClusters()+track->GetNDeadZone()GetChi2MIP(0)-besttrack->GetChi2MIP(0)>0.0) continue; if (track->GetChi2MIP(0)>4.) continue; minn = track->GetNumberOfClusters()+track->GetNDeadZone(); longtrack =track; } //if (longtrack) besttrack=longtrack; Int_t list[6]; AliITSRecPoint * clist[6]; Float_t shared = GetNumberOfSharedClusters(besttrack,esdindex,list,clist); if (besttrack->GetConstrain()&&besttrack->GetChi2MIP(0)GetMaxChi2PerCluster(0)&&besttrack->GetChi2MIP(1)GetMaxChi2PerCluster(1) &&besttrack->GetChi2MIP(2)GetMaxChi2PerCluster(2)&&besttrack->GetChi2MIP(3)GetMaxChi2PerCluster(3)){ RegisterClusterTracks(besttrack,esdindex); } // // if (shared>0.0){ Int_t nshared; Int_t overlist[6]; Int_t sharedtrack = GetOverlapTrack(besttrack, esdindex, nshared, list, overlist); if (sharedtrack>=0){ // besttrack = GetBest2Tracks(esdindex,sharedtrack,10,5.5); if (besttrack){ shared = GetNumberOfSharedClusters(besttrack,esdindex,list,clist); } else return 0; } } if (shared>2.5) return 0; if (shared>1.0) return besttrack; // // Don't sign clusters if not gold track // if (!besttrack->IsGoldPrimary()) return besttrack; if (besttrack->GetESDtrack()->GetKinkIndex(0)!=0) return besttrack; //track belong to kink // if (fConstraint[fPass]){ // // sign clusters // Float_t *ny = GetNy(esdindex), *nz = GetNz(esdindex); for (Int_t i=0;i<6;i++){ Int_t index = besttrack->GetClIndex(i); if (index<=0) continue; Int_t ilayer = (index & 0xf0000000) >> 28; if (besttrack->GetSigmaY(ilayer)<0.00000000001) continue; AliITSRecPoint *c = (AliITSRecPoint*)GetCluster(index); if (!c) continue; if (ilayer>3&&c->GetNy()+c->GetNz()>6) continue; if ( (c->GetNy()+c->GetNz() )> ny[i]+nz[i]+0.7) continue; //shared track if ( c->GetNz()> nz[i]+0.7) continue; //shared track if ( ilayer>2&& AliITSReconstructor::GetRecoParam()->GetUseAmplitudeInfo(ilayer)) if (besttrack->GetNormQ(ilayer)/besttrack->GetExpQ()>1.5) continue; //if ( c->GetNy()> ny[i]+0.7) continue; //shared track Bool_t cansign = kTRUE; for (Int_t itrack=0;itrackAt(i); if (!track) continue; if (track->GetChi2MIP(0)>besttrack->GetChi2MIP(0)+2.*shared+1.) break; if ( (track->GetClIndex(ilayer)>0) && (track->GetClIndex(ilayer)!=besttrack->GetClIndex(ilayer))){ cansign = kFALSE; break; } } if (cansign){ if (TMath::Abs(besttrack->GetDy(ilayer)/besttrack->GetSigmaY(ilayer))>3.) continue; if (TMath::Abs(besttrack->GetDz(ilayer)/besttrack->GetSigmaZ(ilayer))>3.) continue; if (!c->IsUsed()) c->Use(); } } } return besttrack; } //------------------------------------------------------------------------ void AliITStrackerMI::GetBestHypothesysMIP(TObjArray &itsTracks) { // // get "best" hypothesys // Int_t nentries = itsTracks.GetEntriesFast(); for (Int_t i=0;iGetEntriesFast()<=0) continue; // AliITStrackMI* longtrack=0; Float_t minn=0; Float_t maxchi2=1000; for (Int_t j=0;jGetEntriesFast();j++){ AliITStrackMI* track = (AliITStrackMI*)array->At(j); if (!track) continue; if (track->GetGoldV0()) { longtrack = track; //gold V0 track taken break; } if (track->GetNumberOfClusters()+track->GetNDeadZone()GetChi2MIP(0); if (fAfterV0){ if (!track->GetGoldV0()&&track->GetConstrain()==kFALSE) chi2+=5; } if (track->GetNumberOfClusters()+track->GetNDeadZone()>minn) maxchi2 = track->GetChi2MIP(0); // if (chi2 > maxchi2) continue; minn= track->GetNumberOfClusters()+track->GetNDeadZone(); maxchi2 = chi2; longtrack=track; } // // // AliITStrackMI * besttrack = (AliITStrackMI*)array->At(0); if (!longtrack) {longtrack = besttrack;} else besttrack= longtrack; // if (besttrack) { Int_t list[6]; AliITSRecPoint * clist[6]; Float_t shared = GetNumberOfSharedClusters(longtrack,i,list,clist); // track->SetNUsed(shared); track->SetNSkipped(besttrack->GetNSkipped()); track->SetChi2MIP(0,besttrack->GetChi2MIP(0)); if (shared>0) { if(!AliITSReconstructor::GetRecoParam()->GetAllowSharedClusters()) continue; Int_t nshared; Int_t overlist[6]; // Int_t sharedtrack = GetOverlapTrack(longtrack, i, nshared, list, overlist); //if (sharedtrack==-1) sharedtrack=0; if (sharedtrack>=0) { besttrack = GetBest2Tracks(i,sharedtrack,10,5.5); } } if (besttrack&&fAfterV0) { UpdateESDtrack(besttrack,AliESDtrack::kITSin); } if (besttrack&&fConstraint[fPass]) UpdateESDtrack(besttrack,AliESDtrack::kITSin); if (besttrack->GetChi2MIP(0)+besttrack->GetNUsed()>1.5 && fConstraint[fPass]) { if ( TMath::Abs(besttrack->GetD(0))>0.1 || TMath::Abs(besttrack->GetD(1))>0.1 ) track->SetReconstructed(kFALSE); } } } } //------------------------------------------------------------------------ void AliITStrackerMI::CookLabel(AliITStrackMI *track,Float_t wrong) const { //-------------------------------------------------------------------- //This function "cooks" a track label. If label<0, this track is fake. //-------------------------------------------------------------------- Int_t tpcLabel=-1; if ( track->GetESDtrack()) tpcLabel = TMath::Abs(track->GetESDtrack()->GetTPCLabel()); track->SetChi2MIP(9,0); Int_t nwrong=0; for (Int_t i=0;iGetNumberOfClusters();i++){ Int_t cindex = track->GetClusterIndex(i); Int_t l=(cindex & 0xf0000000) >> 28; AliITSRecPoint *cl = (AliITSRecPoint*)GetCluster(cindex); Int_t isWrong=1; for (Int_t ind=0;ind<3;ind++){ if (tpcLabel>0) if (cl->GetLabel(ind)==tpcLabel) isWrong=0; } track->SetChi2MIP(9,track->GetChi2MIP(9)+isWrong*(2<GetNumberOfClusters(); if (nclusters > 0) //PH Some tracks don't have any cluster track->SetFakeRatio(double(nwrong)/double(nclusters)); if (tpcLabel>0){ if (track->GetFakeRatio()>wrong) track->SetLabel(-tpcLabel); else track->SetLabel(tpcLabel); } } //------------------------------------------------------------------------ void AliITStrackerMI::CookdEdx(AliITStrackMI* track) { // // // Int_t list[6]; //AliITSRecPoint * clist[6]; // Int_t shared = GetNumberOfSharedClusters(track,index,list,clist); Float_t dedx[4]; Int_t accepted=0; track->SetChi2MIP(9,0); for (Int_t i=0;iGetNumberOfClusters();i++){ Int_t cindex = track->GetClusterIndex(i); Int_t l=(cindex & 0xf0000000) >> 28; AliITSRecPoint *cl = (AliITSRecPoint*)GetCluster(cindex); Int_t lab = TMath::Abs(track->GetESDtrack()->GetTPCLabel()); Int_t isWrong=1; for (Int_t ind=0;ind<3;ind++){ if (cl->GetLabel(ind)==lab) isWrong=0; } track->SetChi2MIP(9,track->GetChi2MIP(9)+isWrong*(2<3 && (cl->GetNy()>4) || (cl->GetNz()>4)) continue; //shared track //if (l>3&& !(cl->GetType()==1||cl->GetType()==10)) continue; //if (l<4&& !(cl->GetType()==1)) continue; dedx[accepted]= track->GetSampledEdx(i); //dedx[accepted]= track->fNormQ[l]; accepted++; } if (accepted<1) { track->SetdEdx(0); return; } Int_t indexes[4]; TMath::Sort(accepted,dedx,indexes,kFALSE); Double_t low=0.; Double_t up=0.51; Double_t nl=low*accepted, nu =up*accepted; Float_t sumamp = 0; Float_t sumweight =0; for (Int_t i=0; inu-1) weight = TMath::Max(nu-i,0.); sumamp+= dedx[indexes[i]]*weight; sumweight+=weight; } track->SetdEdx(sumamp/sumweight); } //------------------------------------------------------------------------ void AliITStrackerMI::MakeCoefficients(Int_t ntracks){ // // if (fCoefficients) delete []fCoefficients; fCoefficients = new Float_t[ntracks*48]; for (Int_t i=0;iGetTgl(); Float_t phi = track->GetSnp(); phi = TMath::Sqrt(phi*phi/(1.-phi*phi)); AliITSClusterParam::GetError(layer,cluster,theta,phi,track->GetExpQ(),erry,errz); Double_t chi2 = track->GetPredictedChi2MI(cluster->GetY(),cluster->GetZ(),erry,errz); Float_t ny,nz; AliITSClusterParam::GetNTeor(layer,cluster,theta,phi,ny,nz); Double_t delta = cluster->GetNy()+cluster->GetNz()-nz-ny; if (delta>1){ chi2+=0.5*TMath::Min(delta/2,2.); chi2+=2.*cluster->GetDeltaProbability(); } // track->SetNy(layer,ny); track->SetNz(layer,nz); track->SetSigmaY(layer,erry); track->SetSigmaZ(layer, errz); //track->fNormQ[layer] = cluster->GetQ()/TMath::Sqrt(1+theta*theta+phi*phi); track->SetNormQ(layer,cluster->GetQ()/TMath::Sqrt((1.+ track->GetTgl()*track->GetTgl())/(1.- track->GetSnp()*track->GetSnp()))); return chi2; } //------------------------------------------------------------------------ Int_t AliITStrackerMI::UpdateMI(AliITStrackMI* track, const AliITSRecPoint* cl,Double_t chi2,Int_t index) const { // // // Int_t layer = (index & 0xf0000000) >> 28; track->SetClIndex(layer, index); if (layer>1&&AliITSReconstructor::GetRecoParam()->GetUseAmplitudeInfo(layer)) { if (track->GetNormQ(layer)/track->GetExpQ()<0.5 ) { chi2+= (0.5-track->GetNormQ(layer)/track->GetExpQ())*10.; track->SetdEdxMismatch(track->GetdEdxMismatch()+(0.5-track->GetNormQ(layer)/track->GetExpQ())*10.); } } if (cl->GetQ()<=0) return 0; // ingore the "virtual" clusters //Float_t clxyz[3]; cl->GetGlobalXYZ(clxyz);Double_t trxyz[3]; track->GetXYZ(trxyz);printf("gtr %f %f %f\n",trxyz[0],trxyz[1],trxyz[2]);printf("gcl %f %f %f\n",clxyz[0],clxyz[1],clxyz[2]); // Take into account the mis-alignment Double_t x=track->GetX()+cl->GetX(); if (!track->PropagateTo(x,0.,0.)) return 0; AliCluster c(*cl); c.SetSigmaY2(track->GetSigmaY(layer)*track->GetSigmaY(layer)); c.SetSigmaZ2(track->GetSigmaZ(layer)*track->GetSigmaZ(layer)); return track->UpdateMI(&c,chi2,index); } //------------------------------------------------------------------------ void AliITStrackerMI::GetDCASigma(AliITStrackMI* track, Float_t & sigmarfi, Float_t &sigmaz) { // //DCA sigmas parameterization //to be paramterized using external parameters in future // // sigmarfi = 0.0040+1.4 *TMath::Abs(track->GetC())+332.*track->GetC()*track->GetC(); sigmaz = 0.0110+4.37*TMath::Abs(track->GetC()); } //------------------------------------------------------------------------ void AliITStrackerMI::SignDeltas( TObjArray *ClusterArray, Float_t vz) { // // Int_t entries = ClusterArray->GetEntriesFast(); if (entries<4) return; AliITSRecPoint* cluster = (AliITSRecPoint*)ClusterArray->At(0); Int_t layer = cluster->GetLayer(); if (layer>1) return; Int_t index[10000]; Int_t ncandidates=0; Float_t r = (layer>0)? 7:4; // for (Int_t i=0;iAt(i); Float_t nz = 1+TMath::Abs((cl0->GetZ()-vz)/r); if (cl0->GetNy()+cl0->GetNz()<=5+2*layer+nz) continue; index[ncandidates] = i; //candidate to belong to delta electron track ncandidates++; if (cl0->GetNy()+cl0->GetNz()>9+2*layer+nz) { cl0->SetDeltaProbability(1); } } // // // for (Int_t i=0;iAt(index[i]); if (cl0->GetDeltaProbability()>0.8) continue; // Int_t ncl = 0; Float_t y[100],z[100],sumy,sumz,sumy2, sumyz, sumw; sumy=sumz=sumy2=sumyz=sumw=0.0; for (Int_t j=0;jAt(index[j]); // Float_t dz = cl0->GetZ()-cl1->GetZ(); Float_t dy = cl0->GetY()-cl1->GetY(); if (TMath::Sqrt(dz*dz+dy*dy)<0.2){ Float_t weight = cl1->GetNy()+cl1->GetNz()-2; y[ncl] = cl1->GetY(); z[ncl] = cl1->GetZ(); sumy+= y[ncl]*weight; sumz+= z[ncl]*weight; sumy2+=y[ncl]*y[ncl]*weight; sumyz+=y[ncl]*z[ncl]*weight; sumw+=weight; ncl++; } } if (ncl<4) continue; Float_t det = sumw*sumy2 - sumy*sumy; Float_t delta=1000; if (TMath::Abs(det)>0.01){ Float_t z0 = (sumy2*sumz - sumy*sumyz)/det; Float_t k = (sumyz*sumw - sumy*sumz)/det; delta = TMath::Abs(cl0->GetZ()-(z0+k*cl0->GetY())); } else{ Float_t z0 = sumyz/sumy; delta = TMath::Abs(cl0->GetZ()-z0); } if ( delta<0.05) { cl0->SetDeltaProbability(1-20.*delta); } } } //------------------------------------------------------------------------ void AliITStrackerMI::UpdateESDtrack(AliITStrackMI* track, ULong_t flags) const { // // track->UpdateESDtrack(flags); AliITStrackMI * oldtrack = (AliITStrackMI*)(track->GetESDtrack()->GetITStrack()); if (oldtrack) delete oldtrack; track->GetESDtrack()->SetITStrack(new AliITStrackMI(*track)); if (TMath::Abs(track->GetDnorm(1))<0.000000001){ printf("Problem\n"); } } //------------------------------------------------------------------------ Int_t AliITStrackerMI::GetNearestLayer(const Double_t *xr) const{ // // Get nearest upper layer close to the point xr. // rough approximation // const Float_t kRadiuses[6]={4,6.5,15.03,24.,38.5,43.7}; Float_t radius = TMath::Sqrt(xr[0]*xr[0]+xr[1]*xr[1]); Int_t res =6; for (Int_t i=0;i<6;i++){ if (radiusGetNumberOfV0s(); Int_t nitstracks = fTrackHypothesys.GetEntriesFast(); for (Int_t i=0;iGetV0(i); Int_t ip = vertex->GetIndex(0); Int_t im = vertex->GetIndex(1); // TObjArray * arrayp = (ipAt(0):0; AliITStrackMI * trackm = (arraym!=0) ? (AliITStrackMI*)arraym->At(0):0; // // if (trackp){ if (trackp->GetNumberOfClusters()+trackp->GetNDeadZone()>5.5){ if (trackp->GetConstrain()&&trackp->GetChi2MIP(0)<3) vertex->SetStatus(-100); if (!trackp->GetConstrain()&&trackp->GetChi2MIP(0)<2) vertex->SetStatus(-100); } } if (trackm){ if (trackm->GetNumberOfClusters()+trackm->GetNDeadZone()>5.5){ if (trackm->GetConstrain()&&trackm->GetChi2MIP(0)<3) vertex->SetStatus(-100); if (!trackm->GetConstrain()&&trackm->GetChi2MIP(0)<2) vertex->SetStatus(-100); } } if (vertex->GetStatus()==-100) continue; // Double_t xrp[3]; vertex->GetXYZ(xrp[0],xrp[1],xrp[2]); //I.B. Int_t clayer = GetNearestLayer(xrp); //I.B. vertex->SetNBefore(clayer); // vertex->SetChi2Before(9*clayer); // vertex->SetNAfter(6-clayer); // vertex->SetChi2After(0); // // if (clayer >1 ){ // calculate chi2 before vertex Float_t chi2p = 0, chi2m=0; // if (trackp){ for (Int_t ilayer=0;ilayerGetClIndex(ilayer)>0){ chi2p+=trackp->GetDy(ilayer)*trackp->GetDy(ilayer)/(trackp->GetSigmaY(ilayer)*trackp->GetSigmaY(ilayer))+ trackp->GetDz(ilayer)*trackp->GetDz(ilayer)/(trackp->GetSigmaZ(ilayer)*trackp->GetSigmaZ(ilayer)); } else{ chi2p+=9; } } }else{ chi2p = 9*clayer; } // if (trackm){ for (Int_t ilayer=0;ilayerGetClIndex(ilayer)>0){ chi2m+=trackm->GetDy(ilayer)*trackm->GetDy(ilayer)/(trackm->GetSigmaY(ilayer)*trackm->GetSigmaY(ilayer))+ trackm->GetDz(ilayer)*trackm->GetDz(ilayer)/(trackm->GetSigmaZ(ilayer)*trackm->GetSigmaZ(ilayer)); } else{ chi2m+=9; } } }else{ chi2m = 9*clayer; } vertex->SetChi2Before(TMath::Min(chi2p,chi2m)); if (TMath::Min(chi2p,chi2m)/Float_t(clayer)<4) vertex->SetStatus(-10); // track exist before vertex } if (clayer < 5 ){ // calculate chi2 after vertex Float_t chi2p = 0, chi2m=0; // if (trackp&&TMath::Abs(trackp->GetTgl())<1.){ for (Int_t ilayer=clayer;ilayer<6;ilayer++){ if (trackp->GetClIndex(ilayer)>0){ chi2p+=trackp->GetDy(ilayer)*trackp->GetDy(ilayer)/(trackp->GetSigmaY(ilayer)*trackp->GetSigmaY(ilayer))+ trackp->GetDz(ilayer)*trackp->GetDz(ilayer)/(trackp->GetSigmaZ(ilayer)*trackp->GetSigmaZ(ilayer)); } else{ chi2p+=9; } } }else{ chi2p = 0; } // if (trackm&&TMath::Abs(trackm->GetTgl())<1.){ for (Int_t ilayer=clayer;ilayer<6;ilayer++){ if (trackm->GetClIndex(ilayer)>0){ chi2m+=trackm->GetDy(ilayer)*trackm->GetDy(ilayer)/(trackm->GetSigmaY(ilayer)*trackm->GetSigmaY(ilayer))+ trackm->GetDz(ilayer)*trackm->GetDz(ilayer)/(trackm->GetSigmaZ(ilayer)*trackm->GetSigmaZ(ilayer)); } else{ chi2m+=9; } } }else{ chi2m = 0; } vertex->SetChi2After(TMath::Max(chi2p,chi2m)); if (TMath::Max(chi2m,chi2p)/Float_t(6-clayer)>9) vertex->SetStatus(-20); // track not found in ITS } } // } //------------------------------------------------------------------------ void AliITStrackerMI::FindV02(AliESDEvent *event) { // // V0 finder // // Cuts on DCA - R dependent // max distance DCA between 2 tracks cut // maxDist = TMath::Min(kMaxDist,kMaxDist0+pvertex->GetRr()*kMaxDist); // const Float_t kMaxDist0 = 0.1; const Float_t kMaxDist1 = 0.1; const Float_t kMaxDist = 1; const Float_t kMinPointAngle = 0.85; const Float_t kMinPointAngle2 = 0.99; const Float_t kMinR = 0.5; const Float_t kMaxR = 220; //const Float_t kCausality0Cut = 0.19; //const Float_t kLikelihood01Cut = 0.25; //const Float_t kPointAngleCut = 0.9996; const Float_t kCausality0Cut = 0.19; const Float_t kLikelihood01Cut = 0.45; const Float_t kLikelihood1Cut = 0.5; const Float_t kCombinedCut = 0.55; // // TTreeSRedirector &cstream = *fDebugStreamer; Int_t ntracks = event->GetNumberOfTracks(); Int_t nitstracks = fTrackHypothesys.GetEntriesFast(); fOriginal.Expand(ntracks); fTrackHypothesys.Expand(ntracks); fBestHypothesys.Expand(ntracks); // AliHelix * helixes = new AliHelix[ntracks+2]; TObjArray trackarray(ntracks+2); //array with tracks - with vertex constrain TObjArray trackarrayc(ntracks+2); //array of "best tracks" - without vertex constrain TObjArray trackarrayl(ntracks+2); //array of "longest tracks" - without vertex constrain Bool_t * forbidden = new Bool_t [ntracks+2]; Int_t *itsmap = new Int_t [ntracks+2]; Float_t *dist = new Float_t[ntracks+2]; Float_t *normdist0 = new Float_t[ntracks+2]; Float_t *normdist1 = new Float_t[ntracks+2]; Float_t *normdist = new Float_t[ntracks+2]; Float_t *norm = new Float_t[ntracks+2]; Float_t *maxr = new Float_t[ntracks+2]; Float_t *minr = new Float_t[ntracks+2]; Float_t *minPointAngle= new Float_t[ntracks+2]; // AliV0 *pvertex = new AliV0; AliITStrackMI * dummy= new AliITStrackMI; dummy->SetLabel(0); AliITStrackMI trackat0; //temporary track for DCA calculation // Float_t primvertex[3]={GetX(),GetY(),GetZ()}; // // make ITS - ESD map // for (Int_t itrack=0;itrackGetESDtrack()->GetID(); itsmap[esdindex] = itrack; } // // create ITS tracks from ESD tracks if not done before // for (Int_t itrack=0;itrack=0) continue; AliITStrackMI * tpctrack = new AliITStrackMI(*(event->GetTrack(itrack))); //tpctrack->fD[0] = tpctrack->GetD(GetX(),GetY()); //tpctrack->fD[1] = tpctrack->GetZat(GetX())-GetZ(); tpctrack->GetDZ(GetX(),GetY(),GetZ(),tpctrack->GetDP()); //I.B. if (tpctrack->GetD(0)<20 && tpctrack->GetD(1)<20){ // tracks which can reach inner part of ITS // propagate track to outer its volume - with correction for material CorrectForTPCtoITSDeadZoneMaterial(tpctrack); } itsmap[itrack] = nitstracks; fOriginal.AddAt(tpctrack,nitstracks); nitstracks++; } // // fill temporary arrays // for (Int_t itrack=0;itrackGetTrack(itrack); Int_t itsindex = itsmap[itrack]; AliITStrackMI *original = (AliITStrackMI*)fOriginal.At(itsmap[itrack]); if (!original) continue; AliITStrackMI *bestConst = 0; AliITStrackMI *bestLong = 0; AliITStrackMI *best = 0; // // TObjArray * array = (TObjArray*) fTrackHypothesys.At(itsindex); Int_t hentries = (array==0) ? 0 : array->GetEntriesFast(); // Get best track with vertex constrain for (Int_t ih=0;ihAt(ih); if (!trackh->GetConstrain()) continue; if (!bestConst) bestConst = trackh; if (trackh->GetNumberOfClusters()>5.0){ bestConst = trackh; // full track - with minimal chi2 break; } if (trackh->GetNumberOfClusters()+trackh->GetNDeadZone()<=bestConst->GetNumberOfClusters()+bestConst->GetNDeadZone()) continue; bestConst = trackh; break; } // Get best long track without vertex constrain and best track without vertex constrain for (Int_t ih=0;ihAt(ih); if (trackh->GetConstrain()) continue; if (!best) best = trackh; if (!bestLong) bestLong = trackh; if (trackh->GetNumberOfClusters()>5.0){ bestLong = trackh; // full track - with minimal chi2 break; } if (trackh->GetNumberOfClusters()+trackh->GetNDeadZone()<=bestLong->GetNumberOfClusters()+bestLong->GetNDeadZone()) continue; bestLong = trackh; } if (!best) { best = original; bestLong = original; } //I.B. trackat0 = *bestLong; new (&trackat0) AliITStrackMI(*bestLong); Double_t xx,yy,zz,alpha; bestLong->GetGlobalXYZat(bestLong->GetX(),xx,yy,zz); alpha = TMath::ATan2(yy,xx); trackat0.Propagate(alpha,0); // calculate normalized distances to the vertex // Float_t ptfac = (1.+100.*TMath::Abs(trackat0.GetC())); if ( bestLong->GetNumberOfClusters()>3 ){ dist[itsindex] = trackat0.GetY(); norm[itsindex] = ptfac*TMath::Sqrt(trackat0.GetSigmaY2()); normdist0[itsindex] = TMath::Abs(trackat0.GetY()/norm[itsindex]); normdist1[itsindex] = TMath::Abs((trackat0.GetZ()-primvertex[2])/(ptfac*TMath::Sqrt(trackat0.GetSigmaZ2()))); normdist[itsindex] = TMath::Sqrt(normdist0[itsindex]*normdist0[itsindex]+normdist1[itsindex]*normdist1[itsindex]); if (!bestConst){ if (bestLong->GetNumberOfClusters()+bestLong->GetNDeadZone()<6) normdist[itsindex]*=2.; if (bestLong->GetNumberOfClusters()+bestLong->GetNDeadZone()<5) normdist[itsindex]*=2.; if (bestLong->GetNumberOfClusters()+bestLong->GetNDeadZone()<4) normdist[itsindex]*=2.; }else{ if (bestConst->GetNumberOfClusters()+bestConst->GetNDeadZone()<6) normdist[itsindex]*=1.5; if (bestConst->GetNumberOfClusters()+bestConst->GetNDeadZone()<5) normdist[itsindex]*=1.5; } } else{ if (bestConst&&bestConst->GetNumberOfClusters()+bestConst->GetNDeadZone()>4.5){ dist[itsindex] = bestConst->GetD(0); norm[itsindex] = bestConst->GetDnorm(0); normdist0[itsindex] = TMath::Abs(bestConst->GetD(0)/norm[itsindex]); normdist1[itsindex] = TMath::Abs(bestConst->GetD(0)/norm[itsindex]); normdist[itsindex] = TMath::Sqrt(normdist0[itsindex]*normdist0[itsindex]+normdist1[itsindex]*normdist1[itsindex]); }else{ dist[itsindex] = trackat0.GetY(); norm[itsindex] = ptfac*TMath::Sqrt(trackat0.GetSigmaY2()); normdist0[itsindex] = TMath::Abs(trackat0.GetY()/norm[itsindex]); normdist1[itsindex] = TMath::Abs((trackat0.GetZ()-primvertex[2])/(ptfac*TMath::Sqrt(trackat0.GetSigmaZ2()))); normdist[itsindex] = TMath::Sqrt(normdist0[itsindex]*normdist0[itsindex]+normdist1[itsindex]*normdist1[itsindex]); if (TMath::Abs(trackat0.GetTgl())>1.05){ if (normdist[itsindex]<3) forbidden[itsindex]=kTRUE; if (normdist[itsindex]>3) { minr[itsindex] = TMath::Max(Float_t(40.),minr[itsindex]); } } } } // //----------------------------------------------------------- //Forbid primary track candidates - // //treetr->SetAlias("forbidden0","Tr0.fN<4&&Tr1.fN+Tr1.fNDeadZone>4.5"); //treetr->SetAlias("forbidden1","ND<3&&Tr1.fN+Tr1.fNDeadZone>5.5"); //treetr->SetAlias("forbidden2","ND<2&&Tr1.fClIndex[0]>0&&Tr1.fClIndex[0]>0"); //treetr->SetAlias("forbidden3","ND<1&&Tr1.fClIndex[0]>0"); //treetr->SetAlias("forbidden4","ND<4&&Tr1.fNormChi2[0]<2"); //treetr->SetAlias("forbidden5","ND<5&&Tr1.fNormChi2[0]<1"); //----------------------------------------------------------- if (bestConst){ if (bestLong->GetNumberOfClusters()<4 && bestConst->GetNumberOfClusters()+bestConst->GetNDeadZone()>4.5) forbidden[itsindex]=kTRUE; if (normdist[itsindex]<3 && bestConst->GetNumberOfClusters()+bestConst->GetNDeadZone()>5.5) forbidden[itsindex]=kTRUE; if (normdist[itsindex]<2 && bestConst->GetClIndex(0)>0 && bestConst->GetClIndex(1)>0 ) forbidden[itsindex]=kTRUE; if (normdist[itsindex]<1 && bestConst->GetClIndex(0)>0) forbidden[itsindex]=kTRUE; if (normdist[itsindex]<4 && bestConst->GetNormChi2(0)<2) forbidden[itsindex]=kTRUE; if (normdist[itsindex]<5 && bestConst->GetNormChi2(0)<1) forbidden[itsindex]=kTRUE; if (bestConst->GetNormChi2(0)<2.5) { minPointAngle[itsindex]= 0.9999; maxr[itsindex] = 10; } } // //forbid daughter kink candidates // if (esdtrack->GetKinkIndex(0)>0) forbidden[itsindex] = kTRUE; Bool_t isElectron = kTRUE; Bool_t isProton = kTRUE; Double_t pid[5]; esdtrack->GetESDpid(pid); for (Int_t i=1;i<5;i++){ if (pid[0]2) forbidden[itsindex]=kFALSE; normdist[itsindex]*=-1; } // // Causality cuts in TPC volume // if (esdtrack->GetTPCdensity(0,10) >0.6) maxr[itsindex] = TMath::Min(Float_t(110),maxr[itsindex]); if (esdtrack->GetTPCdensity(10,30)>0.6) maxr[itsindex] = TMath::Min(Float_t(120),maxr[itsindex]); if (esdtrack->GetTPCdensity(20,40)>0.6) maxr[itsindex] = TMath::Min(Float_t(130),maxr[itsindex]); if (esdtrack->GetTPCdensity(30,50)>0.6) maxr[itsindex] = TMath::Min(Float_t(140),maxr[itsindex]); // if (esdtrack->GetTPCdensity(0,60)<0.4&&bestLong->GetNumberOfClusters()<3) minr[itsindex]=100; // // if (kFALSE){ cstream<<"Track"<< "Tr0.="<GetSign()>0) continue; AliITStrackMI *trackc0 = (AliITStrackMI*)trackarrayc.At(itrack0); // for (Int_t iesd1=0;iesd1GetSign()<0) continue; Bool_t isGold = kFALSE; if (TMath::Abs(TMath::Abs(btrack0->GetLabel())-TMath::Abs(btrack1->GetLabel()))==1){ isGold = kTRUE; } AliITStrackMI *trackc1 = (AliITStrackMI*)trackarrayc.At(itrack1); AliHelix &h1 = helixes[itrack0]; AliHelix &h2 = helixes[itrack1]; // // find linear distance Double_t rmin =0; // // // Double_t phase[2][2],radius[2]; Int_t points = h1.GetRPHIintersections(h2, phase, radius); if (points==0) continue; Double_t delta[2]={1000000,1000000}; rmin = radius[0]; h1.ParabolicDCA(h2,phase[0][0],phase[0][1],radius[0],delta[0]); if (points==2){ if (radius[1]TMath::Min(maxr[itrack0],maxr[itrack1])) continue; Float_t maxDist = TMath::Min(kMaxDist,Float_t(kMaxDist0+radiusC*kMaxDist1)); if (distance>maxDist) continue; Float_t pointAngle = h1.GetPointAngle(h2,phase[iphase],primvertex); if (pointAnglemaxDist) continue; // if (pvertex->GetRr()GetRr()>kMaxR) continue; AliITStrackMI * track0=btrack0; AliITStrackMI * track1=btrack1; // if (pvertex->GetRr()<3.5){ if (radiusC<3.5){ //use longest tracks inside the pipe track0 = (AliITStrackMI*)trackarrayl.At(itrack0); track1 = (AliITStrackMI*)trackarrayl.At(itrack1); } // // pvertex->SetParamN(*track0); pvertex->SetParamP(*track1); pvertex->Update(primvertex); pvertex->SetClusters(track0->ClIndex(),track1->ClIndex()); // register clusters if (pvertex->GetRr()GetRr()>kMaxR) continue; if (pvertex->GetV0CosineOfPointingAngle()GetDist2()>maxDist) continue; if (pvertex->GetDcaV0Daughters()>maxDist) continue; //Bo: pvertex->SetLab(0,track0->GetLabel()); //Bo: pvertex->SetLab(1,track1->GetLabel()); pvertex->SetIndex(0,track0->GetESDtrack()->GetID()); pvertex->SetIndex(1,track1->GetESDtrack()->GetID()); // AliITStrackMI * htrackc0 = trackc0 ? trackc0:dummy; AliITStrackMI * htrackc1 = trackc1 ? trackc1:dummy; // // TObjArray * array0b = (TObjArray*)fBestHypothesys.At(itrack0); if (!array0b&&pvertex->GetRr()<40 && TMath::Abs(track0->GetTgl())<1.1) { fCurrentEsdTrack = itrack0; FollowProlongationTree((AliITStrackMI*)fOriginal.At(itrack0),itrack0, kFALSE); } TObjArray * array1b = (TObjArray*)fBestHypothesys.At(itrack1); if (!array1b&&pvertex->GetRr()<40 && TMath::Abs(track1->GetTgl())<1.1) { fCurrentEsdTrack = itrack1; FollowProlongationTree((AliITStrackMI*)fOriginal.At(itrack1),itrack1, kFALSE); } // AliITStrackMI * track0b = (AliITStrackMI*)fOriginal.At(itrack0); AliITStrackMI * track1b = (AliITStrackMI*)fOriginal.At(itrack1); AliITStrackMI * track0l = (AliITStrackMI*)fOriginal.At(itrack0); AliITStrackMI * track1l = (AliITStrackMI*)fOriginal.At(itrack1); Float_t minchi2before0=16; Float_t minchi2before1=16; Float_t minchi2after0 =16; Float_t minchi2after1 =16; Double_t xrp[3]; pvertex->GetXYZ(xrp[0],xrp[1],xrp[2]); //I.B. Int_t maxLayer = GetNearestLayer(xrp); //I.B. if (array0b) for (Int_t i=0;i<5;i++){ // best track after vertex AliITStrackMI * btrack = (AliITStrackMI*)array0b->At(i); if (!btrack) continue; if (btrack->GetNumberOfClusters()>track0l->GetNumberOfClusters()) track0l = btrack; // if (btrack->fXGetRr()-2.-0.5/(0.1+pvertex->GetAnglep()[2])) { if (btrack->GetX()GetRr()-2.) { if ( (maxLayer>i+2|| (i==0)) && btrack->GetNumberOfClusters()==(6-i)&&i<3){ Float_t sumchi2= 0; Float_t sumn = 0; if (maxLayer<3){ // take prim vertex as additional measurement if (normdist[itrack0]>0 && htrackc0){ sumchi2 += TMath::Min((3.-maxLayer)*normdist[itrack0]*normdist[itrack0],16.); }else{ sumchi2 += TMath::Min((3.-maxLayer)*(3*normdist[itrack0]*normdist[itrack0]+3.),16.); } sumn += 3-maxLayer; } for (Int_t ilayer=i;ilayerGetClIndex(ilayer)){ sumchi2+=25; continue; }else{ Int_t c=( btrack->GetClIndex(ilayer) & 0x0fffffff); for (Int_t itrack=0;itrack<4;itrack++){ if (fgLayers[ilayer].GetClusterTracks(itrack,c)>=0 && fgLayers[ilayer].GetClusterTracks(itrack,c)!=itrack0){ sumchi2+=18.; //shared cluster break; } } sumchi2+=btrack->GetDy(ilayer)*btrack->GetDy(ilayer)/(btrack->GetSigmaY(ilayer)*btrack->GetSigmaY(ilayer)); sumchi2+=btrack->GetDz(ilayer)*btrack->GetDz(ilayer)/(btrack->GetSigmaZ(ilayer)*btrack->GetSigmaZ(ilayer)); } } sumchi2/=sumn; if (sumchi2GetNormChi2(i); break; } if (array1b) for (Int_t i=0;i<5;i++){ // best track after vertex AliITStrackMI * btrack = (AliITStrackMI*)array1b->At(i); if (!btrack) continue; if (btrack->GetNumberOfClusters()>track1l->GetNumberOfClusters()) track1l = btrack; // if (btrack->fXGetRr()-2-0.5/(0.1+pvertex->GetAnglep()[2])){ if (btrack->GetX()GetRr()-2){ if ((maxLayer>i+2 || (i==0))&&btrack->GetNumberOfClusters()==(6-i)&&(i<3)){ Float_t sumchi2= 0; Float_t sumn = 0; if (maxLayer<3){ // take prim vertex as additional measurement if (normdist[itrack1]>0 && htrackc1){ sumchi2 += TMath::Min((3.-maxLayer)*normdist[itrack1]*normdist[itrack1],16.); }else{ sumchi2 += TMath::Min((3.-maxLayer)*(3*normdist[itrack1]*normdist[itrack1]+3.),16.); } sumn += 3-maxLayer; } for (Int_t ilayer=i;ilayerGetClIndex(ilayer)){ sumchi2+=30; continue; }else{ Int_t c=( btrack->GetClIndex(ilayer) & 0x0fffffff); for (Int_t itrack=0;itrack<4;itrack++){ if (fgLayers[ilayer].GetClusterTracks(itrack,c)>=0 && fgLayers[ilayer].GetClusterTracks(itrack,c)!=itrack1){ sumchi2+=18.; //shared cluster break; } } sumchi2+=btrack->GetDy(ilayer)*btrack->GetDy(ilayer)/(btrack->GetSigmaY(ilayer)*btrack->GetSigmaY(ilayer)); sumchi2+=btrack->GetDz(ilayer)*btrack->GetDz(ilayer)/(btrack->GetSigmaZ(ilayer)*btrack->GetSigmaZ(ilayer)); } } sumchi2/=sumn; if (sumchi2GetNormChi2(i); break; } // // position resolution - used for DCA cut Float_t sigmad = track0b->GetSigmaY2()+track0b->GetSigmaZ2()+track1b->GetSigmaY2()+track1b->GetSigmaZ2()+ (track0b->GetX()-pvertex->GetRr())*(track0b->GetX()-pvertex->GetRr())*(track0b->GetSigmaSnp2()+track0b->GetSigmaTgl2())+ (track1b->GetX()-pvertex->GetRr())*(track1b->GetX()-pvertex->GetRr())*(track1b->GetSigmaSnp2()+track1b->GetSigmaTgl2()); sigmad =TMath::Sqrt(sigmad)+0.04; if (pvertex->GetRr()>50){ Double_t cov0[15],cov1[15]; track0b->GetESDtrack()->GetInnerExternalCovariance(cov0); track1b->GetESDtrack()->GetInnerExternalCovariance(cov1); sigmad = cov0[0]+cov0[2]+cov1[0]+cov1[2]+ (80.-pvertex->GetRr())*(80.-pvertex->GetRr())*(cov0[5]+cov0[9])+ (80.-pvertex->GetRr())*(80.-pvertex->GetRr())*(cov1[5]+cov1[9]); sigmad =TMath::Sqrt(sigmad)+0.05; } // AliV0 vertex2; vertex2.SetParamN(*track0b); vertex2.SetParamP(*track1b); vertex2.Update(primvertex); //Bo: if (vertex2.GetDist2()<=pvertex->GetDist2()&&(vertex2.GetV0CosineOfPointingAngle()>=pvertex->GetV0CosineOfPointingAngle())){ if (vertex2.GetDcaV0Daughters()<=pvertex->GetDcaV0Daughters()&&(vertex2.GetV0CosineOfPointingAngle()>=pvertex->GetV0CosineOfPointingAngle())){ pvertex->SetParamN(*track0b); pvertex->SetParamP(*track1b); pvertex->Update(primvertex); pvertex->SetClusters(track0b->ClIndex(),track1b->ClIndex()); // register clusters pvertex->SetIndex(0,track0->GetESDtrack()->GetID()); pvertex->SetIndex(1,track1->GetESDtrack()->GetID()); } pvertex->SetDistSigma(sigmad); //Bo: pvertex->SetDistNorm(pvertex->GetDist2()/sigmad); pvertex->SetNormDCAPrim(normdist[itrack0],normdist[itrack1]); // // define likelihhod and causalities // Float_t pa0=1, pa1=1, pb0=0.26, pb1=0.26; if (maxLayer<1){ Float_t fnorm0 = normdist[itrack0]; if (fnorm0<0) fnorm0*=-3; Float_t fnorm1 = normdist[itrack1]; if (fnorm1<0) fnorm1*=-3; if (pvertex->GetAnglep()[2]>0.1 || (pvertex->GetRr()<10.5)&& pvertex->GetAnglep()[2]>0.05 || pvertex->GetRr()<3){ pb0 = TMath::Exp(-TMath::Min(fnorm0,Float_t(16.))/12.); pb1 = TMath::Exp(-TMath::Min(fnorm1,Float_t(16.))/12.); } pvertex->SetChi2Before(normdist[itrack0]); pvertex->SetChi2After(normdist[itrack1]); pvertex->SetNAfter(0); pvertex->SetNBefore(0); }else{ pvertex->SetChi2Before(minchi2before0); pvertex->SetChi2After(minchi2before1); if (pvertex->GetAnglep()[2]>0.1 || ( pvertex->GetRr()<10.5 && pvertex->GetAnglep()[2]>0.05) || pvertex->GetRr()<3){ pb0 = TMath::Exp(-TMath::Min(minchi2before0,Float_t(16))/12.); pb1 = TMath::Exp(-TMath::Min(minchi2before1,Float_t(16))/12.); } pvertex->SetNAfter(maxLayer); pvertex->SetNBefore(maxLayer); } if (pvertex->GetRr()<90){ pa0 *= TMath::Min(track0->GetESDtrack()->GetTPCdensity(0,60),Double_t(1.)); pa1 *= TMath::Min(track1->GetESDtrack()->GetTPCdensity(0,60),Double_t(1.)); } if (pvertex->GetRr()<20){ pa0 *= (0.2+TMath::Exp(-TMath::Min(minchi2after0,Float_t(16))/8.))/1.2; pa1 *= (0.2+TMath::Exp(-TMath::Min(minchi2after1,Float_t(16))/8.))/1.2; } // pvertex->SetCausality(pb0,pb1,pa0,pa1); // // Likelihood calculations - apply cuts // Bool_t v0OK = kTRUE; Float_t p12 = pvertex->GetParamP()->GetParameter()[4]*pvertex->GetParamP()->GetParameter()[4]; p12 += pvertex->GetParamN()->GetParameter()[4]*pvertex->GetParamN()->GetParameter()[4]; p12 = TMath::Sqrt(p12); // "mean" momenta Float_t sigmap0 = 0.0001+0.001/(0.1+pvertex->GetRr()); Float_t sigmap = 0.5*sigmap0*(0.6+0.4*p12); // "resolution: of point angle - as a function of radius and momenta Float_t causalityA = (1.0-pvertex->GetCausalityP()[0])*(1.0-pvertex->GetCausalityP()[1]); Float_t causalityB = TMath::Sqrt(TMath::Min(pvertex->GetCausalityP()[2],Double_t(0.7))* TMath::Min(pvertex->GetCausalityP()[3],Double_t(0.7))); // //Bo: Float_t likelihood0 = (TMath::Exp(-pvertex->GetDistNorm())+0.1) *(pvertex->GetDist2()<0.5)*(pvertex->GetDistNorm()<5); Float_t lDistNorm = pvertex->GetDcaV0Daughters()/pvertex->GetDistSigma(); Float_t likelihood0 = (TMath::Exp(-lDistNorm)+0.1) *(pvertex->GetDcaV0Daughters()<0.5)*(lDistNorm<5); Float_t likelihood1 = TMath::Exp(-(1.0001-pvertex->GetV0CosineOfPointingAngle())/sigmap)+ 0.4*TMath::Exp(-(1.0001-pvertex->GetV0CosineOfPointingAngle())/(4.*sigmap))+ 0.4*TMath::Exp(-(1.0001-pvertex->GetV0CosineOfPointingAngle())/(8.*sigmap))+ 0.1*TMath::Exp(-(1.0001-pvertex->GetV0CosineOfPointingAngle())/0.01); // if (causalityAGetLabel())-TMath::Abs(track1->GetLabel()))==1; cstream<<"It0"<< "Tr0.="<SetStatus(0); // if (rejectBase) { // pvertex->SetStatus(-100); //} if (pvertex->GetV0CosineOfPointingAngle()>kMinPointAngle2) { //Bo: pvertex->SetESDindexes(track0->GetESDtrack()->GetID(),track1->GetESDtrack()->GetID()); pvertex->SetIndex(0,track0->GetESDtrack()->GetID());//Bo: consistency 0 for neg pvertex->SetIndex(1,track1->GetESDtrack()->GetID());//Bo: consistency 1 for pos if (v0OK){ // AliV0vertex vertexjuri(*track0,*track1); // vertexjuri.SetESDindexes(track0->fESDtrack->GetID(),track1->fESDtrack->GetID()); // event->AddV0(&vertexjuri); pvertex->SetStatus(100); } pvertex->SetOnFlyStatus(kTRUE); pvertex->ChangeMassHypothesis(kK0Short); event->AddV0(pvertex); } } } // // // delete temporary arrays // delete[] forbidden; delete[] minPointAngle; delete[] maxr; delete[] minr; delete[] norm; delete[] normdist; delete[] normdist1; delete[] normdist0; delete[] dist; delete[] itsmap; delete[] helixes; delete pvertex; } //------------------------------------------------------------------------ void AliITStrackerMI::RefitV02(AliESDEvent *event) { // //try to refit V0s in the third path of the reconstruction // TTreeSRedirector &cstream = *fDebugStreamer; // Int_t nv0s = event->GetNumberOfV0s(); Float_t primvertex[3]={GetX(),GetY(),GetZ()}; AliV0 v0temp; for (Int_t iv0 = 0; iv0GetV0(iv0); if (!v0mi) continue; Int_t itrack0 = v0mi->GetIndex(0); Int_t itrack1 = v0mi->GetIndex(1); AliESDtrack *esd0 = event->GetTrack(itrack0); AliESDtrack *esd1 = event->GetTrack(itrack1); if (!esd0||!esd1) continue; AliITStrackMI tpc0(*esd0); AliITStrackMI tpc1(*esd1); Double_t x,y,z; v0mi->GetXYZ(x,y,z); //I.B. Double_t alpha =TMath::ATan2(y,x); //I.B. if (v0mi->GetRr()>85){ if (tpc0.Propagate(alpha,v0mi->GetRr())&&tpc1.Propagate(alpha,v0mi->GetRr())){ v0temp.SetParamN(tpc0); v0temp.SetParamP(tpc1); v0temp.Update(primvertex); if (kFALSE) cstream<<"Refit"<< "V0.="<GetDist2() || v0temp.GetV0CosineOfPointingAngle()>v0mi->GetV0CosineOfPointingAngle()){ if (v0temp.GetDcaV0Daughters()GetDcaV0Daughters() || v0temp.GetV0CosineOfPointingAngle()>v0mi->GetV0CosineOfPointingAngle()){ v0mi->SetParamN(tpc0); v0mi->SetParamP(tpc1); v0mi->Update(primvertex); } } continue; } if (v0mi->GetRr()>35){ CorrectForTPCtoITSDeadZoneMaterial(&tpc0); CorrectForTPCtoITSDeadZoneMaterial(&tpc1); if (tpc0.Propagate(alpha,v0mi->GetRr())&&tpc1.Propagate(alpha,v0mi->GetRr())){ v0temp.SetParamN(tpc0); v0temp.SetParamP(tpc1); v0temp.Update(primvertex); if (kFALSE) cstream<<"Refit"<< "V0.="<GetDist2() || v0temp.GetV0CosineOfPointingAngle()>v0mi->GetV0CosineOfPointingAngle()){ if (v0temp.GetDcaV0Daughters()GetDcaV0Daughters() || v0temp.GetV0CosineOfPointingAngle()>v0mi->GetV0CosineOfPointingAngle()){ v0mi->SetParamN(tpc0); v0mi->SetParamP(tpc1); v0mi->Update(primvertex); } } continue; } CorrectForTPCtoITSDeadZoneMaterial(&tpc0); CorrectForTPCtoITSDeadZoneMaterial(&tpc1); // if (tpc0.Propagate(alpha,v0mi->GetRr())&&tpc1.Propagate(alpha,v0mi->GetRr())){ if (RefitAt(v0mi->GetRr(),&tpc0, v0mi->GetClusters(0)) && RefitAt(v0mi->GetRr(),&tpc1, v0mi->GetClusters(1))){ v0temp.SetParamN(tpc0); v0temp.SetParamP(tpc1); v0temp.Update(primvertex); if (kFALSE) cstream<<"Refit"<< "V0.="<GetDist2() || v0temp.GetV0CosineOfPointingAngle()>v0mi->GetV0CosineOfPointingAngle()){ if (v0temp.GetDcaV0Daughters()GetDcaV0Daughters() || v0temp.GetV0CosineOfPointingAngle()>v0mi->GetV0CosineOfPointingAngle()){ v0mi->SetParamN(tpc0); v0mi->SetParamP(tpc1); v0mi->Update(primvertex); } } } } //------------------------------------------------------------------------ void AliITStrackerMI::BuildMaterialLUT(TString material) { //-------------------------------------------------------------------- // Fill a look-up table with mean material //-------------------------------------------------------------------- Int_t n=1000; Double_t mparam[7]; Double_t point1[3],point2[3]; Double_t phi,cosphi,sinphi,z; // 0-5 layers, 6 pipe, 7-8 shields Double_t rmin[9]={ 3.5, 5.5,13.0,22.0,35.0,41.0, 2.0, 7.5,25.0}; Double_t rmax[9]={ 5.5, 7.3,17.0,26.0,41.0,47.0, 3.0,10.5,30.0}; Int_t ifirst=0,ilast=0; if(material.Contains("Pipe")) { ifirst=6; ilast=6; } else if(material.Contains("Shields")) { ifirst=7; ilast=8; } else if(material.Contains("Layers")) { ifirst=0; ilast=5; } else { Error("BuildMaterialLUT","Wrong layer name\n"); } for(Int_t imat=ifirst; imat<=ilast; imat++) { Double_t param[5]={0.,0.,0.,0.,0.}; for (Int_t i=0; iRndm(); cosphi = TMath::Cos(phi); sinphi = TMath::Sin(phi); z = 14.*(-1.+2.*gRandom->Rndm()); // SPD barrel point1[0] = rmin[imat]*cosphi; point1[1] = rmin[imat]*sinphi; point1[2] = z; point2[0] = rmax[imat]*cosphi; point2[1] = rmax[imat]*sinphi; point2[2] = z; AliTracker::MeanMaterialBudget(point1,point2,mparam); for(Int_t j=0;j<5;j++) param[j]+=mparam[j]; } for(Int_t j=0;j<5;j++) param[j]/=(Float_t)n; if(imat<=5) { fxOverX0Layer[imat] = param[1]; fxTimesRhoLayer[imat] = param[0]*param[4]; } else if(imat==6) { fxOverX0Pipe = param[1]; fxTimesRhoPipe = param[0]*param[4]; } else if(imat==7) { fxOverX0Shield[0] = param[1]; fxTimesRhoShield[0] = param[0]*param[4]; } else if(imat==8) { fxOverX0Shield[1] = param[1]; fxTimesRhoShield[1] = param[0]*param[4]; } } /* printf("%s\n",material.Data()); printf("%f %f\n",fxOverX0Pipe,fxTimesRhoPipe); printf("%f %f\n",fxOverX0Shield[0],fxTimesRhoShield[0]); printf("%f %f\n",fxOverX0Shield[1],fxTimesRhoShield[1]); printf("%f %f\n",fxOverX0Layer[0],fxTimesRhoLayer[0]); printf("%f %f\n",fxOverX0Layer[1],fxTimesRhoLayer[1]); printf("%f %f\n",fxOverX0Layer[2],fxTimesRhoLayer[2]); printf("%f %f\n",fxOverX0Layer[3],fxTimesRhoLayer[3]); printf("%f %f\n",fxOverX0Layer[4],fxTimesRhoLayer[4]); printf("%f %f\n",fxOverX0Layer[5],fxTimesRhoLayer[5]); */ return; } //------------------------------------------------------------------------ Int_t AliITStrackerMI::CorrectForPipeMaterial(AliITStrackMI *t, TString direction) { //------------------------------------------------------------------- // Propagate beyond beam pipe and correct for material // (material budget in different ways according to fUseTGeo value) //------------------------------------------------------------------- // Define budget mode: // 0: material from AliITSRecoParam (hard coded) // 1: material from TGeo (on the fly) // 2: material from lut // 3: material from TGeo (same for all hypotheses) Int_t mode; switch(fUseTGeo) { case 0: mode=0; break; case 1: mode=1; break; case 2: mode=2; break; case 3: if(fTrackingPhase.Contains("Clusters2Tracks")) { mode=3; } else { mode=1; } break; case 4: if(fTrackingPhase.Contains("Clusters2Tracks")) { mode=3; } else { mode=2; } break; default: mode=0; break; } if(fTrackingPhase.Contains("Default")) mode=0; Int_t index=fCurrentEsdTrack; Float_t dir = (direction.Contains("inward") ? 1. : -1.); Double_t rToGo=(dir>0 ? AliITSRecoParam::GetrInsidePipe() : AliITSRecoParam::GetrOutsidePipe()); Double_t xToGo; t->GetLocalXat(rToGo,xToGo); Double_t xOverX0,x0,lengthTimesMeanDensity; Bool_t anglecorr=kTRUE; switch(mode) { case 0: xOverX0 = AliITSRecoParam::GetdPipe(); x0 = AliITSRecoParam::GetX0Be(); lengthTimesMeanDensity = xOverX0*x0; break; case 1: if (!t->PropagateToTGeo(xToGo,1)) return 0; return 1; break; case 2: if(fxOverX0Pipe<0) BuildMaterialLUT("Pipe"); xOverX0 = fxOverX0Pipe; lengthTimesMeanDensity = fxTimesRhoPipe; break; case 3: if(!fxOverX0PipeTrks || index<0 || index>=fNtracks) Error("CorrectForPipeMaterial","Incorrect usage of UseTGeo option!\n"); if(fxOverX0PipeTrks[index]<0) { if (!t->PropagateToTGeo(xToGo,1,xOverX0,lengthTimesMeanDensity)) return 0; Double_t angle=TMath::Sqrt((1.+t->GetTgl()*t->GetTgl())/ (1.-t->GetSnp()*t->GetSnp())); fxOverX0PipeTrks[index] = TMath::Abs(xOverX0)/angle; fxTimesRhoPipeTrks[index] = TMath::Abs(lengthTimesMeanDensity)/angle; return 1; } xOverX0 = fxOverX0PipeTrks[index]; lengthTimesMeanDensity = fxTimesRhoPipeTrks[index]; break; } lengthTimesMeanDensity *= dir; if (!t->AliExternalTrackParam::PropagateTo(xToGo,GetBz())) return 0; if (!t->CorrectForMeanMaterial(xOverX0,lengthTimesMeanDensity,anglecorr)) return 0; return 1; } //------------------------------------------------------------------------ Int_t AliITStrackerMI::CorrectForShieldMaterial(AliITStrackMI *t, TString shield, TString direction) { //------------------------------------------------------------------- // Propagate beyond SPD or SDD shield and correct for material // (material budget in different ways according to fUseTGeo value) //------------------------------------------------------------------- // Define budget mode: // 0: material from AliITSRecoParam (hard coded) // 1: material from TGeo (on the fly) // 2: material from lut // 3: material from TGeo (same for all hypotheses) Int_t mode; switch(fUseTGeo) { case 0: mode=0; break; case 1: mode=1; break; case 2: mode=2; break; case 3: if(fTrackingPhase.Contains("Clusters2Tracks")) { mode=3; } else { mode=1; } break; case 4: if(fTrackingPhase.Contains("Clusters2Tracks")) { mode=3; } else { mode=2; } break; default: mode=0; break; } if(fTrackingPhase.Contains("Default")) mode=0; Float_t dir = (direction.Contains("inward") ? 1. : -1.); Double_t rToGo; Int_t shieldindex=0; if (shield.Contains("SDD")) { // SDDouter rToGo=(dir>0 ? AliITSRecoParam::GetrInsideShield(1) : AliITSRecoParam::GetrOutsideShield(1)); shieldindex=1; } else if (shield.Contains("SPD")) { // SPDouter rToGo=(dir>0 ? AliITSRecoParam::GetrInsideShield(0) : AliITSRecoParam::GetrOutsideShield(0)); shieldindex=0; } else { Error("CorrectForShieldMaterial"," Wrong shield name\n"); return 0; } Double_t xToGo; t->GetLocalXat(rToGo,xToGo); Int_t index=2*fCurrentEsdTrack+shieldindex; Double_t xOverX0,x0,lengthTimesMeanDensity; Bool_t anglecorr=kTRUE; switch(mode) { case 0: xOverX0 = AliITSRecoParam::Getdshield(shieldindex); x0 = AliITSRecoParam::GetX0shield(shieldindex); lengthTimesMeanDensity = xOverX0*x0; break; case 1: if (!t->PropagateToTGeo(xToGo,1)) return 0; return 1; break; case 2: if(fxOverX0Shield[shieldindex]<0) BuildMaterialLUT("Shields"); xOverX0 = fxOverX0Shield[shieldindex]; lengthTimesMeanDensity = fxTimesRhoShield[shieldindex]; break; case 3: if(!fxOverX0ShieldTrks || index<0 || index>=2*fNtracks) Error("CorrectForShieldMaterial","Incorrect usage of UseTGeo option!\n"); if(fxOverX0ShieldTrks[index]<0) { if (!t->PropagateToTGeo(xToGo,1,xOverX0,lengthTimesMeanDensity)) return 0; Double_t angle=TMath::Sqrt((1.+t->GetTgl()*t->GetTgl())/ (1.-t->GetSnp()*t->GetSnp())); fxOverX0ShieldTrks[index] = TMath::Abs(xOverX0)/angle; fxTimesRhoShieldTrks[index] = TMath::Abs(lengthTimesMeanDensity)/angle; return 1; } xOverX0 = fxOverX0ShieldTrks[index]; lengthTimesMeanDensity = fxTimesRhoShieldTrks[index]; break; } lengthTimesMeanDensity *= dir; if (!t->AliExternalTrackParam::PropagateTo(xToGo,GetBz())) return 0; if (!t->CorrectForMeanMaterial(xOverX0,lengthTimesMeanDensity,anglecorr)) return 0; return 1; } //------------------------------------------------------------------------ Int_t AliITStrackerMI::CorrectForLayerMaterial(AliITStrackMI *t, Int_t layerindex, Double_t oldGlobXYZ[3], TString direction) { //------------------------------------------------------------------- // Propagate beyond layer and correct for material // (material budget in different ways according to fUseTGeo value) //------------------------------------------------------------------- // Define budget mode: // 0: material from AliITSRecoParam (hard coded) // 1: material from TGeo (on the fly) // 2: material from lut // 3: material from TGeo (same for all hypotheses) Int_t mode; switch(fUseTGeo) { case 0: mode=0; break; case 1: mode=1; break; case 2: mode=2; break; case 3: if(fTrackingPhase.Contains("Clusters2Tracks")) { mode=3; } else { mode=1; } break; case 4: if(fTrackingPhase.Contains("Clusters2Tracks")) { mode=3; } else { mode=2; } break; default: mode=0; break; } if(fTrackingPhase.Contains("Default")) mode=0; Float_t dir = (direction.Contains("inward") ? 1. : -1.); Double_t r=fgLayers[layerindex].GetR(); Double_t deltar=(layerindex<2 ? 0.10*r : 0.05*r); Double_t rToGo=TMath::Sqrt(t->GetX()*t->GetX()+t->GetY()*t->GetY())-deltar*dir; Double_t xToGo; t->GetLocalXat(rToGo,xToGo); Int_t index=6*fCurrentEsdTrack+layerindex; // Bring the track beyond the material if (!t->AliExternalTrackParam::PropagateTo(xToGo,GetBz())) return 0; Double_t globXYZ[3]; t->GetXYZ(globXYZ); Double_t xOverX0=0.0,x0=0.0,lengthTimesMeanDensity=0.0; Double_t mparam[7]; Bool_t anglecorr=kTRUE; switch(mode) { case 0: xOverX0 = fgLayers[layerindex].GetThickness(t->GetY(),t->GetZ(),x0); lengthTimesMeanDensity = xOverX0*x0; break; case 1: AliTracker::MeanMaterialBudget(oldGlobXYZ,globXYZ,mparam); if(mparam[1]>900000) return 0; xOverX0=mparam[1]; lengthTimesMeanDensity=mparam[0]*mparam[4]; anglecorr=kFALSE; break; case 2: if(fxOverX0Layer[layerindex]<0) BuildMaterialLUT("Layers"); xOverX0 = fxOverX0Layer[layerindex]; lengthTimesMeanDensity = fxTimesRhoLayer[layerindex]; break; case 3: if(!fxOverX0LayerTrks || index<0 || index>=6*fNtracks) Error("CorrectForLayerMaterial","Incorrect usage of UseTGeo option!\n"); if(fxOverX0LayerTrks[index]<0) { AliTracker::MeanMaterialBudget(oldGlobXYZ,globXYZ,mparam); if(mparam[1]>900000) return 0; Double_t angle=TMath::Sqrt((1.+t->GetTgl()*t->GetTgl())/ (1.-t->GetSnp()*t->GetSnp())); xOverX0=mparam[1]/angle; lengthTimesMeanDensity=mparam[0]*mparam[4]/angle; fxOverX0LayerTrks[index] = TMath::Abs(xOverX0); fxTimesRhoLayerTrks[index] = TMath::Abs(lengthTimesMeanDensity); } xOverX0 = fxOverX0LayerTrks[index]; lengthTimesMeanDensity = fxTimesRhoLayerTrks[index]; break; } lengthTimesMeanDensity *= dir; if (!t->CorrectForMeanMaterial(xOverX0,lengthTimesMeanDensity,anglecorr)) return 0; return 1; } //------------------------------------------------------------------------ void AliITStrackerMI::MakeTrksMaterialLUT(Int_t ntracks) { //----------------------------------------------------------------- // Initialize LUT for storing material for each prolonged track //----------------------------------------------------------------- fxOverX0PipeTrks = new Float_t[ntracks]; fxTimesRhoPipeTrks = new Float_t[ntracks]; fxOverX0ShieldTrks = new Float_t[ntracks*2]; fxTimesRhoShieldTrks = new Float_t[ntracks*2]; fxOverX0LayerTrks = new Float_t[ntracks*6]; fxTimesRhoLayerTrks = new Float_t[ntracks*6]; for(Int_t i=0; i 0: // return 1: the user requested to skip a layer // return 2: track outside z acceptance of SSD/SDD and will cross both SPD //----------------------------------------------------------------- if (AliITSReconstructor::GetRecoParam()->GetLayersToSkip(ilayer)) return 1; if (idet<0 && ilayer>1 && AliITSReconstructor::GetRecoParam()->GetExtendedEtaAcceptance()) { // check if track will cross SPD outer layer Double_t phiAtSPD2,zAtSPD2; if (track->GetPhiZat(fgLayers[1].GetR(),phiAtSPD2,zAtSPD2)) { if (TMath::Abs(zAtSPD2)<2.*AliITSRecoParam::GetSPDdetzlength()) return 2; } } return 0; } //------------------------------------------------------------------------ Int_t AliITStrackerMI::CheckDeadZone(/*AliITStrackMI *track,*/ Int_t ilayer,Int_t idet, Double_t zmin,Double_t zmax/*,Double_t ymin,Double_t ymax*/) const { //----------------------------------------------------------------- // This method is used to decide whether to allow a prolongation // without clusters, because there is a dead zone in the road. // In this case the return value is > 0: // return 1: dead zone at z=0,+-7cm in SPD // return 2: dead area from the OCDB // NOT YET IMPLEMENTED //----------------------------------------------------------------- // check dead zones at z=0,+-7cm in the SPD if (ilayer<2 && !AliITSReconstructor::GetRecoParam()->GetAddVirtualClustersInDeadZone()) { Double_t zmindead[3]={fSPDdetzcentre[0] + 0.5*AliITSRecoParam::GetSPDdetzlength(), fSPDdetzcentre[1] + 0.5*AliITSRecoParam::GetSPDdetzlength(), fSPDdetzcentre[2] + 0.5*AliITSRecoParam::GetSPDdetzlength()}; Double_t zmaxdead[3]={fSPDdetzcentre[1] - 0.5*AliITSRecoParam::GetSPDdetzlength(), fSPDdetzcentre[2] - 0.5*AliITSRecoParam::GetSPDdetzlength(), fSPDdetzcentre[3] - 0.5*AliITSRecoParam::GetSPDdetzlength()}; for (Int_t i=0; i<3; i++) if (zminzmindead[i]) return 1; } // check dead zones from OCDB if (!AliITSReconstructor::GetRecoParam()->GetUseDeadZonesFromOCDB()) return 0; if(idet<0) return 0; // look in OCDB (only entire dead modules for the moment) if (ilayer==0 || ilayer==1) { // SPD AliCDBEntry* cdbEntry = AliCDBManager::Instance()->Get("ITS/Calib/SPDDead"); if (!cdbEntry) { Error("CheckDeadZone","Cannot get CDB entry for SPD\n"); return 0; } TObjArray* spdEntry = (TObjArray*)cdbEntry->GetObject(); if (!spdEntry) { Error("CheckDeadZone","Cannot get CDB entry for SPD\n"); return 0; } if(ilayer==1) idet += AliITSgeomTGeo::GetNLadders(1)*AliITSgeomTGeo::GetNDetectors(1); //printf("SPD det: %d\n",idet); AliITSCalibrationSPD *calibSPD = (AliITSCalibrationSPD*)spdEntry->At(idet); if (calibSPD->IsBad()) return 2; } else if (ilayer==2 || ilayer==3) { // SDD AliCDBEntry* cdbEntry = AliCDBManager::Instance()->Get("ITS/Calib/CalibSDD"); if (!cdbEntry) { Error("CheckDeadZone","Cannot get CDB entry for SDD\n"); return 0; } TObjArray* sddEntry = (TObjArray*)cdbEntry->GetObject(); if (!sddEntry) { Error("CheckDeadZone","Cannot get CDB entry for SDD\n"); return 0; } if(ilayer==3) idet += AliITSgeomTGeo::GetNLadders(3)*AliITSgeomTGeo::GetNDetectors(3); //printf("SDD det: %d\n",idet); AliITSCalibrationSDD *calibSDD = (AliITSCalibrationSDD*)sddEntry->At(idet); if (calibSDD->IsBad()) return 2; } else if (ilayer==4 || ilayer==5) { // SSD } else { Error("CheckDeadZone","Wrong layer number\n"); if(ilayer==5) idet += AliITSgeomTGeo::GetNLadders(5)*AliITSgeomTGeo::GetNDetectors(5); return 0; } return 0; } //------------------------------------------------------------------------ Bool_t AliITStrackerMI::LocalModuleCoord(Int_t ilayer,Int_t idet, AliITStrackMI *track, Float_t &xloc,Float_t &zloc) const { //----------------------------------------------------------------- // Gives position of track in local module ref. frame //----------------------------------------------------------------- xloc=0.; zloc=0.; if(idet<0) return kFALSE; Int_t ndet=AliITSgeomTGeo::GetNDetectors(ilayer+1); // layers from 1 to 6 Int_t lad = Int_t(idet/ndet) + 1; Int_t det = idet - (lad-1)*ndet + 1; Double_t xyzGlob[3],xyzLoc[3]; track->GetXYZ(xyzGlob); AliITSgeomTGeo::GlobalToLocal(ilayer+1,lad,det,xyzGlob,xyzLoc); xloc = (Float_t)xyzLoc[0]; zloc = (Float_t)xyzLoc[2]; return kTRUE; } //------------------------------------------------------------------------ Bool_t AliITStrackerMI::IsOKForPlaneEff(AliITStrackMI* track, Int_t ilayer) const { // Method still to be implemented: // // it will apply a pre-selection to obtain good quality tracks. // Here also you will have the possibility to put a control on the // impact point of the track on the basic block, in order to exclude border regions // this will be done by calling a proper method of the AliITSPlaneEff class. // // input: AliITStrackMI* track, ilayer= layer number [0,5] // output: Bool_t -> kTRUE 2f usable track, kFALSE if not usable. if(!fPlaneEff) {AliWarning("IsOKForPlaneEff: null pointer to AliITSPlaneEff"); return kFALSE;} AliITSlayer &layer=fgLayers[ilayer]; Double_t r=layer.GetR(); //AliITStrackV2 tmp(*track); AliITStrackMI tmp(*track); // detector number Double_t phi,z; if (!tmp.GetPhiZat(r,phi,z)) return kFALSE; Int_t idet=layer.FindDetectorIndex(phi,z); if(idet<0) { AliInfo(Form("cannot find detector")); return kFALSE;} // here check if it has good Chi Square. //propagate to the intersection with the detector plane const AliITSdetector &det=layer.GetDetector(idet); if (!tmp.Propagate(det.GetPhi(),det.GetR())) return kFALSE; Float_t locx; // Float_t locz; // LocalModuleCoord(ilayer,idet,&tmp,locx,locz); UInt_t key=fPlaneEff->GetKeyFromDetLocCoord(ilayer,idet,locx,locz); if(key>fPlaneEff->Nblock()) return kFALSE; Float_t blockXmn,blockXmx,blockZmn,blockZmx; if (!fPlaneEff->GetBlockBoundaries(key,blockXmn,blockXmx,blockZmn,blockZmx)) return kFALSE; // transform Local boundaries of the basic block into // Global (i.e. ALICE, not tracking reference) coordinate // Double_t a1[3]={blockXmn,0.,blockZmn}; Double_t a2[3]={blockXmx,0.,blockZmn}; Double_t a3[3]={blockXmn,0.,blockZmx}; Int_t ndet=AliITSgeomTGeo::GetNDetectors(ilayer+1); // layers from 1 to 6 Int_t lad = Int_t(idet/ndet) + 1; Int_t hdet = idet - (lad-1)*ndet + 1; Double_t xyzGlob[3]; AliITSgeomTGeo::LocalToGlobal(ilayer+1,lad,hdet,a1,a1); AliITSgeomTGeo::LocalToGlobal(ilayer+1,lad,hdet,a2,a2); AliITSgeomTGeo::LocalToGlobal(ilayer+1,lad,hdet,a3,a3); Double_t gBlockYmn,gBlockYmx,gBlockZmn,gBlockZmx; if(a1[1]>a2[1]) {gBlockYmn=a2[1]; gBlockYmx=a1[1];} else {gBlockYmn=a1[1]; gBlockYmx=a2[1];} if(a2[2]>a3[2]) {gBlockZmn=a3[2]; gBlockZmx=a2[2];} else {gBlockZmn=a2[2]; gBlockZmx=a3[2];} AliDebug(2,Form("Boundaries in Global system Ymin=%f, Ymax=%f, Zmin=%f, Zmax=%f", gBlockYmn,gBlockYmx,gBlockZmn,gBlockZmx)); //*************** // DEFINITION OF SEARCH ROAD FOR accepting a track // //For the time being they are hard-wired, later on from AliITSRecoParam Double_t dz=4.*TMath::Sqrt(tmp.GetSigmaZ2()); // those are precisions in the tracking reference system Double_t dy=4.*TMath::Sqrt(tmp.GetSigmaY2()); // dy needs to be reduced (it is max now) if you do // comparison in Global Reference system Float_t gdz=dz; Float_t gdy=dy*TMath::Abs(TMath::Cos(tmp.GetAlpha())); // exclude tracks at boundary between detectors //Double_t boundaryWidth=AliITSRecoParam::GetBoundaryWidth(); Double_t boundaryWidth=0; // for the time being hard-wired, later on from AliITSRecoParam AliDebug(2,Form("Tracking: track impact x=%f, y=%f, z=%f",tmp.GetX(), tmp.GetY(), tmp.GetZ())); tmp.GetXYZ(xyzGlob); AliDebug(2,Form("Global: track impact x=%f, y=%f, z=%f",xyzGlob[0],xyzGlob[1],xyzGlob[2])); //AliInfo(Form("TEST GLOBAL track y = %f, z=%f",tmp.GetY(),tmp.GetZ())); AliDebug(2,Form("Search Road. Tracking: dy=%f , dz=%f",dy,dz)); AliDebug(2,Form("Search Road. Global: Gdy=%f , Gdz=%f",gdy,gdz)); if ( (xyzGlob[1]-gdy < gBlockYmn+boundaryWidth) || (xyzGlob[1]+gdy > gBlockYmx-boundaryWidth) || (xyzGlob[2]-gdz < gBlockZmn+boundaryWidth) || (xyzGlob[2]+gdz > gBlockZmx-boundaryWidth) ) return kFALSE; return kTRUE; } //------------------------------------------------------------------------ void AliITStrackerMI::UseTrackForPlaneEff(AliITStrackMI* track, Int_t ilayer) { // // This Method has to be optimized! For the time-being it uses the same criteria // as those used in the search of extra clusters for overlapping modules. // // Method Purpose: estabilish whether a track has produced a recpoint or not // in the layer under study (For Plane efficiency) // // inputs: AliITStrackMI* track (pointer to a usable track) // outputs: none // side effects: update (by 1 count) the Plane Efficiency statistics of the basic block // traversed by this very track. In details: // - if a cluster can be associated to the track then call // AliITSPlaneEff::UpDatePlaneEff(key,kTRUE); // - if not, the AliITSPlaneEff::UpDatePlaneEff(key,kFALSE) is called // if(!fPlaneEff) {AliWarning("UseTrackForPlaneEff: null pointer to AliITSPlaneEff"); return;} AliITSlayer &layer=fgLayers[ilayer]; Double_t r=layer.GetR(); //AliITStrackV2 tmp(*track); AliITStrackMI tmp(*track); // detector number Double_t phi,z; if (!tmp.GetPhiZat(r,phi,z)) return; Int_t idet=layer.FindDetectorIndex(phi,z); if(idet<0) { AliInfo(Form("cannot find detector")); return;} //Double_t trackGlobXYZ1[3]; //tmp.GetXYZ(trackGlobXYZ1); //propagate to the intersection with the detector plane const AliITSdetector &det=layer.GetDetector(idet); if (!tmp.Propagate(det.GetPhi(),det.GetR())) return; //Float_t xloc,zloc; //*************** // DEFINITION OF SEARCH ROAD FOR CLUSTERS SELECTION // Double_t dz=AliITSReconstructor::GetRecoParam()->GetNSigmaRoadZ()* TMath::Sqrt(tmp.GetSigmaZ2() + AliITSReconstructor::GetRecoParam()->GetNSigmaZLayerForRoadZ()* AliITSReconstructor::GetRecoParam()->GetNSigmaZLayerForRoadZ()* AliITSReconstructor::GetRecoParam()->GetSigmaZ2(ilayer)); Double_t dy=AliITSReconstructor::GetRecoParam()->GetNSigmaRoadY()* TMath::Sqrt(tmp.GetSigmaY2() + AliITSReconstructor::GetRecoParam()->GetNSigmaYLayerForRoadY()* AliITSReconstructor::GetRecoParam()->GetNSigmaYLayerForRoadY()* AliITSReconstructor::GetRecoParam()->GetSigmaY2(ilayer)); // road in global (rphi,z) [i.e. in tracking ref. system] Double_t zmin = tmp.GetZ() - dz; Double_t zmax = tmp.GetZ() + dz; Double_t ymin = tmp.GetY() + r*det.GetPhi() - dy; Double_t ymax = tmp.GetY() + r*det.GetPhi() + dy; // select clusters in road layer.SelectClusters(zmin,zmax,ymin,ymax); // Define criteria for track-cluster association Double_t msz = tmp.GetSigmaZ2() + AliITSReconstructor::GetRecoParam()->GetNSigmaZLayerForRoadZ()* AliITSReconstructor::GetRecoParam()->GetNSigmaZLayerForRoadZ()* AliITSReconstructor::GetRecoParam()->GetSigmaZ2(ilayer); Double_t msy = tmp.GetSigmaY2() + AliITSReconstructor::GetRecoParam()->GetNSigmaYLayerForRoadY()* AliITSReconstructor::GetRecoParam()->GetNSigmaYLayerForRoadY()* AliITSReconstructor::GetRecoParam()->GetSigmaY2(ilayer); if (tmp.GetConstrain()) { msz *= AliITSReconstructor::GetRecoParam()->GetNSigma2RoadZC(); msy *= AliITSReconstructor::GetRecoParam()->GetNSigma2RoadYC(); } else { msz *= AliITSReconstructor::GetRecoParam()->GetNSigma2RoadZNonC(); msy *= AliITSReconstructor::GetRecoParam()->GetNSigma2RoadYNonC(); } msz = 1./msz; // 1/RoadZ^2 msy = 1./msy; // 1/RoadY^2 // const AliITSRecPoint *cl=0; Int_t clidx=-1, ci=-1; Int_t idetc=-1; Double_t chi2trkcl=1000.*AliITSReconstructor::GetRecoParam()->GetMaxChi2(); //Double_t tolerance=0.2; /*while ((cl=layer.GetNextCluster(clidx))!=0) { idetc = cl->GetDetectorIndex(); if(idet!=idetc) continue; //Int_t ilay = cl->GetLayer(); if (TMath::Abs(tmp.GetZ() - cl->GetZ()) > tolerance) continue; if (TMath::Abs(tmp.GetY() - cl->GetY()) > tolerance) continue; Double_t chi2=tmp.GetPredictedChi2(cl); if (chi2GetKeyFromDetLocCoord(ilayer,idet,locx,locz); if(key>fPlaneEff->Nblock()) return; Bool_t found=kFALSE; //if (ci>=0) { Double_t chi2; while ((cl=layer.GetNextCluster(clidx))!=0) { idetc = cl->GetDetectorIndex(); if(idet!=idetc) continue; // here real control to see whether the cluster can be associated to the track. // cluster not associated to track if ( (tmp.GetZ()-cl->GetZ())*(tmp.GetZ()-cl->GetZ())*msz + (tmp.GetY()-cl->GetY())*(tmp.GetY()-cl->GetY())*msy > 1. ) continue; // calculate track-clusters chi2 chi2 = GetPredictedChi2MI(&tmp,cl,ilayer); // note that this method change track tmp // in particular, the error associated to the cluster //Double_t chi2 = tmp.GetPredictedChi(cl); // this method does not change track tmp // chi2 cut if (chi2 > AliITSReconstructor::GetRecoParam()->GetMaxChi2s(ilayer)) continue; found=kTRUE; if (chi2SetExtraCluster(ilayer,(ilayer<<28)+ci); // track->SetExtraModule(ilayer,idetExtra); } if(!fPlaneEff->UpDatePlaneEff(found,key)) AliWarning(Form("UseTrackForPlaneEff: cannot UpDate PlaneEff for key=%d",key)); if(fPlaneEff->GetCreateHistos()&& AliITSReconstructor::GetRecoParam()->GetHistoPlaneEff()) { Float_t tr[4]={99999.,99999.,9999.,9999.}; // initialize to high values Float_t clu[4]={-99999.,-99999.,9999.,9999.}; // (in some cases GetCov fails) Int_t cltype[2]={-999,-999}; Int_t ndet=AliITSgeomTGeo::GetNDetectors(ilayer+1); // layers from 1 to 6 Int_t lad = Int_t(idet/ndet) + 1; Int_t hdet = idet - (lad-1)*ndet + 1; Double_t xyzGlob[3],xyzLoc[3],cv[21],exyzLoc[3],exyzGlob[3]; if(tmp.GetXYZ(xyzGlob)) { if (AliITSgeomTGeo::GlobalToLocal(ilayer+1,lad,hdet,xyzGlob,xyzLoc)) { tr[0]=xyzLoc[0]; tr[1]=xyzLoc[2]; } } if(tmp.GetCovarianceXYZPxPyPz(cv)) { exyzGlob[0]=TMath::Sqrt(cv[0]); exyzGlob[1]=TMath::Sqrt(cv[2]); exyzGlob[2]=TMath::Sqrt(cv[5]); if (AliITSgeomTGeo::GlobalToLocalVect(AliITSgeomTGeo::GetModuleIndex(ilayer+1,lad,hdet),exyzGlob,exyzLoc)) { tr[2]=TMath::Abs(exyzLoc[0]); tr[3]=TMath::Abs(exyzLoc[2]); } } if (found){ clu[0]=layer.GetCluster(ci)->GetDetLocalX(); clu[1]=layer.GetCluster(ci)->GetDetLocalZ(); cltype[0]=layer.GetCluster(ci)->GetNy(); cltype[1]=layer.GetCluster(ci)->GetNz(); // Without the following 6 lines you would retrieve the nominal error of a cluster (e.g. for the SPD: // X->50/sqrt(12)=14 micron Z->450/sqrt(12)= 120 micron) // Within AliTrackerMI/AliTrackMI the error on the cluster is associated to the AliITStrackMI (fSigmaY,Z) // It is computed properly by calling the method // AliITStrackerMI::GetPredictedChi2MI(AliITStrackMI* track, const AliITSRecPoint *cluster,Int_t layer) // T //Double_t x=0.5*(tmp.GetX()+layer.GetCluster(ci)->GetX()); // Take into account the mis-alignment //if (tmp.PropagateTo(x,0.,0.)) { chi2=GetPredictedChi2MI(&tmp,layer.GetCluster(ci),ilayer); AliCluster c(*layer.GetCluster(ci)); c.SetSigmaY2(tmp.GetSigmaY(ilayer)*tmp.GetSigmaY(ilayer)); c.SetSigmaZ2(tmp.GetSigmaZ(ilayer)*tmp.GetSigmaZ(ilayer)); Float_t cov[6]; //if (layer.GetCluster(ci)->GetGlobalCov(cov)) // by using this, instead, you got nominal cluster errors if (c.GetGlobalCov(cov)) { exyzGlob[0]=TMath::Sqrt(cov[0]); exyzGlob[1]=TMath::Sqrt(cov[3]); exyzGlob[2]=TMath::Sqrt(cov[5]); if (AliITSgeomTGeo::GlobalToLocalVect(AliITSgeomTGeo::GetModuleIndex(ilayer+1,lad,hdet),exyzGlob,exyzLoc)) { clu[2]=TMath::Abs(exyzLoc[0]); clu[3]=TMath::Abs(exyzLoc[2]); } } //} } fPlaneEff->FillHistos(key,found,tr,clu,cltype); } return; }