/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ ////////////////////////////////////////////////////////////////////////////// // // // Inner Traking System version 11 // // This class contains the base procedures for the Inner Tracking System // // // // Authors: R. Barbera // // version 6. // // Created 2000. // // // // NOTE: THIS IS THE SYMMETRIC PPR geometry of the ITS. // // THIS WILL NOT WORK // // with the geometry or module classes or any analysis classes. You are // // strongly encouraged to uses AliITSv5. // // // ////////////////////////////////////////////////////////////////////////////// // See AliITSv11::StepManager(). // General C/C++ includes #include #include // General Root includes #include #include #include // only required for Tracking function? #include #include #include #include // Root Geometry includes #include #include #include #include #include // contaings TGeoTubeSeg #include #include #include #include #include #include // General AliRoot includes #include "AliRun.h" #include "AliMagF.h" #include "AliConst.h" // ITS specific includes #include "AliITShit.h" #include "AliITSgeom.h" #include "AliITSgeomSPD.h" #include "AliITSgeomSDD.h" #include "AliITSgeomSSD.h" #include "AliITSDetType.h" #include "AliITSresponseSPD.h" #include "AliITSresponseSDD.h" #include "AliITSresponseSSD.h" #include "AliITSsegmentationSPD.h" #include "AliITSsegmentationSDD.h" #include "AliITSsegmentationSSD.h" #include "AliITSsimulationSPD.h" #include "AliITSsimulationSDD.h" #include "AliITSsimulationSSD.h" #include "AliITSClusterFinderSPD.h" #include "AliITSClusterFinderSDD.h" #include "AliITSClusterFinderSSD.h" #include "AliITSBaseGeometry.h" #include "AliITSv11.h" // Units, Convert from k?? to cm,degree,GeV,seconds, const Double_t kmm = 0.10; // Convert mm to TGeom's cm. const Double_t kcm = 1.00; // Convert cv to TGeom's cm. const Double_t kDegree = 1.0; // Convert degrees to TGeom's degrees const Double_t kRadian = TMath::DegToRad(); // conver to Radians #define SQ(A) ((A)*(A)) #define printArb8(A) if(GetDebug()){\ cout << A->GetName() << ":"; \ for(Int_t iii=0;iii<8;iii+=2){ cout <<"("<GetVertices()[iii]<<"," \ <GetVertices()[iii+1]<<","<<-A->GetDz()<<")";}\ for(Int_t iii=8;iii<16;iii+=2){ cout <<"("<GetVertices()[iii]<<"," \ <GetVertices()[iii+1]<<","<GetDz()<<")";}\ cout << endl; } #define printPcon(A) if(GetDebug()){\ cout << A->GetName() << ": N=" << A->GetNz() << " Phi1=" << A->GetPhi1() \ << ", Dphi=" << A->GetDphi() << endl; \ cout << "i\t Z \t Rmin \t Rmax" << endl; \ for(Int_t iii=0;iiiGetNz();iii++){ \ cout << iii << "\t" << A->GetZ(iii) << "\t" << A->GetRmin(iii) \ << "\t" << A->GetRmax(iii) << endl; \ }} // end for iii #define printTube(A) if(GetDebug()){\ cout << A->GetName() <<": Rmin="<GetRmin()\ <<" Rmax=" <GetRmax()<<" Dz="<GetDz()<GetName() <<": Phi1="<GetPhi1()<< \ " Phi2="<GetPhi2()<<" Rmin="<GetRmin()\ <<" Rmax=" <GetRmax()<<" Dz="<GetDz()<GetName() <<": Phi1="<GetPhi1()<< \ " Phi2="<GetPhi2()<<" Rmin1="<GetRmin1()\ <<" Rmax1=" <GetRmax1()<<" Rmin2="<GetRmin2()\ <<" Rmax2=" <GetRmax2()<<" Dz="<GetDz()<GetName() <<": Dx="<GetDX()<< \ " Dy="<GetDY()<<" Dz="<GetDZ() <BuildDisplayGeometry(); } //______________________________________________________________________ void AliITSv11::CreateGeometry(){ // This routine defines and Creates the geometry for version 11 of // the ITS. The geometry is used by the particle trasport routines, // and therefore, is very detailed. // Inputs: // none. // Outputs: // none. // Return // none. TVector3 t(0.0,0.0,0.0); TGeoManager *mgr = gGeoManager; TGeoVolume *ALIC = mgr->GetTopVolume(); TGeoPcon *itsv = new TGeoPcon("ITS Top Volume, Daughter of ALIC", 0.0,360.0,2); // DefineSection(section number, Z, Rmin, Rmax). itsv->DefineSection(0,-300.0*kcm,0.01*kcm,50.0*kcm); itsv->DefineSection(1,+300.0*kcm,0.01*kcm,50.0*kcm); TGeoVolume *ITSV = new TGeoVolume("ITSV",itsv,0); //mgr->AddVolume(ITSV); ITSV->SetVisibility(kFALSE); ALIC->AddNode(ITSV,1,0); // SPDCone(ITSV); SDDCone(ITSV); SSDCone(ITSV); ServicesCableSupport(ITSV); } //______________________________________________________________________ Double_t AliITSv11::RmaxFrom2Points(TGeoPcon *p,Int_t i1,Int_t i2,Double_t z){ // functions Require at parts of Volume A to be already defined. // Retruns the value of Rmax corresponding to point z alone the line // defined by the two points p.Rmax(i1),p-GetZ(i1) and p->GetRmax(i2), // p->GetZ(i2). return p->GetRmax(i2)+(p->GetRmax(i1)-p->GetRmax(i2))*(z-p->GetZ(i2))/ (p->GetZ(i1)-p->GetZ(i2)); } //______________________________________________________________________ Double_t AliITSv11::RminFrom2Points(TGeoPcon *p,Int_t i1,Int_t i2,Double_t z){ // Retruns the value of Rmin corresponding to point z alone the line // defined by the two points p->GetRmin(i1),p->GetZ(i1) and // p->GetRmin(i2), p->GetZ(i2). return p->GetRmin(i2)+(p->GetRmin(i1)-p->GetRmin(i2))*(z-p->GetZ(i2))/ (p->GetZ(i1)-p->GetZ(i2)); } //______________________________________________________________________ Double_t AliITSv11::RFrom2Points(Double_t *p,Double_t *Z,Int_t i1, Int_t i2,Double_t z){ // Retruns the value of Rmin corresponding to point z alone the line // defined by the two points p->GetRmin(i1),p->GetZ(i1) and // p->GetRmin(i2), p->GetZ(i2). return p[i2]+(p[i1]-p[i2])*(z-Z[i2])/(Z[i1]-Z[i2]); } //______________________________________________________________________ Double_t AliITSv11::Zfrom2MinPoints(TGeoPcon *p,Int_t i1,Int_t i2,Double_t r){ // Retruns the value of Z corresponding to point R alone the line // defined by the two points p->GetRmin(i1),p->GetZ(i1) and // p->GetRmin(i2),p->GetZ(i2) return p->GetZ(i2)+(p->GetZ(i1)-p->GetZ(i2))*(r-p->GetRmin(i2))/ (p->GetRmin(i1)-p->GetRmin(i2)); } //______________________________________________________________________ Double_t AliITSv11::Zfrom2MaxPoints(TGeoPcon *p,Int_t i1,Int_t i2,Double_t r){ // Retruns the value of Z corresponding to point R alone the line // defined by the two points p->GetRmax(i1),p->GetZ(i1) and // p->GetRmax(i2),p->GetZ(i2) return p->GetZ(i2)+(p->GetZ(i1)-p->GetZ(i2))*(r-p->GetRmax(i2))/ (p->GetRmax(i1)-p->GetRmax(i2)); } //______________________________________________________________________ Double_t AliITSv11::Zfrom2Points(Double_t *Z,Double_t *p,Int_t i1, Int_t i2,Double_t r){ // Retruns the value of Z corresponding to point R alone the line // defined by the two points p->GetRmax(i1),p->GetZ(i1) and // p->GetRmax(i2),p->GetZ(i2) return Z[i2]+(Z[i1]-Z[i2])*(r-p[i2])/(p[i1]-p[i2]); } //______________________________________________________________________ Double_t AliITSv11::RmaxFromZpCone(TGeoPcon *p,Double_t tc,Double_t z, Double_t th){ // General SSD Outer Cone surface equation Rmax. Double_t tantc = TMath::Tan(tc*TMath::DegToRad()); Double_t costc = TMath::Cos(tc*TMath::DegToRad()); return -tantc*(z-p->GetZ(4))+p->GetRmax(4)+th/costc; } //______________________________________________________________________ Double_t AliITSv11::RmaxFromZpCone(Double_t *GetRmax,Double_t *GetZ, Double_t tc,Double_t z,Double_t th){ // General SSD Outer Cone surface equation Rmax. Double_t tantc = TMath::Tan(tc*TMath::DegToRad()); Double_t costc = TMath::Cos(tc*TMath::DegToRad()); return -tantc*(z-GetZ[4])+GetRmax[4]+th/costc; } //______________________________________________________________________ Double_t AliITSv11::RminFromZpCone(TGeoPcon *p,Double_t tc,Double_t z, Double_t th){ // General SSD Inner Cone surface equation Rmin. Double_t tantc = TMath::Tan(tc*TMath::DegToRad()); Double_t costc = TMath::Cos(tc*TMath::DegToRad()); return -tantc*(z-p->GetZ(3))+p->GetRmin(3)+th/costc; } //______________________________________________________________________ Double_t AliITSv11::RminFromZpCone(Double_t *GetRmin,Double_t *GetZ, Double_t tc,Double_t z,Double_t th){ // General SSD Inner Cone surface equation Rmin. Double_t tantc = TMath::Tan(tc*TMath::DegToRad()); Double_t costc = TMath::Cos(tc*TMath::DegToRad()); return -tantc*(z-GetZ[3])+GetRmin[3]+th/costc; } //______________________________________________________________________ Double_t AliITSv11::ZFromRmaxpCone(TGeoPcon *p,Double_t tc,Double_t r, Double_t th){ // General SSD Outer cone Surface equation for z. Double_t tantc = TMath::Tan(tc*TMath::DegToRad()); Double_t costc = TMath::Cos(tc*TMath::DegToRad()); return p->GetZ(4)+(p->GetRmax(4)+th/costc-r)/tantc; } //______________________________________________________________________ Double_t AliITSv11::ZFromRmaxpCone(Double_t *GetRmax,Double_t *GetZ, Double_t tc,Double_t r,Double_t th){ // General SSD Outer cone Surface equation for z. Double_t tantc = TMath::Tan(tc*TMath::DegToRad()); Double_t costc = TMath::Cos(tc*TMath::DegToRad()); return GetZ[4]+(GetRmax[4]+th/costc-r)/tantc; } //______________________________________________________________________ Double_t AliITSv11::ZFromRminpCone(TGeoPcon *p,Double_t tc,Double_t r, Double_t th){ // General SSD Inner cone Surface equation for z. Double_t tantc = TMath::Tan(tc*TMath::DegToRad()); Double_t costc = TMath::Cos(tc*TMath::DegToRad()); return p->GetZ(3)+(p->GetRmin(3)+th/costc-r)/tantc; } //______________________________________________________________________ void AliITSv11::RadiusOfCurvature(Double_t rc,Double_t theta0,Double_t z0, Double_t r0,Double_t theta1,Double_t &z1, Double_t &r1){ // Given a initial point z0,r0, the initial angle theta0, and the radius // of curvature, returns the point z1, r1 at the angle theta1. Theta // measured from the r axis in the clock wise direction [degrees]. Double_t sin0 = TMath::Sin(theta0*TMath::DegToRad()); Double_t cos0 = TMath::Cos(theta0*TMath::DegToRad()); Double_t sin1 = TMath::Sin(theta1*TMath::DegToRad()); Double_t cos1 = TMath::Cos(theta1*TMath::DegToRad()); z1 = rc*(sin1-sin0)+z0; r1 = rc*(cos1-cos0)+r0; return; } //______________________________________________________________________ void AliITSv11::SPDCone(TGeoVolume *Moth){ // Define the detail SPD support cone geometry. // Inputs: // none. // Outputs: // none. // Return: // none. SPDThermalSheald(Moth); } //______________________________________________________________________ void AliITSv11::SPDThermalSheald(TGeoVolume *Moth){ // Define the detail SPD Thermal Sheld geometry. // Inputs: // none. // Outputs: // none. // Return: // none. // From ALICE-Thermal Screen (SPD) "Cylinder" file thermal-screen2_a3.ps // Volumes A1,A2,A2,Ah1,Ah2,Ah3, and B1,B2,B3,Bh1,Bh2,Bh3; // "CONE TRANSITION" file thermal-screen1_a3.ps Volumes C1,C2,C3,Ch1,Ch2, // Ch3; "FLANGE" file thermal-screen4_a3.ps Volumes D,Ds,Dw,Dws; and // "HALF ASSEMBLY" file thermal-screen3_a3.ps. This object, both halfs, // are incased inside of a single minimum sized mother volume called M, // which is a union of two parts M1 and 4 copies of M2. const Double_t TSCarbonFiberThA = 0.03*kmm; // //const Double_t TSCarbonFiberThB = 0.10*kmm; // const Double_t TSCLengthB = 50.0*kmm; // const Double_t TSCLengthA = 900.0*kmm-2.0*TSCLengthB; // const Double_t TSCLengthC = 290.0*kmm; // const Double_t TSCLengthD = 15.0*kmm; // const Double_t TSCAngle = 36.0*kDegree;//Rep. angle of cent. accordin const Double_t TSCRoutA = 99.255*kmm; // Outer radii const Double_t TSCRinA = 81.475*kmm; // Iner radii const Double_t TSCRoutB = 99.955*kmm; // Outer radii const Double_t TSCRinB = 80.775*kmm; // Iner radii const Double_t TSCRoutCp = 390.0*kmm; // Outer radii const Double_t TSCRinCp = 373.0*kmm; // Iner radii Double_t TSCRoutC,TSCRinC; // values need to be calculated const Double_t TSCRwingD = 492.5*kmm; // Outer radii const Double_t TSCRoutD = 0.5*840.*kmm;// Outer radii const Double_t TSCRinD = 373.0*kmm; // Iner radii const Double_t TSCAngleDD = 60.*kmm/TSCRwingD/kRadian;//angular wing width //angular wing width of fill material const Double_t TSCAngleDDs = (60.*kmm-2.*TSCarbonFiberThA)/TSCRwingD/kRadian; const Double_t TSCAngleD0 = 45.*kDegree;//Strting angle of wing const Double_t TSCoutSA = 24.372*kmm; // The other one Calculated const Double_t TSCinLA = 31.674*kmm; // The ohter one Calculated const Double_t TSCoutSB = 24.596*kmm; // The other one Calculated const Double_t TSCinLB = 31.453*kmm; // The ohter one Calculated const Double_t TSCoutSC = 148.831*kmm;// The other one Calculated const Double_t TSCinLC = 90.915*kmm; // The ohter one Calculated Int_t i,k; Double_t th; Double_t xo[7],yo[7],xi[7],yi[7]; Double_t xbo[7],ybo[7],xbi[7],ybi[7]; Double_t xco[7],yco[7],xci[7],yci[7]; TGeoArb8 *A1,*A2,*A3,*Ah1,*Ah2,*Ah3,*B1,*B2,*B3,*Bh1,*Bh2,*Bh3; TGeoArb8 *C1,*C2,*C3,*Ch1,*Ch2,*Ch3; TGeoTube *D,*Ds; TGeoTubeSeg *Dw,*Dws,*M2; TGeoPcon *M1; TGeoCompositeShape *M; TGeoRotation *rot; TGeoTranslation *tranb,*tranbm,*tranc; TGeoTranslation *tranITSspdShealdVVt0; TGeoCombiTrans *rotITSspdShealdVVt1,*rotITSspdShealdVVt2; TGeoCombiTrans *rotITSspdShealdVVt3; TGeoMedium *SPDcf = 0; // SPD support cone Carbon Fiber materal number. TGeoMedium *SPDfs = 0; // SPD support cone inserto stesalite 4411w. TGeoMedium *SPDfo = 0; // SPD support cone foam, Rohacell 50A. TGeoMedium *SPDss = 0; // SPD support cone screw material,Stainless steal TGeoMedium *SPDair = 0; // SPD support cone Air //TGeoMedium *SPDal = 0; // SPD support cone SDD mounting bracket Al TSCRoutC = TMath::Sqrt(TSCRoutCp*TSCRoutCp-0.25*TSCoutSC*TSCoutSC); TSCRinC = TMath::Sqrt(TSCRinCp *TSCRinCp -0.25*TSCinLC *TSCinLC ); A1 = new TGeoArb8("ITS SPD Therm Screen Clyinder A1",0.5*TSCLengthA); A2 = new TGeoArb8("ITS SPD Therm Screen Clyinder A2",0.5*TSCLengthA); A3 = new TGeoArb8("ITS SPD Therm Screen Clyinder A3",0.5*TSCLengthA); Ah1 = new TGeoArb8("ITS SPD Therm Screen Cylinder Ah1",0.5*TSCLengthA); Ah2 = new TGeoArb8("ITS SPD Therm Screen Cylinder Ah2",0.5*TSCLengthA); Ah3 = new TGeoArb8("ITS SPD Therm Screen Cylinder Ah3",0.5*TSCLengthA); B1 = new TGeoArb8("ITS SPD Therm Screen Clyinder B1",0.5*TSCLengthB); B2 = new TGeoArb8("ITS SPD Therm Screen Clyinder B2",0.5*TSCLengthB); B3 = new TGeoArb8("ITS SPD Therm Screen Clyinder B3",0.5*TSCLengthB); Bh1 = new TGeoArb8("ITS SPD Therm Screen Cylinder Bh1",0.5*TSCLengthB); Bh2 = new TGeoArb8("ITS SPD Therm Screen Cylinder Bh2",0.5*TSCLengthB); Bh3 = new TGeoArb8("ITS SPD Therm Screen Cylinder Bh3",0.5*TSCLengthB); C1 = new TGeoArb8("ITS SPD Therm Screen Clyinder C1",0.5*TSCLengthC); C2 = new TGeoArb8("ITS SPD Therm Screen Clyinder C2",0.5*TSCLengthC); C3 = new TGeoArb8("ITS SPD Therm Screen Clyinder C3",0.5*TSCLengthC); Ch1 = new TGeoArb8("ITS SPD Therm Screen Cylinder Ch1",0.5*TSCLengthC); Ch2 = new TGeoArb8("ITS SPD Therm Screen Cylinder Ch2",0.5*TSCLengthC); Ch3 = new TGeoArb8("ITS SPD Therm Screen Cylinder Ch3",0.5*TSCLengthC); D = new TGeoTube("ITS SPD Therm Screen Flange D",TSCRinD,TSCRoutD, 0.5*TSCLengthD); Ds = new TGeoTube("ITS SPD Therm Screen Flange fill Ds", TSCRinD+TSCarbonFiberThA,TSCRoutD-TSCarbonFiberThA, 0.5*TSCLengthD); printTube(D); printTube(Ds); Dw = new TGeoTubeSeg("ITS SPD Therm Screen Flange Wing Dw", TSCRoutD,TSCRwingD ,0.5*TSCLengthD, TSCAngleD0-0.5*TSCAngleDD,TSCAngleD0+0.5*TSCAngleDD); Dws = new TGeoTubeSeg("ITS SPD Therm Screen Flange Wing Fill Ds", TSCRoutD,TSCRwingD-TSCarbonFiberThA, 0.5*TSCLengthD,TSCAngleD0-0.5*TSCAngleDDs, TSCAngleD0+0.5*TSCAngleDDs); printTubeSeg(Dw); printTubeSeg(Dws); k = 0; for(i=-1;i<2;i++){ th = ((Double_t)(i+1))*TSCAngle*kRadian; xo[k] = TSCRoutA*TMath::Sin(th) - 0.5*TSCoutSA*TMath::Cos(th); yo[k] = TSCRoutA*TMath::Cos(th) + 0.5*TSCoutSA*TMath::Sin(th); xi[k] = TSCRinA *TMath::Sin(th) - 0.5*TSCinLA *TMath::Cos(th); yi[k] = TSCRinA *TMath::Cos(th) + 0.5*TSCinLA *TMath::Sin(th); xbo[k] = TSCRoutB*TMath::Sin(th) - 0.5*TSCoutSB*TMath::Cos(th); ybo[k] = TSCRoutB*TMath::Cos(th) + 0.5*TSCoutSB*TMath::Sin(th); xbi[k] = TSCRinB *TMath::Sin(th) - 0.5*TSCinLB *TMath::Cos(th); ybi[k] = TSCRinB *TMath::Cos(th) + 0.5*TSCinLB *TMath::Sin(th); xco[k] = TSCRoutC*TMath::Sin(th) - 0.5*TSCoutSC*TMath::Cos(th); yco[k] = TSCRoutC*TMath::Cos(th) + 0.5*TSCoutSC*TMath::Sin(th); xci[k] = TSCRinC *TMath::Sin(th) - 0.5*TSCinLC *TMath::Cos(th); yci[k] = TSCRinC *TMath::Cos(th) + 0.5*TSCinLC *TMath::Sin(th); k++; xo[k] = TSCRoutA*TMath::Sin(th) + 0.5*TSCoutSA*TMath::Cos(th); yo[k] = TSCRoutA*TMath::Cos(th) - 0.5*TSCoutSA*TMath::Sin(th); xi[k] = TSCRinA *TMath::Sin(th) + 0.5*TSCinLA *TMath::Cos(th); yi[k] = TSCRinA *TMath::Cos(th) - 0.5*TSCinLA *TMath::Sin(th); xbo[k] = TSCRoutB*TMath::Sin(th) + 0.5*TSCoutSB*TMath::Cos(th); ybo[k] = TSCRoutB*TMath::Cos(th) - 0.5*TSCoutSB*TMath::Sin(th); xbi[k] = TSCRinB *TMath::Sin(th) + 0.5*TSCinLB *TMath::Cos(th); ybi[k] = TSCRinB *TMath::Cos(th) - 0.5*TSCinLB *TMath::Sin(th); xco[k] = TSCRoutC*TMath::Sin(th) + 0.5*TSCoutSC*TMath::Cos(th); yco[k] = TSCRoutC*TMath::Cos(th) - 0.5*TSCoutSC*TMath::Sin(th); xci[k] = TSCRinC *TMath::Sin(th) + 0.5*TSCinLC *TMath::Cos(th); yci[k] = TSCRinC *TMath::Cos(th) - 0.5*TSCinLC *TMath::Sin(th); k++; } // end for i xo[6] = xo[5]; yo[6] = 0.0; xi[6] = xi[5]; yi[6] = 0.0; xbo[6] = xbo[5]; ybo[6] = 0.0; xbi[6] = xbi[5]; ybi[6] = 0.0; xco[6] = xco[5]; yco[6] = 0.0; xci[6] = xci[5]; yci[6] = 0.0; if(GetDebug()){ cout.precision(4); cout.width(7); cout <<"i \t xo yo \t xi yi \t xbo ybo \t xbi ybi " "\t xco yco \t xci yxi"<SetVertex(0,xo[0],yo[0]); A1->SetVertex(1,xo[1],yo[1]); A1->SetVertex(2,xi[1],yi[1]); A1->SetVertex(3,xi[0],yi[0]); // A2->SetVertex(0,xo[1],yo[1]); A2->SetVertex(1,xo[2],yo[2]); A2->SetVertex(2,xi[2],yi[2]); A2->SetVertex(3,xi[1],yi[1]); // A3->SetVertex(0,xo[5],yo[5]); A3->SetVertex(1,xo[6],yo[6]); A3->SetVertex(2,xi[6],yi[6]); A3->SetVertex(3,xi[5],yi[5]); //-------------------------- B1->SetVertex(0,xbo[0],ybo[0]); B1->SetVertex(1,xbo[1],ybo[1]); B1->SetVertex(2,xbi[1],ybi[1]); B1->SetVertex(3,xbi[0],ybi[0]); // B2->SetVertex(0,xbo[1],ybo[1]); B2->SetVertex(1,xbo[2],ybo[2]); B2->SetVertex(2,xbi[2],ybi[2]); B2->SetVertex(3,xbi[1],ybi[1]); // B3->SetVertex(0,xbo[5],ybo[5]); B3->SetVertex(1,xbo[6],ybo[6]); B3->SetVertex(2,xbi[6],ybi[6]); B3->SetVertex(3,xbi[5],ybi[5]); //-------------------------- C1->SetVertex(0,xco[0],yco[0]); C1->SetVertex(1,xco[1],yco[1]); C1->SetVertex(2,xci[1],yci[1]); C1->SetVertex(3,xci[0],yci[0]); // C2->SetVertex(0,xco[1],yco[1]); C2->SetVertex(1,xco[2],yco[2]); C2->SetVertex(2,xci[2],yci[2]); C2->SetVertex(3,xci[1],yci[1]); // C3->SetVertex(0,xco[5],yco[5]); C3->SetVertex(1,xco[6],yco[6]); C3->SetVertex(2,xci[6],yci[6]); C3->SetVertex(3,xci[5],yci[5]); // Defining the hole, filled with air Double_t p1,c1,x,y,x7[3],y7[3]; p1 = (xo[0]-xi[0])/(yo[0]-yi[0]); c1 = xo[0]+0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xo[0]-xi[0])+ SQ(yo[0]-yi[0]))/(xo[0]-xi[0]); y = TSCRoutA-2.*TSCarbonFiberThA; x = p1*(y-yo[0])+c1; Ah1->SetVertex(0,x,y); Bh1->SetVertex(0,x,y); Ch1->SetVertex(4,x,y); y = TSCRinA+TSCarbonFiberThA; x = p1*(y-yo[0])+c1; Ah1->SetVertex(3,x,y); Bh1->SetVertex(3,x,y); x7[0] = x; y7[0] = y; // vortexing done after last point //Ch1->SetVertex(7,x,y); p1 = (xo[1]-xi[1])/(yo[1]-yi[1]); c1 = xo[1]-0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xo[1]-xi[1])+ SQ(yo[1]-yi[1]))/(xo[1]-xi[1]); y = TSCRoutA-2.*TSCarbonFiberThA; x = p1*(y-yo[1])+c1; Ah1->SetVertex(1,x,y); Bh1->SetVertex(1,x,y); Ch1->SetVertex(5,x,y); y = TSCRinA+TSCarbonFiberThA; x = p1*(y-yo[1])+c1; Ah1->SetVertex(2,x,y); Bh1->SetVertex(2,x,y); Ch1->SetVertex(6,x,y); // // The easist way to get the points for the hole in volume A2 is to // rotate it to the Y axis where the y coordinates are easier to know // and then rotate it back. Double_t xp,yp,xa,ya,xb,yb; th = 0.5*TSCAngle*kRadian; xa = TMath::Cos(th)*xo[1]-TMath::Sin(th)*yo[1]; ya = TMath::Sin(th)*xo[1]+TMath::Cos(th)*yo[1]; xb = TMath::Cos(th)*xi[1]-TMath::Sin(th)*yi[1]; yb = TMath::Sin(th)*xi[1]+TMath::Cos(th)*yi[1]; p1 = (xa-xb)/(ya-yb); c1 = xa+0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xa-xb)+SQ(ya-yb))/(xa-xb); y = ya-TSCarbonFiberThA; x = p1*(y-ya)+c1; xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y; yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y; Ah2->SetVertex(0,xp,yp); Bh2->SetVertex(0,xp,yp); Ch2->SetVertex(4,xp,yp); y = yb+2.0*TSCarbonFiberThA; x = p1*(y-ya)+c1; xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y; yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y; Ah2->SetVertex(3,xp,yp); Bh2->SetVertex(3,xp,yp); x7[1] = x; y7[1] = y; // vortexing done after last point //Ch2->SetVertex(7,xp,yp); xa = TMath::Cos(th)*xo[2]-TMath::Sin(th)*yo[2]; ya = TMath::Sin(th)*xo[2]+TMath::Cos(th)*yo[2]; xb = TMath::Cos(th)*xi[2]-TMath::Sin(th)*yi[2]; yb = TMath::Sin(th)*xi[2]+TMath::Cos(th)*yi[2]; p1 = (xa-xb)/(ya-yb); c1 = xa-0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xa-xb)+SQ(ya-yb))/(xa-xb); y = ya-TSCarbonFiberThA; x = p1*(y-ya)+c1; xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y; yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y; Ah2->SetVertex(1,xp,yp); Bh2->SetVertex(1,xp,yp); Ch2->SetVertex(5,xp,yp); y = yb+2.0*TSCarbonFiberThA; x = p1*(y-ya)+c1; xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y; yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y; Ah2->SetVertex(2,xp,yp); Bh2->SetVertex(2,xp,yp); Ch2->SetVertex(6,xp,yp); // p1 = (yo[5]-yi[5])/(xo[5]-xi[5]); c1 = yo[5]+0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(yo[5]-yi[5])+ SQ(xo[5]-xi[5]))/(yo[5]-yi[5]); x = xo[5]-TSCarbonFiberThA; y = p1*(x-xo[5])+c1; Ah3->SetVertex(0,x,y); Bh3->SetVertex(0,x,y); Ch3->SetVertex(4,x,y); x = xi[5]+2.0*TSCarbonFiberThA; y = p1*(x-xo[5])+c1; Ah3->SetVertex(3,x,y); Bh3->SetVertex(3,x,y); x7[2] = x; y7[2] = y; // vortexing done after last point //Ch3->SetVertex(7,x,y); y = 2.0*TSCarbonFiberThA; x = xo[5]-TSCarbonFiberThA; Ah3->SetVertex(1,x,y); Bh3->SetVertex(1,x,y); Ch3->SetVertex(5,x,y); y = 2.0*TSCarbonFiberThA; x = xi[5]+2.0*TSCarbonFiberThA; Ah3->SetVertex(2,x,y); Bh3->SetVertex(2,x,y); Ch3->SetVertex(6,x,y); // for(i=0;i<4;i++){ // define points at +dz A1->SetVertex(i+4,(A1->GetVertices())[2*i],(A1->GetVertices())[1+2*i]); A2->SetVertex(i+4,(A2->GetVertices())[2*i],(A2->GetVertices())[1+2*i]); A3->SetVertex(i+4,(A3->GetVertices())[2*i],(A3->GetVertices())[1+2*i]); // B1->SetVertex(i+4,(B1->GetVertices())[2*i],(B1->GetVertices())[1+2*i]); B2->SetVertex(i+4,(B2->GetVertices())[2*i],(B2->GetVertices())[1+2*i]); B3->SetVertex(i+4,(B3->GetVertices())[2*i],(B3->GetVertices())[1+2*i]); // C's are a cone which must match up with B's. C1->SetVertex(i+4,(B1->GetVertices())[2*i],(B1->GetVertices())[1+2*i]); C2->SetVertex(i+4,(B2->GetVertices())[2*i],(B2->GetVertices())[1+2*i]); C3->SetVertex(i+4,(B3->GetVertices())[2*i],(B3->GetVertices())[1+2*i]); // Ah1->SetVertex(i+4,(Ah1->GetVertices())[2*i], (Ah1->GetVertices())[1+2*i]); Ah2->SetVertex(i+4,(Ah2->GetVertices())[2*i], (Ah2->GetVertices())[1+2*i]); Ah3->SetVertex(i+4,(Ah3->GetVertices())[2*i], (Ah3->GetVertices())[1+2*i]); // Bh1->SetVertex(i+4,(Bh1->GetVertices())[2*i], (Bh1->GetVertices())[1+2*i]); Bh2->SetVertex(i+4,(Bh2->GetVertices())[2*i], (Bh2->GetVertices())[1+2*i]); Bh3->SetVertex(i+4,(Bh3->GetVertices())[2*i], (Bh3->GetVertices())[1+2*i]); } // end for // p1 = (xco[0]-xci[0])/(yco[0]-yci[0]); c1 = xco[0]+0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xco[0]-xci[0])+ SQ(yco[0]-yci[0]))/(xco[0]-xci[0]); y = TSCRoutC-2.*TSCarbonFiberThA; x = p1*(y-yco[0])+c1; Ch1->SetVertex(0,x,y); y = TSCRinC+TSCarbonFiberThA; x = p1*(y-yci[0])+c1; Ch1->SetVertex(2,x,y); p1 = (xco[1]-xci[1])/(yco[1]-yci[1]); c1 = xco[1]-0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xco[1]-xci[1])+ SQ(yco[1]-yci[1]))/(xco[1]-xci[1]); y = TSCRoutC-2.*TSCarbonFiberThA; x = p1*(y-yco[1])+c1; Ch1->SetVertex(1,x,y); y = TSCRinC+TSCarbonFiberThA; x = p1*(y-yci[1])+c1; Ch1->SetVertex(3,x,y); // th = 0.5*TSCAngle*kRadian; xa = TMath::Cos(th)*xco[1]-TMath::Sin(th)*yco[1]; ya = TMath::Sin(th)*xco[1]+TMath::Cos(th)*yco[1]; xb = TMath::Cos(th)*xci[1]-TMath::Sin(th)*yci[1]; yb = TMath::Sin(th)*xci[1]+TMath::Cos(th)*yci[1]; p1 = (xa-xb)/(ya-yb); c1 = xa+0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xa-xb)+SQ(ya-yb))/(xa-xb); y = ya-TSCarbonFiberThA; x = p1*(y-ya)+c1; xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y; yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y; yp = ya-TSCarbonFiberThA; xp = p1*(y-ya)+c1; Ch2->SetVertex(0,xp,yp); y = yb+2.0*TSCarbonFiberThA; x = p1*(y-ya)+c1; xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y; yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y; Ch2->SetVertex(2,xp,yp); xa = TMath::Cos(th)*xco[2]-TMath::Sin(th)*yco[2]; ya = TMath::Sin(th)*xco[2]+TMath::Cos(th)*yco[2]; xb = TMath::Cos(th)*xci[2]-TMath::Sin(th)*yci[2]; yb = TMath::Sin(th)*xci[2]+TMath::Cos(th)*yci[2]; p1 = (xa-xb)/(ya-yb); c1 = xa-0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(xa-xb)+SQ(ya-yb))/(xa-xb); y = ya-TSCarbonFiberThA; x = p1*(y-ya)+c1; xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y; yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y; Ch2->SetVertex(1,xp,yp); y = yb+2.0*TSCarbonFiberThA; x = p1*(y-ya)+c1; xp = TMath::Cos(-th)*x-TMath::Sin(-th)*y; yp = TMath::Sin(-th)*x+TMath::Cos(-th)*y; Ch2->SetVertex(3,xp,yp); // p1 = (yco[5]-yci[5])/(xco[5]-xci[5]); c1 = yco[5]+0.5*TSCarbonFiberThA*TMath::Sqrt(SQ(yco[5]-yci[5])+ SQ(xco[5]-xci[5]))/(yco[5]-yci[5]); x = xco[5]-TSCarbonFiberThA; y = p1*(x-xco[5])+c1; Ch3->SetVertex(0,x,y); x = xci[5]+2.0*TSCarbonFiberThA; y = p1*(x-xci[5])+c1; Ch3->SetVertex(2,x,y); y = 2.0*TSCarbonFiberThA; x = xco[5]-TSCarbonFiberThA; Ch3->SetVertex(1,x,y); y = 2.0*TSCarbonFiberThA; x = xci[5]+2.0*TSCarbonFiberThA; Ch3->SetVertex(3,x,y); Ch1->SetVertex(7,x7[0],y7[0]); // 7th point most be done last ??? Ch2->SetVertex(7,x7[1],y7[1]); // 7th point most be done last ??? Ch3->SetVertex(7,x7[2],y7[2]); // 7th point most be done last ??? printArb8(A1); printArb8(Ah1); printArb8(A2); printArb8(Ah2); printArb8(A3); printArb8(Ah3); printArb8(B1); printArb8(Bh1); printArb8(B2); printArb8(Bh2); printArb8(B3); printArb8(Bh3); printArb8(C1); printArb8(Ch1); printArb8(C2); printArb8(Ch2); printArb8(C3); printArb8(Ch3); // // Define Minimal volume to inclose this SPD Thermal Sheald. M1 = new TGeoPcon("ITSspdShealdVV",0.0,360.0,9); M1->Z(0) = 0.5*TSCLengthA+TSCLengthB; M1->Rmin(0) = TSCRinB; x = B1->GetVertices()[0]; // [0][0] y = B1->GetVertices()[1]; // [0][1] M1->Rmax(0) = TMath::Sqrt(x*x+y*y); M1->Z(1) = M1->GetZ(0)-TSCLengthB; M1->Rmin(1) = M1->GetRmin(0); M1->Rmax(1) = M1->GetRmax(0); M1->Z(2) = M1->GetZ(1); M1->Rmin(2) = TSCRinA; x = A1->GetVertices()[0]; // [0]0] y = A1->GetVertices()[1]; // [0][1] M1->Rmax(2) = TMath::Sqrt(x*x+y*y); M1->Z(3) = -(M1->GetZ(0)-TSCLengthB); M1->Rmin(3) = M1->GetRmin(2); M1->Rmax(3) = M1->GetRmax(2); M1->Z(4) = M1->GetZ(3); M1->Rmin(4) = M1->GetRmin(1); M1->Rmax(4) = M1->GetRmax(1); M1->Z(5) = -(M1->GetZ(0)); M1->Rmin(5) = M1->GetRmin(0); M1->Rmax(5) = M1->GetRmax(0); M1->Z(6) = M1->GetZ(5) - TSCLengthC; M1->Rmin(6) = TSCRinC; x = C1->GetVertices()[0]; // [0][0] y = C1->GetVertices()[1]; // [0][1] M1->Rmax(6) = TMath::Sqrt(x*x+y*y); M1->Z(7) = M1->GetZ(6); M1->Rmin(7) = D->GetRmin(); M1->Rmax(7) = D->GetRmax(); M1->Z(8) = M1->Z(7) - TSCLengthD; M1->Rmin(8) = M1->GetRmin(7); M1->Rmax(8) = M1->GetRmax(7); M2 = new TGeoTubeSeg("ITSspdShealdWingVV", M1->GetRmax(8),Dw->GetRmax(),Dw->GetDz(),Dw->GetPhi1(),Dw->GetPhi2()); printTubeSeg(M2); // x = 0.5*(M1->GetZ(8) + M1->GetZ(7)); tranITSspdShealdVVt0 = new TGeoTranslation("ITSspdShealdVVt0",0.0,0.0,x); tranITSspdShealdVVt0->RegisterYourself(); TGeoRotation rotz90("",0.0,0.0,90.0); // never registered. rotITSspdShealdVVt1 = new TGeoCombiTrans(*tranITSspdShealdVVt0,rotz90); rotITSspdShealdVVt1->SetName("ITSspdShealdVVt1"); rotITSspdShealdVVt1->RegisterYourself(); TGeoRotation rotz180("",0.0,0.0,180.0); // never registered rotITSspdShealdVVt2 = new TGeoCombiTrans(*tranITSspdShealdVVt0,rotz180); rotITSspdShealdVVt2->SetName("ITSspdShealdVVt2"); rotITSspdShealdVVt2->RegisterYourself(); TGeoRotation rotz270("",0.0,0.0,270.0); // never registered rotITSspdShealdVVt3 = new TGeoCombiTrans(*tranITSspdShealdVVt0,rotz270); rotITSspdShealdVVt3->SetName("ITSspdShealdVVt3"); rotITSspdShealdVVt3->RegisterYourself(); M = new TGeoCompositeShape("ITS SPD Thermal sheald volume", "(((ITSspdShealdVV+" "ITSspdShealdWingVV:ITSspdShealdVVt0)+" "ITSspdShealdWingVV:ITSspdShealdVVt1)+" "ITSspdShealdWingVV:ITSspdShealdVVt2)+" "ITSspdShealdWingVV:ITSspdShealdVVt3"); // TGeoManager *mgr = gGeoManager; SPDcf = mgr->GetMedium("ITSspdCarbonFiber"); SPDfs = mgr->GetMedium("ITSspdStaselite4411w"); SPDfo = mgr->GetMedium("ITSspdRohacell50A"); SPDss = mgr->GetMedium("ITSspdStainlessSteal"); SPDair= mgr->GetMedium("ITSspdAir"); TGeoVolume *A1v,*A2v,*A3v,*Ah1v,*Ah2v,*Ah3v; TGeoVolume *B1v,*B2v,*B3v,*Bh1v,*Bh2v,*Bh3v; TGeoVolume *C1v,*C2v,*C3v,*Ch1v,*Ch2v,*Ch3v; TGeoVolume *Dv,*Dsv,*Dwv,*Dwsv,*Mv; Mv = new TGeoVolume("ITSspdThermalSheald",M,SPDair); Mv->SetVisibility(kTRUE); Mv->SetLineColor(7); // light Blue Mv->SetLineWidth(1); Mv->SetFillColor(Mv->GetLineColor()); Mv->SetFillStyle(4090); // 90% transparent Moth->AddNode(Mv,1,0); ///////////////////// Virtual Volume //////// A1v = new TGeoVolume("ITSspdCentCylA1CF",A1,SPDcf); A1v->SetVisibility(kTRUE); A1v->SetLineColor(4); A1v->SetLineWidth(1); A2v = new TGeoVolume("ITSspdCentCylA2CF",A2,SPDcf); A2v->SetVisibility(kTRUE); A2v->SetLineColor(4); A2v->SetLineWidth(1); A3v = new TGeoVolume("ITSspdCentCylA3CF",A3,SPDcf); A3v->SetVisibility(kTRUE); A3v->SetLineColor(4); A3v->SetLineWidth(1); B1v = new TGeoVolume("ITSspdCentCylB1CF",B1,SPDcf); B1v->SetVisibility(kTRUE); B1v->SetLineColor(4); B1v->SetLineWidth(1); B2v = new TGeoVolume("ITSspdCentCylB2CF",B2,SPDcf); B2v->SetVisibility(kTRUE); B2v->SetLineColor(4); B2v->SetLineWidth(1); B3v = new TGeoVolume("ITSspdCentCylB3CF",B3,SPDcf); B3v->SetVisibility(kTRUE); B3v->SetLineColor(4); B3v->SetLineWidth(1); C1v = new TGeoVolume("ITSspdCentCylC1CF",C1,SPDcf); C1v->SetVisibility(kTRUE); C1v->SetLineColor(4); C1v->SetLineWidth(1); C2v = new TGeoVolume("ITSspdCentCylC2CF",C2,SPDcf); C2v->SetVisibility(kTRUE); C2v->SetLineColor(4); C2v->SetLineWidth(1); C3v = new TGeoVolume("ITSspdCentCylC3CF",C3,SPDcf); C3v->SetVisibility(kTRUE); C3v->SetLineColor(4); C3v->SetLineWidth(1); Ah1v = new TGeoVolume("ITSspdCentCylA1AirA",Ah1,SPDair); Ah1v->SetVisibility(kTRUE); Ah1v->SetLineColor(5); // Yellow Ah1v->SetFillColor(Ah1v->GetLineColor()); Ah1v->SetFillStyle(4090); // 90% transparent Ah2v = new TGeoVolume("ITSspdCentCylA2AirA",Ah2,SPDair); Ah2v->SetVisibility(kTRUE); Ah2v->SetLineColor(5); // Yellow Ah2v->SetFillColor(Ah2v->GetLineColor()); Ah2v->SetFillStyle(4090); // 90% transparent Ah3v = new TGeoVolume("ITSspdCentCylA3AirA",Ah3,SPDair); Ah3v->SetVisibility(kTRUE); Ah3v->SetLineColor(5); // Yellow Ah3v->SetFillColor(Ah3v->GetLineColor()); Ah3v->SetFillStyle(4090); // 90% transparent Bh1v = new TGeoVolume("ITSspdCentCylA1AirB",Bh1,SPDair); Bh1v->SetVisibility(kTRUE); Bh1v->SetLineColor(5); // Yellow Bh1v->SetFillColor(Bh1v->GetLineColor()); Bh1v->SetFillStyle(4090); // 90% transparent Bh2v = new TGeoVolume("ITSspdCentCylA2AirB",Bh2,SPDair); Bh2v->SetVisibility(kTRUE); Bh2v->SetLineColor(5); // Yellow Bh2v->SetFillColor(Bh2v->GetLineColor()); Bh2v->SetFillStyle(4090); // 90% transparent Bh3v = new TGeoVolume("ITSspdCentCylA3AirB",Bh3,SPDair); Bh3v->SetVisibility(kTRUE); Bh3v->SetLineColor(5); // Yellow Bh3v->SetFillColor(Bh3v->GetLineColor()); Bh3v->SetFillStyle(4090); // 90% transparent Ch1v = new TGeoVolume("ITSspdCentCylA1AirC",Ch1,SPDair); Ch1v->SetVisibility(kTRUE); Ch1v->SetLineColor(5); // Yellow Ch1v->SetFillColor(Ch1v->GetLineColor()); Ch1v->SetFillStyle(4090); // 90% transparent Ch2v = new TGeoVolume("ITSspdCentCylA2AirC",Ch2,SPDair); Ch2v->SetVisibility(kTRUE); Ch2v->SetLineColor(5); // Yellow Ch2v->SetFillColor(Ch2v->GetLineColor()); Ch2v->SetFillStyle(4090); // 90% transparent Ch3v = new TGeoVolume("ITSspdCentCylA3AirC",Ch3,SPDair); Ch3v->SetVisibility(kTRUE); Ch3v->SetLineColor(5); // Yellow Ch3v->SetFillColor(Ch3v->GetLineColor()); Ch3v->SetFillStyle(4090); // 90% transparent Dv = new TGeoVolume("ITSspdCentCylA1CD",D,SPDcf); Dv->SetVisibility(kTRUE); Dv->SetLineColor(4); Dv->SetLineWidth(1); Dwv = new TGeoVolume("ITSspdCentCylA1CDw",Dw,SPDcf); Dwv->SetVisibility(kTRUE); Dwv->SetLineColor(4); Dwv->SetLineWidth(1); Dsv = new TGeoVolume("ITSspdCentCylA1Dfill",Ds,SPDfs); Dsv->SetVisibility(kTRUE); Dsv->SetLineColor(3); // Green Dsv->SetFillColor(Dsv->GetLineColor()); Dsv->SetFillStyle(4010); // 10% transparent Dwsv = new TGeoVolume("ITSspdCentCylA1DwingFill",Dws,SPDfs); Dwsv->SetVisibility(kTRUE); Dwsv->SetLineColor(3); // Green Dwsv->SetFillColor(Dwsv->GetLineColor()); Dwsv->SetFillStyle(4010); // 10% transparent // A1v->AddNode(Ah1v,1,0); A2v->AddNode(Ah2v,1,0); A3v->AddNode(Ah3v,1,0); B1v->AddNode(Bh1v,1,0); B2v->AddNode(Bh2v,1,0); B3v->AddNode(Bh3v,1,0); C1v->AddNode(Ch1v,1,0); C2v->AddNode(Ch2v,1,0); C3v->AddNode(Ch3v,1,0); Dv ->AddNode(Dsv ,1,0); Dwv->AddNode(Dwsv,1,0); // Mv->AddNode(A1v,1,0); Mv->AddNode(A2v,1,0); Mv->AddNode(A3v,1,0); tranb = new TGeoTranslation("",0.0,0.0,0.5*(TSCLengthA+TSCLengthB)); tranbm = new TGeoTranslation("",0.0,0.0,0.5*(-TSCLengthA-TSCLengthB)); Mv->AddNode(B1v,1,tranb); Mv->AddNode(B2v,1,tranb); Mv->AddNode(B3v,1,tranb); Mv->AddNode(B1v,2,tranbm); Mv->AddNode(B2v,2,tranbm); Mv->AddNode(B3v,2,tranbm); // Muon side (rb26) is at -Z. tranc = new TGeoTranslation("",0.0,0.0, 0.5*(-TSCLengthA-TSCLengthB-TSCLengthC)); Mv->AddNode(C1v,1,tranc); Mv->AddNode(C2v,1,tranc); Mv->AddNode(C3v,1,tranc); Mv->AddNode(Dv,1,tranITSspdShealdVVt0); Mv->AddNode(Dwv,1,tranITSspdShealdVVt0); Mv->AddNode(Dwv,2,rotITSspdShealdVVt1); Mv->AddNode(Dwv,3,rotITSspdShealdVVt2); Mv->AddNode(Dwv,4,rotITSspdShealdVVt3); k=2; for(i=1;i<10;i++) { th = ((Double_t)i)*TSCAngle*kDegree; rot = new TGeoRotation("",0.0,0.0,th); Mv->AddNode(A1v,i+1,rot); Mv->AddNode(B1v,i+2,new TGeoCombiTrans(*tranb,*rot)); Mv->AddNode(B1v,i+12,new TGeoCombiTrans(*tranbm,*rot)); Mv->AddNode(C1v,i+1,new TGeoCombiTrans(*tranc,*rot)); if(i!=0||i!=2||i!=7){ Mv->AddNode(A2v,k++,rot); Mv->AddNode(B2v,k++,new TGeoCombiTrans(*tranb,*rot)); Mv->AddNode(B2v,k++,new TGeoCombiTrans(*tranbm,*rot)); Mv->AddNode(C2v,k++,new TGeoCombiTrans(*tranc,*rot)); } // end if if(i==5) { Mv->AddNode(A3v,2,rot); Mv->AddNode(B3v,3,new TGeoCombiTrans(*tranb,*rot)); Mv->AddNode(B3v,4,new TGeoCombiTrans(*tranbm,*rot)); Mv->AddNode(C3v,2,new TGeoCombiTrans(*tranc,*rot)); } // end if } // end for i rot = new TGeoRotation("",180.,0.0,0.0); Mv->AddNode(A3v,3,rot); Mv->AddNode(B3v,5,new TGeoCombiTrans(*tranb,*rot)); Mv->AddNode(B3v,6,new TGeoCombiTrans(*tranbm,*rot)); Mv->AddNode(C3v,3,new TGeoCombiTrans(*tranc,*rot)); rot = new TGeoRotation("",180.,0.0,180.0); Mv->AddNode(A3v,4,rot); Mv->AddNode(B3v,7,new TGeoCombiTrans(*tranb,*rot)); Mv->AddNode(B3v,8,new TGeoCombiTrans(*tranbm,*rot)); Mv->AddNode(C3v,4,new TGeoCombiTrans(*tranc,*rot)); if(GetDebug()){ A1v->PrintNodes(); Ah1v->PrintNodes(); A2v->PrintNodes(); Ah2v->PrintNodes(); A3v->PrintNodes(); Ah3v->PrintNodes(); B1v->PrintNodes(); Bh1v->PrintNodes(); B2v->PrintNodes(); Bh2v->PrintNodes(); B3v->PrintNodes(); Bh3v->PrintNodes(); C1v->PrintNodes(); Ch1v->PrintNodes(); C2v->PrintNodes(); Ch2v->PrintNodes(); C3v->PrintNodes(); Ch3v->PrintNodes(); Dv->PrintNodes(); Dsv->PrintNodes(); Dwv->PrintNodes(); Dwsv->PrintNodes(); //Mv->PrintNodes(); } // end if } //______________________________________________________________________ void AliITSv11::SDDCone(TGeoVolume *Moth){ // Define the detail SDD support cone geometry. // Inputs: // none. // Outputs: // none. // Return: // none. // // From Cilindro Centrale - Lavorazioni, ALR 0816/1 04/08/03 File // name SDD/Cilindro.hpgl const Double_t TSLength = 790.0*kmm; // Thermal Sheeld length const Double_t TSInsertoLength= 15.0*kmm; // ???? const Double_t TSOuterR = 0.5*(220.+10.)*kmm; // ???? const Double_t TSInnerR = 0.5*(220.-10.)*kmm; // ???? const Double_t TSCarbonFiberth= 0.02*kmm; // ???? const Double_t TSBoltDiameter = 6.0*kmm; // M6 screw const Double_t TSBoltDepth = 6.0*kmm; // in volume C const Double_t TSBoltRadius = 0.5*220.*kmm; // Radius in volume C const Double_t TSBoltAngle0 = 0.0*kDegree; // Angle in volume C const Double_t TSBoltdAngle = 30.0*kDegree; // Angle in Volume C Double_t x,y,z,t,t0; Int_t i,n; TGeoTube *A,*B,*C,*D; TGeoTranslation *tran; TGeoRotation *rot; TGeoCombiTrans *rotran; TGeoMedium *SDDcf,*SDDfs,*SDDfo,*SDDss; A = new TGeoTube("ITS SDD Central Cylinder",TSInnerR,TSOuterR,.5*TSLength); B = new TGeoTube("ITS SDD CC Foam",TSInnerR+TSCarbonFiberth, TSOuterR-TSCarbonFiberth, 0.5*(TSLength-2.0*TSInsertoLength)); C = new TGeoTube("ITS SDD CC Inserto",TSInnerR+TSCarbonFiberth, TSOuterR-TSCarbonFiberth,0.5*TSLength); D = new TGeoTube("ITS SDD CC M6 bolt end",0.0,0.5*TSBoltDiameter, 0.5*TSBoltDepth); printTube(A); printTube(B); printTube(C); printTube(D); // TGeoManager *mgr = gGeoManager; SDDcf = mgr->GetMedium("ITSssdCarbonFiber"); SDDfs = mgr->GetMedium("ITSssdStaselite4411w"); SDDfo = mgr->GetMedium("ITSssdRohacell50A"); SDDss = mgr->GetMedium("ITSssdStainlessSteal"); TGeoVolume *Av,*Bv,*Cv,*Dv; Av = new TGeoVolume("ITSsddCentCylCF",A,SDDcf); Av->SetVisibility(kTRUE); Av->SetLineColor(4); Av->SetLineWidth(1); Av->SetFillColor(Av->GetLineColor()); Av->SetFillStyle(4000); // 0% transparent Bv = new TGeoVolume("ITSsddCentCylF",B,SDDfo); Bv->SetVisibility(kTRUE); Bv->SetLineColor(3); Bv->SetLineWidth(1); Bv->SetFillColor(Bv->GetLineColor()); Bv->SetFillStyle(4000); // 0% transparent Cv = new TGeoVolume("ITSsddCentCylSt",C,SDDfs); Cv->SetVisibility(kTRUE); Cv->SetLineColor(2); Cv->SetLineWidth(1); Cv->SetFillColor(Cv->GetLineColor()); Cv->SetFillStyle(4000); // 0% transparent Dv = new TGeoVolume("ITSsddCentCylSS",D,SDDss); Dv->SetVisibility(kTRUE); Dv->SetLineColor(1); Dv->SetLineWidth(1); Dv->SetFillColor(Dv->GetLineColor()); Dv->SetFillStyle(4000); // 0% transparent // Moth->AddNode(Av,1,0); Av->AddNode(Cv,1,0); Cv->AddNode(Bv,1,0); n = (Int_t)((360.*kDegree)/TSBoltdAngle); for(i=0;iAddNode(Dv,i+1,tran); tran = new TGeoTranslation("",x,y,-z); Cv->AddNode(Dv,i+n+1,tran); } // end for i if(GetDebug()){ Av->PrintNodes(); Bv->PrintNodes(); Cv->PrintNodes(); Dv->PrintNodes(); } // end if // SDD Suport Cone // // const Double_t Thickness = 10.5*kmm; // Thickness of Rohacell+carbon fiber const Double_t Cthick = 1.5*kmm; // Carbon finber thickness const Double_t Rcurv = 15.0*kmm; // Radius of curvature. const Double_t Tc = 45.0; // angle of SSD cone [degrees]. const Double_t Sintc = TMath::Sin(Tc*TMath::DegToRad()); const Double_t Costc = TMath::Cos(Tc*TMath::DegToRad()); const Double_t Tantc = TMath::Tan(Tc*TMath::DegToRad()); const Double_t ZouterMilled = 23.0*kmm; const Double_t Zcylinder = 186.0*kmm; const Double_t Z0 = Zcylinder + 0.5*TSLength; //const Int_t Nspoaks = 12; //const Int_t Nmounts = 4; //const Double_t DmountAngle = 9.0; // degrees const Double_t RoutMax = 0.5*560.0*kmm; const Double_t RoutMin = 0.5*539.0*kmm; // Holes in cone for cables const Double_t PhiHole1 = 0.0*kDegree; const Double_t dPhiHole1 = 25.0*kDegree; const Double_t RholeMax1 = 0.5*528.*kmm; const Double_t RholeMin1 = 0.5*464.*kmm; const Double_t PhiHole2 = 0.0*kDegree; const Double_t dPhiHole2 = 50.0*kDegree; const Double_t RholeMax2 = 0.5*375.*kmm; const Double_t RholeMin2 = 0.5*280.*kmm; // //const Int_t NpostsOut = 6; //const Int_t NpostsIn = 3; //const Double_t Phi0PostOut = 0.0; // degree //const Double_t Phi0PostIn = 0.0; // degree //const Double_t dRpostOut = 16.0*kmm; //const Double_t dRpostIn = 16.0*kmm; //const Double_t ZpostMaxOut = 116.0*kmm; //const Double_t ZpostMaxIn = 190.0*kmm; const Double_t RinMax = 0.5*216*kmm; const Double_t RinCylinder = 0.5*231.0*kmm; //const Double_t RinHole = 0.5*220.0*kmm; const Double_t RinMin = 0.5*210.0*kmm; const Double_t dZin = 15.0*kmm; // ??? // Double_t dza = Thickness/Sintc-(RoutMax-RoutMin)/Tantc; Double_t Z,Rmin,Rmax; // Temp variables. if(dza<=0){ // The number or order of the points are in error for a proper // call to pcons! Error("SDDcone","The definition of the points for a call to PCONS is" " in error. abort."); return; } // end if TGeoPcon *E = new TGeoPcon("ITSsddSuportConeCarbonFiberSurfaceE", 0.0,360.0,12); E->Z(0) = 0.0; E->Rmin(0) = RoutMin; E->Rmax(0) = RoutMax; E->Z(1) = ZouterMilled - dza; E->Rmin(1) = E->GetRmin(0); E->Rmax(1) = E->GetRmax(0); E->Z(2) = ZouterMilled; E->Rmax(2) = E->GetRmax(0); RadiusOfCurvature(Rcurv,0.,E->GetZ(1),E->GetRmin(1),Tc,Z,Rmin); E->Z(3) = Z; E->Rmin(3) = Rmin; E->Rmin(2) = RminFrom2Points(E,3,1,E->GetZ(2)); RadiusOfCurvature(Rcurv,0.,E->GetZ(2),E->GetRmax(2),Tc,Z,Rmax); E->Z(4) = Z; E->Rmax(4) = Rmax; E->Rmin(4) = RminFromZpCone(E,Tc,E->GetZ(4),0.0); E->Rmax(3) = RmaxFrom2Points(E,4,2,E->GetZ(3)); E->Rmin(7) = RinMin; E->Rmin(8) = RinMin; RadiusOfCurvature(Rcurv,90.0,0.0,RinMax,90.0-Tc,Z,Rmax); E->Rmax(8) = Rmax; E->Z(8) = ZFromRmaxpCone(E,Tc,E->GetRmax(8)); E->Z(9) = Zcylinder; E->Rmin(9) = RinMin; E->Z(10) = E->GetZ(9); E->Rmin(10) = RinCylinder; E->Rmin(11) = RinCylinder; E->Rmax(11) = E->GetRmin(11); Rmin = E->GetRmin(8); RadiusOfCurvature(Rcurv,90.0-Tc,E->GetZ(8),E->GetRmax(8),90.0,Z,Rmax); Rmax = RinMax; E->Z(11) = Z+(E->GetZ(8)-Z)*(E->GetRmax(11)-Rmax)/(E->GetRmax(8)-Rmax); E->Rmax(9) = RmaxFrom2Points(E,11,8,E->GetZ(9)); E->Rmax(10) = E->GetRmax(9); E->Z(6) = Z-dZin; E->Z(7) = E->GetZ(6); E->Rmax(6) = RmaxFromZpCone(E,Tc,E->GetZ(6)); E->Rmax(7) = E->GetRmax(6); RadiusOfCurvature(Rcurv,90.,E->GetZ(6),0.0,90.0-Tc,Z,Rmin); E->Z(5) = Z; E->Rmin(5) = RminFromZpCone(E,Tc,Z); E->Rmax(5) = RmaxFromZpCone(E,Tc,Z); RadiusOfCurvature(Rcurv,90.-Tc,0.0,E->Rmin(5),90.0,Z,Rmin); E->Rmin(6) = Rmin; printPcon(E); // Inner Core, Inserto material TGeoPcon *F = new TGeoPcon("ITSsddSuportConeInsertoStesaliteF",0.,360.0,9); F->Z(0) = E->GetZ(0); F->Rmin(0) = E->GetRmin(0)+Cthick; F->Rmax(0) = E->GetRmax(0)-Cthick; F->Z(1) = E->GetZ(1); F->Rmin(1) = F->GetRmin(0); F->Rmax(1) = F->GetRmax(0); F->Z(2) = E->GetZ(2); F->Rmax(2) = F->GetRmax(1); RadiusOfCurvature(Rcurv-Cthick,0.,F->GetZ(1),F->GetRmax(1),Tc,Z,Rmin); F->Z(3) = Z; F->Rmin(3) = Rmin; F->Rmin(2) = RminFrom2Points(F,3,1,F->GetZ(2)); RadiusOfCurvature(Rcurv+Cthick,0.,F->GetZ(2),F->GetRmax(2),Tc,Z,Rmax); F->Z(4) = Z; F->Rmax(4) = Rmax; F->Rmin(4) = RmaxFromZpCone(E,Tc,F->GetZ(4),-Cthick); F->Rmax(3) = RmaxFrom2Points(F,4,2,F->GetZ(3)); F->Rmin(7) = E->GetRmin(7); F->Rmin(8) = E->GetRmin(8); F->Z(6) = E->GetZ(6)+Cthick; F->Rmin(6) = E->GetRmin(6); F->Z(7) = F->GetZ(6); F->Rmax(8) = E->GetRmax(8)-Cthick*Sintc; RadiusOfCurvature(Rcurv+Cthick,90.,F->GetZ(6),F->GetRmin(6),90.-Tc,Z,Rmin); F->Z(5) = Z; F->Rmin(5) = Rmin; F->Rmax(5) = RmaxFromZpCone(F,Tc,Z); F->Rmax(6) = RmaxFromZpCone(F,Tc,F->GetZ(6)); F->Rmax(7) = F->GetRmax(6); F->Z(8) = ZFromRmaxpCone(F,Tc,F->GetRmax(8),-Cthick); printPcon(F); // Inner Core, Inserto material TGeoPcon *G = new TGeoPcon("ITSsddSuportConeFoamCoreG",0.0,360.0,4); RadiusOfCurvature(Rcurv+Cthick,0.0,F->GetZ(1),F->GetRmin(1),Tc,Z,Rmin); G->Z(0) = Z; G->Rmin(0) = Rmin; G->Rmax(0) = G->GetRmin(0); G->Z(1) = G->GetZ(0)+(Thickness-2.0*Cthick)/Sintc;; G->Rmin(1) = RminFromZpCone(F,Tc,G->GetZ(1)); G->Rmax(1) = RmaxFromZpCone(F,Tc,G->GetZ(1)); G->Z(2) = E->GetZ(5)-Cthick; G->Rmin(2) = RminFromZpCone(F,Tc,G->GetZ(2)); G->Rmax(2) = RmaxFromZpCone(F,Tc,G->GetZ(2)); G->Z(3) = F->GetZ(5)+(Thickness-2.0*Cthick)*Costc; G->Rmax(3) = RmaxFromZpCone(F,Tc,G->GetZ(3)); G->Rmin(3) = G->GetRmax(3); printPcon(G); // TGeoPcon *H = new TGeoPcon("ITSsddSuportConeHoleH",PhiHole1,dPhiHole1,4); H->Rmin(0) = RholeMax1; H->Rmax(0) = H->GetRmin(0); H->Z(0) = ZFromRminpCone(E,Tc,H->GetRmin(0)); H->Rmax(1) = H->GetRmax(0); H->Z(1) = ZFromRmaxpCone(E,Tc,H->GetRmax(1)); H->Rmin(1) = RminFromZpCone(E,Tc,H->GetZ(1)); H->Rmin(2) = RholeMin1; H->Z(2) = ZFromRminpCone(E,Tc,H->GetRmin(2)); H->Rmax(2) = RmaxFromZpCone(E,Tc,H->GetZ(2)); H->Rmin(3) = H->GetRmin(2); H->Rmax(3) = H->GetRmin(3); H->Z(3) = ZFromRminpCone(E,Tc,H->GetRmin(3)); printPcon(H); // x = Cthick/(0.5*(RholeMax1+RholeMin1)); t0 = PhiHole1 - x/kRadian; t = dPhiHole1 + 2.0*x/kRadian; TGeoPcon *I = new TGeoPcon("ITSsddSuportConeHoleI",t0,t,4); I->Rmin(0) = RholeMax1+Cthick; I->Rmax(0) = I->GetRmin(0); I->Z(0) = ZFromRminpCone(F,Tc,I->GetRmin(0)); I->Rmax(1) = I->GetRmax(0); I->Z(1) = ZFromRmaxpCone(F,Tc,I->GetRmax(1)); I->Rmin(1) = RminFromZpCone(F,Tc,I->GetZ(1)); I->Rmin(2) = RholeMin1-Cthick; I->Z(2) = ZFromRminpCone(F,Tc,I->GetRmin(2)); I->Rmax(2) = RmaxFromZpCone(F,Tc,I->GetZ(2)); I->Rmin(3) = I->GetRmin(2); I->Rmax(3) = I->GetRmin(3); I->Z(3) = ZFromRmaxpCone(F,Tc,I->GetRmax(3)); printPcon(I); // TGeoPcon *J = new TGeoPcon("ITSsddSuportConeHoleJ",PhiHole2,dPhiHole2,4); J->Rmin(0) = RholeMax2; J->Rmax(0) = J->GetRmin(0); J->Z(0) = ZFromRminpCone(E,Tc,J->GetRmin(0)); J->Rmax(1) = J->GetRmax(0); J->Z(1) = ZFromRmaxpCone(E,Tc,J->GetRmax(1)); J->Rmin(1) = RminFromZpCone(E,Tc,J->GetZ(1)); J->Rmin(2) = RholeMin2; J->Z(2) = ZFromRminpCone(E,Tc,J->GetRmin(2)); J->Rmax(2) = RmaxFromZpCone(E,Tc,J->GetZ(2)); J->Rmin(3) = J->GetRmin(2); J->Rmax(3) = J->GetRmin(3); J->Z(3) = ZFromRmaxpCone(E,Tc,J->GetRmax(3)); printPcon(J); // x = Cthick/(0.5*(RholeMax2+RholeMin2)); t0 = PhiHole2 - x/kRadian; t = dPhiHole2 + 2.0*x/kRadian; TGeoPcon *K = new TGeoPcon("ITSsddSuportConeHoleK",t0,t,4); K->Rmin(0) = RholeMax2+Cthick; K->Rmax(0) = K->GetRmin(0); K->Z(0) = ZFromRminpCone(F,Tc,K->GetRmin(0)); K->Rmax(1) = K->GetRmax(0); K->Z(1) = ZFromRmaxpCone(F,Tc,K->GetRmax(1)); K->Rmin(1) = RminFromZpCone(F,Tc,K->GetZ(1)); K->Rmin(2) = RholeMin2-Cthick; K->Z(2) = ZFromRminpCone(F,Tc,K->GetRmin(2)); K->Rmax(2) = RmaxFromZpCone(F,Tc,K->GetZ(2)); K->Rmin(3) = K->GetRmin(2); K->Rmax(3) = K->GetRmin(3); K->Z(3) = ZFromRmaxpCone(F,Tc,K->GetRmax(3)); printPcon(K); // TGeoCompositeShape *L,*M,*N; rot = new TGeoRotation("ITSsddRotZ30",0.0,0.0,30.0); rot->RegisterYourself(); rot = new TGeoRotation("ITSsddRotZ60",0.0,0.0,60.0); rot->RegisterYourself(); rot = new TGeoRotation("ITSsddRotZ90",0.0,0.0,90.0); rot->RegisterYourself(); rot = new TGeoRotation("ITSsddRotZ120",0.0,0.0,120.0); rot->RegisterYourself(); rot = new TGeoRotation("ITSsddRotZ150",0.0,0.0,150.0); rot->RegisterYourself(); rot = new TGeoRotation("ITSsddRotZ180",0.0,0.0,180.0); rot->RegisterYourself(); rot = new TGeoRotation("ITSsddRotZ210",0.0,0.0,210.0); rot->RegisterYourself(); rot = new TGeoRotation("ITSsddRotZ240",0.0,0.0,240.0); rot->RegisterYourself(); rot = new TGeoRotation("ITSsddRotZ270",0.0,0.0,270.0); rot->RegisterYourself(); rot = new TGeoRotation("ITSsddRotZ300",0.0,0.0,300.0); rot->RegisterYourself(); rot = new TGeoRotation("ITSsddRotZ330",0.0,0.0,330.0); rot->RegisterYourself(); L = new TGeoCompositeShape("ITS SDD Suport Cone","(((((((((((((((((" "ITSsddSuportConeCarbonFiberSurfaceE -" "ITSsddSuportConeHoleH) -" "ITSsddSuportConeHoleH:ITSsddRotZ30) -" "ITSsddSuportConeHoleH:ITSsddRotZ60) -" "ITSsddSuportConeHoleH:ITSsddRotZ90) -" "ITSsddSuportConeHoleH:ITSsddRotZ120) -" "ITSsddSuportConeHoleH:ITSsddRotZ150) -" "ITSsddSuportConeHoleH:ITSsddRotZ180) -" "ITSsddSuportConeHoleH:ITSsddRotZ210) -" "ITSsddSuportConeHoleH:ITSsddRotZ240) -" "ITSsddSuportConeHoleH:ITSsddRotZ270) -" "ITSsddSuportConeHoleH:ITSsddRotZ300) -" "ITSsddSuportConeHoleH:ITSsddRotZ330) -" "ITSsddSuportConeHoleJ) -" "ITSsddSuportConeHoleJ:ITSsddRotZ60) -" "ITSsddSuportConeHoleJ:ITSsddRotZ120) -" "ITSsddSuportConeHoleJ:ITSsddRotZ180) -" "ITSsddSuportConeHoleJ:ITSsddRotZ240) -" "ITSsddSuportConeHoleJ:ITSsddRotZ300"); M = new TGeoCompositeShape("ITS SDD Suport Cone Inserto Stesalite", "(((((((((((((((((" "ITSsddSuportConeInsertoStesaliteF -" "ITSsddSuportConeHoleI) -" "ITSsddSuportConeHoleI:ITSsddRotZ30) -" "ITSsddSuportConeHoleI:ITSsddRotZ60) -" "ITSsddSuportConeHoleI:ITSsddRotZ90) -" "ITSsddSuportConeHoleI:ITSsddRotZ120) -" "ITSsddSuportConeHoleI:ITSsddRotZ150) -" "ITSsddSuportConeHoleI:ITSsddRotZ180) -" "ITSsddSuportConeHoleI:ITSsddRotZ210) -" "ITSsddSuportConeHoleI:ITSsddRotZ240) -" "ITSsddSuportConeHoleI:ITSsddRotZ270) -" "ITSsddSuportConeHoleI:ITSsddRotZ300) -" "ITSsddSuportConeHoleI:ITSsddRotZ330) -" "ITSsddSuportConeHoleK) -" "ITSsddSuportConeHoleK:ITSsddRotZ60) -" "ITSsddSuportConeHoleK:ITSsddRotZ120) -" "ITSsddSuportConeHoleK:ITSsddRotZ180) -" "ITSsddSuportConeHoleK:ITSsddRotZ240) -" "ITSsddSuportConeHoleK:ITSsddRotZ300"); N = new TGeoCompositeShape("ITS SDD Suport Cone Foam Core", "(((((((((((((((((" "ITSsddSuportConeFoamCoreG -" "ITSsddSuportConeHoleI) -" "ITSsddSuportConeHoleI:ITSsddRotZ30) -" "ITSsddSuportConeHoleI:ITSsddRotZ60) -" "ITSsddSuportConeHoleI:ITSsddRotZ90) -" "ITSsddSuportConeHoleI:ITSsddRotZ120) -" "ITSsddSuportConeHoleI:ITSsddRotZ150) -" "ITSsddSuportConeHoleI:ITSsddRotZ180) -" "ITSsddSuportConeHoleI:ITSsddRotZ210) -" "ITSsddSuportConeHoleI:ITSsddRotZ240) -" "ITSsddSuportConeHoleI:ITSsddRotZ270) -" "ITSsddSuportConeHoleI:ITSsddRotZ300) -" "ITSsddSuportConeHoleI:ITSsddRotZ330) -" "ITSsddSuportConeHoleK) -" "ITSsddSuportConeHoleK:ITSsddRotZ60) -" "ITSsddSuportConeHoleK:ITSsddRotZ120) -" "ITSsddSuportConeHoleK:ITSsddRotZ180) -" "ITSsddSuportConeHoleK:ITSsddRotZ240) -" "ITSsddSuportConeHoleK:ITSsddRotZ300"); //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ TGeoVolume *Lv,*Mv,*Nv; Lv = new TGeoVolume("ITSsddConeL",L,SDDcf); Lv->SetVisibility(kTRUE); Lv->SetLineColor(4); Lv->SetLineWidth(1); Lv->SetFillColor(Lv->GetLineColor()); Lv->SetFillStyle(4000); // 0% transparent Mv = new TGeoVolume("ITSsddConeM",M,SDDfs); Mv->SetVisibility(kTRUE); Mv->SetLineColor(2); Mv->SetLineWidth(1); Mv->SetFillColor(Mv->GetLineColor()); Mv->SetFillStyle(4010); // 10% transparent Nv = new TGeoVolume("ITSsddConeN",N,SDDfo); Nv->SetVisibility(kTRUE); Nv->SetLineColor(7); Nv->SetLineWidth(1); Nv->SetFillColor(Nv->GetLineColor()); Nv->SetFillStyle(4050); // 50% transparent // Mv->AddNode(Nv,1,0); Lv->AddNode(Mv,1,0); tran = new TGeoTranslation("",0.0,0.0,-Z0); Moth->AddNode(Lv,1,tran); rot = new TGeoRotation("",0.0,180.0*kDegree,0.0); rotran = new TGeoCombiTrans("",0.0,0.0,Z0,rot); delete rot;// rot not explicity used in AddNode functions. Moth->AddNode(Lv,2,rotran); if(GetDebug()){ Lv->PrintNodes(); Mv->PrintNodes(); Nv->PrintNodes(); } // end if } //______________________________________________________________________ void AliITSv11::SSDCone(TGeoVolume *Moth){ // Define the detail SSD support cone geometry. // Inputs: // none. // Outputs: // none. // Return: // none. // TGeoMedium *SSDcf = 0; // SSD support cone Carbon Fiber materal number. TGeoMedium *SSDfs = 0; // SSD support cone inserto stesalite 4411w. TGeoMedium *SSDfo = 0; // SSD support cone foam, Rohacell 50A. TGeoMedium *SSDss = 0; // SSD support cone screw material,Stainless steal TGeoMedium *SSDair = 0; // SSD support cone Air TGeoMedium *SSDal = 0; // SSD support cone SDD mounting bracket Al TGeoManager *mgr = gGeoManager; SSDcf = mgr->GetMedium("ITSssdCarbonFiber"); SSDfs = mgr->GetMedium("ITSssdStaselite4411w"); SSDfo = mgr->GetMedium("ITSssdRohacell50A"); SSDss = mgr->GetMedium("ITSssdStainlessSteal"); SSDair= mgr->GetMedium("ITSssdAir"); SSDal = mgr->GetMedium("ITSssdAl"); // // SSD Central cylinder/Thermal Sheald. const Double_t ZThCylinder = 1140.0*kmm; // const Double_t ZThCylFoam = 1020.0*kmm; // const Double_t RThCylOuter = 0.5*595.0*kmm; // const Double_t CthickThCyl = 0.64*kmm; // const Double_t FoamThickTh = 5.0*kmm; // const Double_t dZThCylThEnd = 6.0*kmm; // const Double_t RThCylInerEnd= 0.5*560.5*kmm; // TGeoPcon *CA,*CB; TGeoTube*CC; // CA = new TGeoPcon("ITS SSD Thermal Centeral CylinderA",0.0,360.0,6); CB = new TGeoPcon("ITS SSD Thermal Centeral CylinderB",0.0,360.0,6); CC = new TGeoTube("ITS SSD Thermal Centeral CylinderC", RThCylOuter-CthickThCyl-FoamThickTh, RThCylOuter-CthickThCyl,0.5*ZThCylFoam); CA->Z(0) = -0.5*ZThCylinder; CA->Rmin(0) = RThCylInerEnd; CA->Rmax(0) = RThCylOuter; CA->Z(1) = CA->GetZ(0) + dZThCylThEnd; CA->Rmin(1) = CA->GetRmin(0); CA->Rmax(1) = CA->GetRmax(0); CA->Z(2) = -0.5*ZThCylFoam; CA->Rmin(2) = RThCylOuter - 2.0*CthickThCyl-FoamThickTh; CA->Rmax(2) = CA->GetRmax(0); CA->Z(3) = -CA->GetZ(2); CA->Rmin(3) = CA->GetRmin(2); CA->Rmax(3) = CA->GetRmax(2); CA->Z(4) = -CA->GetZ(1); CA->Rmin(4) = CA->GetRmin(1); CA->Rmax(4) = CA->GetRmax(1); CA->Z(5) = -CA->GetZ(0); CA->Rmin(5) = CA->GetRmin(0); CA->Rmax(5) = CA->GetRmax(0); // CB->Z(0) = CA->GetZ(0); CB->Rmin(0) = CA->GetRmin(0) + CthickThCyl; CB->Rmax(0) = CA->GetRmax(0) - CthickThCyl; CB->Z(1) = CA->GetZ(1); CB->Rmin(1) = CA->GetRmin(1) + CthickThCyl; CB->Rmax(1) = CA->GetRmax(1) - CthickThCyl; CB->Z(2) = CA->GetZ(2); CB->Rmin(2) = CA->GetRmin(2) + CthickThCyl; CB->Rmax(2) = CA->GetRmax(2) - CthickThCyl; CB->Z(3) = CA->GetZ(3); CB->Rmin(3) = CA->GetRmin(3) + CthickThCyl; CB->Rmax(3) = CA->GetRmax(3) - CthickThCyl; CB->Z(4) = CA->GetZ(4); CB->Rmin(4) = CA->GetRmin(4) + CthickThCyl; CB->Rmax(4) = CA->GetRmax(4) - CthickThCyl; CB->Z(5) = CA->GetZ(5); CB->Rmin(5) = CA->GetRmin(5) + CthickThCyl; CB->Rmax(5) = CA->GetRmax(5) - CthickThCyl; // printPcon(CA); printPcon(CB); printTube(CC); TGeoVolume *CAv,*CBv,*CCv; CAv = new TGeoVolume("ITSssdCentCylCA",CA,SSDcf); CAv->SetVisibility(kTRUE); CAv->SetLineColor(4); // blue CAv->SetLineWidth(1); CAv->SetFillColor(CAv->GetLineColor()); CAv->SetFillStyle(4010); // 10% transparent CBv = new TGeoVolume("ITSssdCentCylCB",CB,SSDfs); CBv->SetVisibility(kTRUE); CBv->SetLineColor(2); // red CBv->SetLineWidth(1); CBv->SetFillColor(CBv->GetLineColor()); CBv->SetFillStyle(4010); // 10% transparent CCv = new TGeoVolume("ITSssdCentCylCC",CC,SSDfo); CCv->SetVisibility(kTRUE); CCv->SetLineColor(3); // green CCv->SetLineWidth(1); CCv->SetFillColor(CCv->GetLineColor()); CCv->SetFillStyle(4010); // 10% transparent CBv->AddNode(CCv,1,0); CAv->AddNode(CBv,1,0); Moth->AddNode(CAv,1,0); if(GetDebug()){ CAv->PrintNodes(); CBv->PrintNodes(); CCv->PrintNodes(); } // end if // const Double_t Thickness = 13.0*kmm; // Thickness of Rohacell+carbon fiber const Double_t Cthick = 1.5*kmm; // Carbon finber thickness const Double_t Rcurv = 15.0*kmm; // Radius of curvature. const Double_t Tc = 51.0; // angle of SSD cone [degrees]. const Double_t Sintc = TMath::Sin(Tc*TMath::DegToRad()); const Double_t Costc = TMath::Cos(Tc*TMath::DegToRad()); const Double_t Tantc = TMath::Tan(Tc*TMath::DegToRad()); const Double_t ZouterMilled = (13.5-5.0)*kmm; const Double_t Zcylinder = 170.0*kmm; const Double_t Z0 = Zcylinder + 0.5*ZThCylinder; const Int_t Nspoaks = 12; const Int_t Nmounts = 4; const Double_t DmountAngle = 9.0; // degrees const Double_t RoutMax = 0.5*985.0*kmm; const Double_t RoutHole = 0.5*965.0*kmm; const Double_t RoutMin = 0.5*945.0*kmm; const Double_t RholeMax = 0.5*890.0*kmm; const Double_t RholeMin = 0.5*740.0*kmm; const Double_t RpostMin = 316.0*kmm; const Double_t ZpostMax = 196.0*kmm; const Int_t Nposts = 6; const Double_t Phi0Post = 0.0; // degree const Double_t dRpost = 23.0*kmm; const Double_t RinMax = 0.5*590.0*kmm; const Double_t RinCylinder = 0.5*597.0*kmm; const Double_t RinHole = 0.5*575.0*kmm; const Double_t RinMin = 0.5*562.0*kmm; const Double_t dZin = 15.0*kmm; // SSD-SDD Thermal/Mechanical cylinder mounts const Int_t NinScrews = 40; const Double_t Phi0Screws = 0.5*360.0/((const Double_t)NinScrews);//d const Double_t RcylinderScrews = 0.5*570.0*kmm;//from older drawing???? const Double_t DscrewHead = 8.0*kmm; const Double_t DscrewShaft = 4.6*kmm; const Double_t ThScrewHeadHole = 8.5*kmm; // SDD mounting bracket, SSD part const Double_t NssdSupports = 3;// mounting of U and T const Double_t DssdsddBracketAngle = 9.0; // degrees const Double_t Phi0SDDsupports = 0.0; // degree const Double_t RsddSupportPlate = 0.5*585.0*kmm; const Double_t ThSDDsupportPlate = 4.0*kmm; const Double_t WsddSupportPlate = 70.0*kmm; // // Lets start with the upper left outer carbon fiber surface. // Between za[2],rmaxa[2] and za[4],rmaxa[4] there is a curved section // given by rmaxa = rmaxa[2]-r*Sind(t) for 0<=t<=Tc and // za = za[2] + r*Cosd(t) for 0<=t<=Tc. Simularly between za[1],rmina[1 // and za[3],rmina[3] there is a curve section given by // rmina = rmina[1]-r*Sind(t) for 0<=t<=Tc and za = za[1]+r&Sind(t) // for t<=0<=Tc. These curves have been replaced by straight lines // between the equivelent points for simplicity. Double_t dza = Thickness/Sintc-(RoutMax-RoutMin)/Tantc; Int_t i,j; Double_t x,y,z[9],rn[9],rx[9],phi,dphi; Double_t t,t0,Z,Rmin,Rmax; // Temp variables. if(dza<=0){ // The number or order of the points are in error for a proper // call to pcons! Error("SSDcone","The definition of the points for a call to PCONS is" " in error. abort."); return; } // end if // Poly-cone Volume A. Top part of SSD cone Carbon Fiber. phi = 0.0; dphi = 360.0; z[0] = 0.0; rn[0] = RoutMin; rx[0] = RoutMax; z[1] = z[0]+ZouterMilled - dza; // za[2] - dza. rn[1] = rn[0]; rx[1] = rx[0]; z[2] = z[0]+ZouterMilled;//From Drawing ALR-0767 and ALR-0767/3 rx[2] = rx[0]; RadiusOfCurvature(Rcurv,0.,z[1],rn[1],Tc,z[3],rn[3]); rn[2] = RFrom2Points(rn,z,3,1,z[2]); RadiusOfCurvature(Rcurv,0.,z[2],rx[2],Tc,z[4],rx[4]); rn[4] = RminFromZpCone(rn,z,Tc,z[4]); rx[3] = RFrom2Points(rx,z,4,2,z[3]); rn[5] = RholeMax; z[5] = Zfrom2Points(z,rn,4,3,rn[5]); rx[5] = RmaxFromZpCone(rx,z,Tc,z[5]); rn[6] = RholeMax; rx[6] = rn[6]; z[6] = ZFromRmaxpCone(rx,z,Tc,rx[6]); TGeoPcon *A = new TGeoPcon("ITS SSD Suport cone Carbon Fiber " "Surface outer left",phi,dphi,7); for(i=0;iGetNz();i++){ A->DefineSection(i,z[i],rn[i],rx[i]); } // end for i printPcon(A); // // Poly-cone Volume B. Stesalite inside volume A. // Now lets define the Inserto Stesalite 4411w material volume. phi = 0.0; dphi = 360.0; z[0] = A->GetZ(0); rn[0] = A->GetRmin(0)+Cthick; rx[0] = A->GetRmax(0)-Cthick; z[1] = A->GetZ(1); rn[1] = rn[0]; rx[1] = rx[0]; z[2] = A->GetZ(2); rx[2] = rx[1]; RadiusOfCurvature(Rcurv-Cthick,0.,z[2],rx[2],Tc,z[3],rx[3]); RadiusOfCurvature(Rcurv+Cthick,0.,z[1],rn[1],Tc,z[4],rn[4]); rn[2] = RFrom2Points(rn,z,4,1,z[2]); rn[3] = RFrom2Points(rn,z,4,1,z[3]); z[5] = z[4]+(Thickness-2.0*Cthick)/Sintc; rn[5] = RmaxFromZpCone(A,Tc,z[5],-Cthick); rx[5] = rn[5]; rx[4] = RFrom2Points(rx,z,5,3,z[4]); TGeoPcon *B = new TGeoPcon("ITS SSD Suport cone Inserto Stesalite " "left edge",phi,dphi,6); for(i=0;iGetNz();i++){ B->DefineSection(i,z[i],rn[i],rx[i]); } // end for i printPcon(B); // // Poly-cone Volume C. Foam inside volume A. // Now lets define the Rohacell foam material volume. phi = 0.0; dphi = 360.0; z[0] = B->GetZ(4); rn[0] = B->GetRmin(4); rx[0] = rn[0]; z[1] = B->GetZ(5); rx[1] = B->GetRmin(5); rn[2] = A->GetRmin(5)+Cthick;//space for carbon fiber covering hole z[2] = ZFromRminpCone(A,Tc,rn[2],+Cthick); rn[1] = RFrom2Points(rn,z,2,0,z[1]); rx[3] = A->GetRmin(6)+Cthick; rn[3] = rx[3]; z[3] = ZFromRmaxpCone(A,Tc,rx[3],-Cthick); rx[2] = RFrom2Points(rx,z,3,1,z[2]); TGeoPcon *C = new TGeoPcon("ITS SSD Suport cone Rohacell foam " "left edge",phi,dphi,4); for(i=0;iGetNz();i++){ C->DefineSection(i,z[i],rn[i],rx[i]); } // end for i printPcon(C); // // In volume SCB, th Inserto Stesalite 4411w material volume, there // are a number of Stainless steel screw and pin studs which will be // filled with screws/studs. rn[0] = 0.0*kmm,rx[0] = 6.0*kmm,z[0] = 0.5*10.0*kmm; // mm TGeoTube *D = new TGeoTube("ITS Screw+stud used to mount things to " "the SSD support cone",rn[0],rx[0],z[0]); printTube(D); rn[0] = 0.0*kmm;rx[0] = 6.0*kmm;z[0] = 0.5*12.0*kmm; // mm TGeoTube *E = new TGeoTube("ITS pin used to mount things to the " "SSD support cone",rn[0],rx[0],z[0]); printTube(E); // // Poly-cone Volume F. Foam in spoak reagion, inside volume A. // There is no carbon fiber between this upper left section and the // SSD spoaks. We remove it by replacing it with Rohacell foam. t = Cthick/(0.5*(RholeMax+RholeMin));// It is not posible to get // the carbon fiber thickness uniform in this phi direction. We can only // make it a fixed angular thickness. t *= 180.0/TMath::Pi(); phi = 12.5+t; // degrees see drawing ALR-0767. dphi = 5.0 - 2.0*t; // degrees z[0] = C->GetZ(2); rn[0] = C->GetRmin(3); rx[0] = rn[0]; rn[1] = A->GetRmin(5); rx[1] = rn[0]; z[1] = ZFromRminpCone(A,Tc,rn[1],+Cthick); z[2] = C->GetZ(3); rn[2] = rn[1]; rx[2] = rx[1]; rn[3] = A->GetRmin(6); rx[3] = rn[3]; z[3] = ZFromRmaxpCone(A,Tc,rx[3],-Cthick); TGeoPcon *F = new TGeoPcon("ITS SSD Top Suport cone Rohacell foam " "Spoak",phi,dphi,4); for(i=0;iGetNz();i++){ F->DefineSection(i,z[i],rn[i],rx[i]); } // end for i printPcon(F); //================================================================= // Poly-cone Volume G. // Now for the spoak part of the SSD cone. // It is not posible to inclue the radius of curvature between // the spoak part and the upper left part of the SSD cone or lowwer right // part. This would be discribed by the following curves. // R = Rmax - (5mm)*Sin(t) phi = phi0+(5mm*180/(Pi*RoutHole))*Sin(t) // where 0<=t<=90 For the inner curve a simular equiation holds. phi = 12.5; // degrees see drawing ALR-0767. dphi = 5.0; // degrees z[0] = A->GetZ(5); rn[0] = A->GetRmin(5); rx[0] = rn[0]; z[1] = A->GetZ(6); rn[1] = RminFromZpCone(A,Tc,z[1]); rx[1] = rx[0]; rn[2] = RholeMin; z[2] = ZFromRminpCone(A,Tc,rn[2]); rx[2] = RmaxFromZpCone(A,Tc,z[2]); rn[3] = rn[2]; rx[3] = rn[3]; z[3] = ZFromRmaxpCone(A,Tc,rx[3]); TGeoPcon *G = new TGeoPcon("ITS SSD spoak carbon fiber surfaces", phi,dphi,4); for(i=0;iGetNz();i++){ G->DefineSection(i,z[i],rn[i],rx[i]); } // end for i printPcon(G); // For the foam core. // Poly-cone Volume H. t = Cthick/(0.5*(RholeMax+RholeMin));// It is not posible to get the // carbon fiber thickness uniform in this phi direction. We can only // make it a fixed angular thickness. t *= 180.0/TMath::Pi(); phi = 12.5+t; // degrees dphi = 5.0 - 2.0*t; // degrees see drawing ALR-0767. z[0] = F->GetZ(1); rn[0] = G->GetRmin(0); rx[0] = rn[0]; z[1] = F->GetZ(3); rn[1] = RminFromZpCone(A,Tc,z[1],+Cthick); rx[1] = rx[0]; z[2] = ZFromRminpCone(A,Tc,G->GetRmin(2),+Cthick); rn[2] = G->GetRmin(2); rx[2] = RmaxFromZpCone(A,Tc,z[2],-Cthick); z[3] = ZFromRmaxpCone(A,Tc,G->GetRmin(3),-Cthick); rn[3] = G->GetRmin(3); rx[3] = rn[3]; TGeoPcon *H = new TGeoPcon("ITS SSD support cone Rohacell foam Spoak", phi,dphi,4); for(i=0;iGetNz();i++){ H->DefineSection(i,z[i],rn[i],rx[i]); } // end for i printPcon(H); // //================================================================== // Now for the Inner most part of the SSD cone. //Poly-cone Volume I. phi = 0.0; dphi = 360.0; z[0] = G->GetZ(2); rn[0] = G->GetRmin(2); rx[0] = rn[0]; z[1] = G->GetZ(3); rn[1] = RminFromZpCone(A,Tc,z[1]); rx[1] = rx[0]; rn[4] = RinMin; rn[5] = RinMin; RadiusOfCurvature(Rcurv,90.0,0.0,RinMax,90.0-Tc,Z,rx[5]); // z dummy z[5] = ZFromRmaxpCone(A,Tc,rx[5]); z[6] = Zcylinder; rn[6] = RinMin; z[7] = z[6]; rn[7] = RinCylinder; rn[8] = RinCylinder; rx[8] = rn[8]; Rmin = rn[5]; RadiusOfCurvature(Rcurv,90.0-Tc,z[5],rx[5],90.0,Z,Rmax); Rmax = RinMax; z[8] = Z+(z[5]-Z)*(rx[8]-Rmax)/(rx[5]-Rmax); rx[6] = RFrom2Points(rx,z,8,5,z[6]); rx[7] = rx[6]; z[3] = Z-dZin; z[4] = z[3]; rx[3] = RmaxFromZpCone(A,Tc,z[3]); rx[4] = rx[3]; //rmin dummy RadiusOfCurvature(Rcurv,90.,z[3],0.,90.-Tc,z[2],Rmin); rn[2] = RminFromZpCone(A,Tc,z[2]); rx[2] = RmaxFromZpCone(A,Tc,z[2]); // z dummy RadiusOfCurvature(Rcurv,90.-Tc,0.0,rn[2],90.0,Z,rn[3]); TGeoPcon *I = new TGeoPcon("ITS SSD lower/inner right part of SSD " "cone",phi,dphi,9); for(i=0;iGetNz();i++){ I->DefineSection(i,z[i],rn[i],rx[i]); } // end for i printPcon(I); // Now for Inserto volume at the inner most radius. // Poly-cone Volume K. phi = 0.0; dphi = 360.0; z[1] = I->GetZ(3)+Cthick; rn[1] = I->GetRmin(3); z[2] = z[1]; rn[2] = I->GetRmin(4); rn[3] = rn[2]; rn[4] = rn[2]; rx[4] = I->GetRmax(5)-Cthick*Sintc; RadiusOfCurvature(Rcurv+Cthick,90.0,z[1],rn[1],90.0-Tc,z[0],rn[0]); rx[0] = rn[0]; z[3] = z[0]+(Thickness-2.0*Cthick)*Costc;; rx[3] = rx[0]+(Thickness-2.0*Cthick)*Sintc; rx[1] = RFrom2Points(rx,z,3,0,z[1]); rx[2] = rx[1]; z[4] = ZFromRmaxpCone(A,Tc,rx[4],-Cthick); rn[5] = rn[2]; z[5] = I->GetZ(6); rx[5] = (I->GetRmax(5)-I->GetRmax(8))/(I->GetZ(5)-I->GetZ(8))*(z[5]-z[4])+ rx[4]; TGeoPcon *K = new TGeoPcon("ITS SSD inner most inserto material", phi,dphi,6); for(i=0;iGetNz();i++){ K->DefineSection(i,z[i],rn[i],rx[i]); } // end for i printPcon(K); // Now for foam core at the inner most radius. // Poly-cone Volume J. phi = 0.0; dphi = 360.0; rn[0] = I->GetRmin(0)-Cthick; z[0] = ZFromRminpCone(A,Tc,rn[0],+Cthick); rx[0] = rn[0]; rx[1] = rx[0]; z[1] = ZFromRmaxpCone(A,Tc,rx[1],-Cthick); rn[1] = RminFromZpCone(A,Tc,z[1],+Cthick); z[2] = K->GetZ(0); rn[2] = K->GetRmin(0); rx[2] = RmaxFromZpCone(A,Tc,z[2],-Cthick); z[3] = K->GetZ(3); rn[3] = K->GetRmax(3); rx[3] = rn[3]; TGeoPcon *J = new TGeoPcon("ITS SSD inner most foam core",phi,dphi,4); for(i=0;iGetNz();i++){ J->DefineSection(i,z[i],rn[i],rx[i]); } // end for i printPcon(J); // Now for foam core at the top of the inner most radius where // the spoaks are. t = Cthick/(0.5*(RholeMax+RholeMin));// It is not posible to get the // carbon fiber thickness uniform in this phi direction. We can only // make it a fixed angular thickness. // Poly-cone Volume L. t *= 180.0/TMath::Pi(); phi = 12.5+t; // degrees dphi = 5.0 - 2.0*t; // degrees see drawing ALR-0767. z[0] = H->GetZ(2); rn[0] = H->GetRmin(2); rx[0] = rn[0]; z[1] = J->GetZ(0); rn[1] = J->GetRmin(0); rx[1] = I->GetRmax(1); z[2] = H->GetZ(3); rn[2] = rn[1]; rx[2] = rx[1]; z[3] = J->GetZ(1); rn[3] = rn[2]; rx[3] = rn[3]; TGeoPcon *L = new TGeoPcon("ITS SSD Bottom cone Rohacell foam Spoak", phi,dphi,4); for(i=0;iGetNz();i++){ L->DefineSection(i,z[i],rn[i],rx[i]); } // end for i printPcon(L); // Now for the SSD mounting posts // Poly-cone Volume O. dphi = 180.0*dRpost/(RpostMin+0.5*dRpost)/TMath::Pi(); // phi = Phi0Post-0.5*dphi; // degrees rn[0] = RpostMin+dRpost; rx[0] = rn[0]; z[0] = ZFromRmaxpCone(A,Tc,rx[0]); rn[1] = RpostMin; z[1] = ZFromRmaxpCone(A,Tc,rn[1]); rx[1] = rx[0]; z[2] = ZpostMax; rn[2] = RpostMin; rx[2] = rn[2]+dRpost; TGeoPcon *O = new TGeoPcon("ITS SSD mounting post, carbon fiber", phi,dphi,3); for(i=0;iGetNz();i++){ O->DefineSection(i,z[i],rn[i],rx[i]); } // end for i printPcon(O); // Now for the SSD mounting posts // Poly-cone Volume P. t = 180.0*Cthick/(RpostMin+0.5*dRpost)/TMath::Pi(); dphi = O->GetDphi()-2.0*t; // degrees phi = O->GetPhi1()+t; // rn[0] = O->GetRmin(0)-Cthick; rx[0] = rn[0]; z[0] = ZFromRmaxpCone(A,Tc,rx[0]); rn[1] = O->GetRmin(1)+Cthick; rx[1] = O->GetRmin(0)-Cthick; z[1] = ZFromRmaxpCone(A,Tc,rn[1]); rn[2] = rn[1]; rx[2] = rx[1]; z[2] = ZpostMax; TGeoPcon *P = new TGeoPcon("ITS SSD mounting post, Inserto", phi,dphi,3); for(i=0;iGetNz();i++){ P->DefineSection(i,z[i],rn[i],rx[i]); } // end for i printPcon(P); // This insrto continues into the SSD cone displacing the foam // and the carbon fiber surface at those points where the posts are. //Poly-cone Vol. M phi = P->GetPhi1(); dphi = P->GetDphi(); rn[0] = RpostMin+dRpost-Cthick; rx[0] = rn[0]; z[0] = ZFromRminpCone(A,Tc,rn[0],+Cthick); rx[1] = rx[0]; z[1] = ZFromRmaxpCone(A,Tc,rx[1],-Cthick); rn[1] = RminFromZpCone(A,Tc,z[1],+Cthick); rn[2] = RpostMin+Cthick; z[2] = ZFromRminpCone(A,Tc,rn[2],+Cthick); rx[2] = RmaxFromZpCone(A,Tc,z[2],-Cthick); rn[3] = rn[2]; rx[3] = rn[3]; z[3] = ZFromRmaxpCone(A,Tc,rx[3],-Cthick); TGeoPcon *M = new TGeoPcon("ITS SSD mounting post foam substitute, " "Inserto",phi,dphi,4); for(i=0;iGetNz();i++){ M->DefineSection(i,z[i],rn[i],rx[i]); } // end for i printPcon(M); // //Poly-cone Vol. N phi = P->GetPhi1(); dphi = P->GetDphi(); z[0] = M->GetZ(1); rn[0] = M->GetRmax(1); rx[0] = rn[0]; rx[1] = rx[0]; z[1] = ZFromRmaxpCone(A,Tc,rx[1]); rn[1] = RmaxFromZpCone(A,Tc,z[1],-Cthick); z[2] = M->GetZ(3); rn[2] = M->GetRmin(3); rx[2] = RmaxFromZpCone(A,Tc,z[2]); rn[3] = rn[2]; rx[3] = rn[3]; z[3] = ZFromRmaxpCone(A,Tc,rx[3]); TGeoPcon *N = new TGeoPcon("ITS SSD mounting post CF subsititute, " "Inserto",phi,dphi,4); for(i=0;iGetNz();i++){ N->DefineSection(i,z[i],rn[i],rx[i]); } // end for i printPcon(N); // Bolt heads holding the SSD-SDD tube to the SSD cone. // Bolt -- PolyCone //Poly-cone Volume Q. phi = 0.0; dphi = 360.0; z[0] = I->GetZ(4)+ThSDDsupportPlate; rn[0] = 0.0; rx[0] = 0.5*DscrewHead; z[1] = I->GetZ(4)+ThScrewHeadHole; rn[1] = 0.0; rx[1] = 0.5*DscrewHead; z[2] = z[1]; rn[2] = 0.0; rx[2] = 0.5*DscrewShaft; z[3] = I->GetZ(6); rn[3] = 0.0; rx[3] = rx[2]; TGeoPcon *Q = new TGeoPcon("ITS SSD Thermal sheal stainless steel " "bolts",phi,dphi,4); for(i=0;iGetNz();i++){ Q->DefineSection(i,z[i],rn[i],rx[i]); } // end for i printPcon(Q); // air infront of bolt (stasolit Volume K) -- Tube z[0] = 0.5*(ThSDDsupportPlate-Cthick); rn[0] = 0.0*kmm; rx[0] = 0.5*DscrewHead; TGeoTube *R = new TGeoTube("ITS Air in front of bolt (in stasolit)", rn[0],rx[0],z[0]); // air infront of bolt (carbon fiber volume I) -- Tube z[0] = 0.5*Cthick; rn[0] = 0.0*kmm; rx[0] = R->GetRmax(); TGeoTube *S = new TGeoTube("ITS Air in front of Stainless Steal " "Screw end, N6",rn[0],rx[0],z[0]); printTube(S); // SDD support plate, SSD side. //Poly-cone Volume T. dphi = TMath::RadToDeg()*TMath::ATan2(0.5*WsddSupportPlate, RsddSupportPlate); phi = Phi0SDDsupports-0.5*dphi; z[0] = K->GetZ(2); rn[0] = I->GetRmin(4); rx[0] = RsddSupportPlate; z[1] = I->GetZ(4) - ThSDDsupportPlate; rn[1] = rn[0]; rx[1] = rx[0]; TGeoPcon *T = new TGeoPcon("ITS SSD-SDD mounting bracket Inserto->Al.", phi,dphi,2); for(i=0;iGetNz();i++){ T->DefineSection(i,z[i],rn[i],rx[i]); } // end for i printPcon(T); // // Poly-cone Volume U. TGeoPcon *U; if(I->GetRmin(3)GetRmax(0)){ dphi = T->GetDphi(); phi = T->GetPhi1(); z[2] = I->GetZ(4); rn[2] = T->GetRmin(0); rx[2] = T->GetRmax(0); z[3] = K->GetZ(2); rn[3] = rn[2]; rx[3] = rx[2]; z[1] = z[2]; rn[1] = I->GetRmin(3); rx[1] = rx[3]; rx[0] = T->GetRmax(0); rn[0] = rx[0]; z[0] = Zfrom2MinPoints(I,2,3,rn[0]); U = new TGeoPcon("ITS SSD-SDD mounting bracket CF->Al.",phi,dphi,4); }else{ dphi = T->GetDphi(); phi = T->GetPhi1(); z[0] = I->GetZ(4); rn[0] = T->GetRmin(0); rx[0] = T->GetRmax(0); z[1] = K->GetZ(2); rn[1] = rn[0]; rx[1] = rx[0]; U = new TGeoPcon("ITS SSD-SDD mounting bracket CF->Al.",phi,dphi,2); }// end if for(i=0;iGetNz();i++){ U->DefineSection(i,z[i],rn[i],rx[i]); } // end for i printPcon(U); // TGeoVolume *Av,*Bv,*Cv,*Dv,*Ev,*Fv,*Gv,*Hv,*Iv,*Jv,*Kv,*Lv,*Mv,*Nv, *Ov,*Pv,*Qv,*Rv,*Sv,*Tv,*Uv; Av = new TGeoVolume("ITSssdConeA",A,SSDcf); Av->SetVisibility(kTRUE); Av->SetLineColor(4); // blue Av->SetLineWidth(1); Av->SetFillColor(Av->GetLineColor()); Av->SetFillStyle(4010); // 10% transparent Bv = new TGeoVolume("ITSssdConeB",B,SSDfs); Bv->SetVisibility(kTRUE); Bv->SetLineColor(2); // red Bv->SetLineWidth(1); Bv->SetFillColor(Bv->GetLineColor()); Bv->SetFillStyle(4010); // 10% transparent Cv = new TGeoVolume("ITSssdConeC",C,SSDfo); Cv->SetVisibility(kTRUE); Cv->SetLineColor(3); // green Cv->SetLineWidth(1); Cv->SetFillColor(Cv->GetLineColor()); Cv->SetFillStyle(4010); // 10% transparent Dv = new TGeoVolume("ITSssdConeD",D,SSDss); Dv->SetVisibility(kTRUE); Dv->SetLineColor(1); // black Dv->SetLineWidth(1); Dv->SetFillColor(Dv->GetLineColor()); Dv->SetFillStyle(4010); // 10% transparent Ev = new TGeoVolume("ITSssdConeE",E,SSDss); Ev->SetVisibility(kTRUE); Ev->SetLineColor(1); // black Ev->SetLineWidth(1); Ev->SetFillColor(Ev->GetLineColor()); Ev->SetFillStyle(4010); // 10% transparent Fv = new TGeoVolume("ITSssdConeF",F,SSDfo); Fv->SetVisibility(kTRUE); Fv->SetLineColor(3); // green Fv->SetLineWidth(1); Fv->SetFillColor(Fv->GetLineColor()); Fv->SetFillStyle(4010); // 10% transparent Gv = new TGeoVolume("ITSssdConeG",G,SSDcf); Gv->SetVisibility(kTRUE); Gv->SetLineColor(4); // blue Gv->SetLineWidth(2); Gv->SetFillColor(Gv->GetLineColor()); Gv->SetFillStyle(4010); // 10% transparent Hv = new TGeoVolume("ITSssdConeH",H,SSDfo); Hv->SetVisibility(kTRUE); Hv->SetLineColor(3); // green Hv->SetLineWidth(1); Hv->SetFillColor(Hv->GetLineColor()); Hv->SetFillStyle(4010); // 10% transparent Iv = new TGeoVolume("ITSssdConeI",I,SSDcf); Iv->SetVisibility(kTRUE); Iv->SetLineColor(4); // blue Iv->SetLineWidth(1); Iv->SetFillColor(Iv->GetLineColor()); Iv->SetFillStyle(4010); // 10% transparent Jv = new TGeoVolume("ITSssdConeJ",J,SSDfo); Jv->SetVisibility(kTRUE); Jv->SetLineColor(3); // green Jv->SetLineWidth(3); Jv->SetFillColor(Jv->GetLineColor()); Jv->SetFillStyle(4010); // 10% transparent Kv = new TGeoVolume("ITSssdConeK",K,SSDfs); Kv->SetVisibility(kTRUE); Kv->SetLineColor(2); // red Kv->SetLineWidth(1); Kv->SetFillColor(Kv->GetLineColor()); Kv->SetFillStyle(4010); // 10% transparent Lv = new TGeoVolume("ITSssdConeL",L,SSDfo); Lv->SetVisibility(kTRUE); Lv->SetLineColor(3); // green Lv->SetLineWidth(3); Lv->SetFillColor(Lv->GetLineColor()); Lv->SetFillStyle(4010); // 10% transparent Mv = new TGeoVolume("ITSssdConeM",M,SSDfs); Mv->SetVisibility(kTRUE); Mv->SetLineColor(2); // red Mv->SetLineWidth(1); Mv->SetFillColor(Mv->GetLineColor()); Mv->SetFillStyle(4010); // 10% transparent Nv = new TGeoVolume("ITSssdConeN",N,SSDfs); Nv->SetVisibility(kTRUE); Nv->SetLineColor(2); // red Nv->SetLineWidth(1); Nv->SetFillColor(Nv->GetLineColor()); Nv->SetFillStyle(4010); // 10% transparent Ov = new TGeoVolume("ITSssdConeO",O,SSDcf); Ov->SetVisibility(kTRUE); Ov->SetLineColor(4); // blue Ov->SetLineWidth(1); Ov->SetFillColor(Iv->GetLineColor()); Ov->SetFillStyle(4010); // 10% transparent Pv = new TGeoVolume("ITSssdConeP",P,SSDfs); Pv->SetVisibility(kTRUE); Pv->SetLineColor(2); // red Pv->SetLineWidth(1); Pv->SetFillColor(Pv->GetLineColor()); Pv->SetFillStyle(4010); // 10% transparent Qv = new TGeoVolume("ITSssdConeQ",Q,SSDss); Qv->SetVisibility(kTRUE); Qv->SetLineColor(1); // black Qv->SetLineWidth(1); Qv->SetFillColor(Qv->GetLineColor()); Qv->SetFillStyle(4010); // 10% transparent Rv = new TGeoVolume("ITSssdConeR",R,SSDair); Rv->SetVisibility(kTRUE); Rv->SetLineColor(5); // yellow Rv->SetLineWidth(1); Rv->SetFillColor(Rv->GetLineColor()); Rv->SetFillStyle(4010); // 10% transparent Sv = new TGeoVolume("ITSssdConeS",S,SSDair); Sv->SetVisibility(kTRUE); Sv->SetLineColor(5); // yellow Sv->SetLineWidth(1); Sv->SetFillColor(Sv->GetLineColor()); Sv->SetFillStyle(4010); // 10% transparent Tv = new TGeoVolume("ITSssdConeT",T,SSDal); Tv->SetVisibility(kTRUE); Tv->SetLineColor(17); // gray Tv->SetLineWidth(1); Tv->SetFillColor(Tv->GetLineColor()); Tv->SetFillStyle(4010); // 10% transparent Uv = new TGeoVolume("ITSssdConeU",U,SSDal); Uv->SetVisibility(kTRUE); Uv->SetLineColor(17); // gray Uv->SetLineWidth(1); Uv->SetFillColor(Uv->GetLineColor()); Uv->SetFillStyle(4010); // 10% transparent // TGeoTranslation *tran = new TGeoTranslation("ITSssdConeTrans",0.0,0.0,-Z0); TGeoRotation *rot180 = new TGeoRotation("",0.0,180.0,0.0); TGeoCombiTrans *flip = new TGeoCombiTrans("ITSssdConeFlip",0.0,0.0,Z0,rot180); delete rot180;// rot not explicity used in AddNode functions. TGeoTranslation *tranR,*tranS; TGeoCombiTrans *fliptran,*rottran; TGeoRotation *rot,*zspoaks,*zspoaks180; Int_t NcD=1,NcE=1,NcQ=1,NcR=1,NcS=1,NcT=1,NcU=1; Av->AddNode(Bv,1,0); Av->AddNode(Cv,1,0); Moth->AddNode(Av,1,tran); // RB24 side Moth->AddNode(Av,2,flip); // RB26 side (Absorber) Moth->AddNode(Iv,1,tran); // RB24 side Moth->AddNode(Iv,2,flip); // RB26 side (Absorber) Gv->AddNode(Hv,1,0); for(i=0;iAddNode(Gv,i+1,rottran); // RB24 side Av->AddNode(Fv,i+1,zspoaks); Iv->AddNode(Lv,i+1,zspoaks); zspoaks180 = new TGeoRotation("",0.0,180.0, ((Double_t)i*360.)/((Double_t)Nspoaks)); fliptran = new TGeoCombiTrans("",0.0,0.0,Z0,zspoaks180); delete zspoaks180;// rot not explicity used in AddNode functions. Moth->AddNode(Gv,Nspoaks+i+1,fliptran); // RB26 side } // end for i Iv->AddNode(Jv,1,0); Iv->AddNode(Kv,1,0); Ov->AddNode(Pv,1,0); t0 = (P->GetPhi1()+0.5*P->GetDphi())*kRadian; t = (0.25* P->GetDphi())*kRadian; z[0] = 0.5*(P->GetRmin(2)+P->GetRmax(2))+ 0.25*(P->GetRmax(2)-P->GetRmin(2)); x = z[0]*TMath::Cos(t0+t); y = z[0]*TMath::Sin(t0+t); tran = new TGeoTranslation("",x,y,P->GetZ(2)-Q->GetZ(3)); Pv->AddNode(Qv,NcQ++,tran); // Screw head z[0] = 0.5*(P->GetRmin(2)+P->GetRmax(2))- 0.25*(P->GetRmax(2)-P->GetRmin(2)); x = z[0]*TMath::Cos(t0-t); y = z[0]*TMath::Sin(t0-t); tran = new TGeoTranslation("",x,y,P->GetZ(2)-Q->GetZ(3)); Pv->AddNode(Qv,NcQ++,tran); // Screw head //Pv->AddNode(Vv,1,?); // Air hole in Posts //Pv->AddNode(Vv,2,?); // Air hole in Posts //Mv->AddNode(Wv,1,?); // Air hole in Posts //Mv->AddNode(Wv,2,?); // Air hole in Posts //Nv->AddNode(Xv,1,?); // Air hole in Posts //Nv->AddNode(Xv,2,?); // Air hole in Posts TGeoRotation *zposts,*zposts180; for(i=0;iAddNode(Ov,i+1,rottran); // RB24 side Jv->AddNode(Mv,i+1,zposts); Iv->AddNode(Nv,i+1,zposts); //Jv->AddNode(Xv,2*i+3,?); // Air hole in Posts //Jv->AddNode(Xv,2*i+4,?); // Air hole in Posts zposts180 = new TGeoRotation("",0.0,180.0, ((Double_t)i*360.)/((Double_t)Nposts)); fliptran = new TGeoCombiTrans("",0.0,0.0,Z0,zposts180); delete zposts180;// rot not explicity used in AddNode functions. Moth->AddNode(Ov,Nposts+i+1,fliptran); // RB26 side } // end for i // for(i=0;iAddNode(Qv,NcQ++,tran); tran = new TGeoTranslation("",RcylinderScrews*TMath::Cos(t), RcylinderScrews*TMath::Sin(t), CB->GetZ(0)+D->GetDz()); CBv->AddNode(Dv,NcD++,tran); tran = new TGeoTranslation("",RcylinderScrews*TMath::Cos(t), RcylinderScrews*TMath::Sin(t), CB->GetZ(5)-D->GetDz()); CBv->AddNode(Dv,NcD++,tran); if(/*not where volumes U and T are*/kTRUE){ tranR = new TGeoTranslation("",RcylinderScrews*TMath::Cos(t), RcylinderScrews*TMath::Sin(t), K->GetZ(2)+R->GetDz()); tranS = new TGeoTranslation("",RcylinderScrews*TMath::Cos(t), RcylinderScrews*TMath::Sin(t), I->GetZ(4)+S->GetDz()); Kv->AddNode(Rv,NcR++,tranR); Iv->AddNode(Sv,NcS++,tranS); } // end if } // end for i const Int_t Nbscrew=2,Nbpins=3,Nrailsc=4,Nrailp=2; Double_t da[] = {-3.5,-1.5,1.5,3.5}; for(i=0;i<2;i++){ // Mounting for ITS-TPC bracket or ITS-Rails t0 = 180.*((Double_t)i)*kRadian; for(j=-Nbscrew/2;j<=Nbscrew/2;j++)if(j!=0){//screws per ITS-TPC bracket t = t0 + 5.0*((Double_t)j)*kRadian; tran = new TGeoTranslation("",RoutHole*TMath::Cos(t), RoutHole*TMath::Sin(t), B->GetZ(0)+D->GetDz()); Bv->AddNode(Dv,NcD++,tran); } // end or j for(j=-Nbpins/2;j<=Nbpins/2;j++){ // pins per ITS-TPC bracket t = t0 + 3.0*((Double_t)j)*kRadian; tran = new TGeoTranslation("",RoutHole*TMath::Cos(t), RoutHole*TMath::Sin(t), B->GetZ(0)+D->GetDz()); Bv->AddNode(Ev,NcE++,tran); } // end or j t0 = (96.5+187.*((Double_t)i))*kRadian; for(j=0;jGetZ(0)+D->GetDz()); Bv->AddNode(Dv,NcD++,tran); } // end or j t0 = (91.5+184.*((Double_t)i))*kRadian; for(j=-Nrailp/2;j<=Nrailp/2;j++)if(j!=0){ // pins per ITS-rail bracket t = t0+(7.0*((Double_t)j))*kRadian; tran = new TGeoTranslation("",RoutHole*TMath::Cos(t), RoutHole*TMath::Sin(t), B->GetZ(0)+D->GetDz()); Bv->AddNode(Ev,NcE++,tran); } // end or j } // end for i for(i=0;iGetZ(0)+D->GetDz()); Bv->AddNode(Dv,NcD++,tran); } // end for j for(j=0;j<1;j++){ // 1 pin per bracket t = t0; tran = new TGeoTranslation("",RoutHole*TMath::Cos(t), RoutHole*TMath::Sin(t), B->GetZ(0)+D->GetDz()); Bv->AddNode(Ev,NcE++,tran); } // end for j } // end for i t = (T->GetPhi1()+0.5*T->GetDphi())*kRadian; tran = new TGeoTranslation("",RinHole*TMath::Cos(t),RinHole*TMath::Sin(t), T->GetZ(T->GetNz()-1)+R->GetDz()); Tv->AddNode(Rv,NcR++,tran); t = (U->GetPhi1()+0.5*U->GetDphi())*kRadian; tran = new TGeoTranslation("",RinHole*TMath::Cos(t),RinHole*TMath::Sin(t), U->GetZ(U->GetNz()-1)+S->GetDz()); Uv->AddNode(Sv,NcS++,tran); for(i=0;iAddNode(Tv,NcT++,rot); Iv->AddNode(Uv,NcU++,rot); for(j=0;j<2;j++)if(j!=0){ // 2 pin per bracket t = t0 + ((Double_t)j)*0.5*DssdsddBracketAngle; tran = new TGeoTranslation("",RinHole*TMath::Cos(t), RinHole*TMath::Sin(t), T->GetZ(T->GetNz()-1)-E->GetDz()); Kv->AddNode(Ev,NcE++,tran); } // end for j } // end for i if(GetDebug()){ Av->PrintNodes(); Bv->PrintNodes(); Cv->PrintNodes(); Dv->PrintNodes(); Ev->PrintNodes(); Fv->PrintNodes(); Gv->PrintNodes(); Hv->PrintNodes(); Iv->PrintNodes(); Jv->PrintNodes(); Kv->PrintNodes(); Lv->PrintNodes(); Mv->PrintNodes(); Nv->PrintNodes(); Ov->PrintNodes(); Pv->PrintNodes(); Qv->PrintNodes(); Rv->PrintNodes(); Sv->PrintNodes(); Tv->PrintNodes(); Uv->PrintNodes(); } // end if } //______________________________________________________________________ void AliITSv11::CreateMaterials(){ // Create ITS materials // This function defines the default materials used in the Geant // Monte Carlo simulations for the geometries AliITSv11. // In general it is automatically replaced by // Inputs: // none. // Outputs: // none. // Return // none. //TGeoMaterial *C = new TGeoMaterial("ITSCarbon",12.0,6.0,2.265); TGeoMaterial *Al = new TGeoMaterial("ITSAluminum",26.981539,13.0,2.07); TGeoMixture *Cfiber = new TGeoMixture("ITSCarbonFiber",6,1.930); TGeoMixture *Rohacell = new TGeoMixture("ITSRohacell",6,1.930); TGeoMixture *Staselite = new TGeoMixture("ITSStaselite4411w",6,1.930); TGeoMixture *Air = new TGeoMixture("ITSAir",6,1.205*1.E-3); TGeoMixture *Stainless = new TGeoMixture("ITSStainless",6,1.930); // Double_t SPDcone[20]; SPDcone[0] = 1.0; // imat SPDcone[1] = 0.0; // isvol SPDcone[2] = gAlice->Field()->Integ(); // ifield SPDcone[3] = gAlice->Field()->Max(); // fieldm SPDcone[4] = 1.0; // tmaxfd [degrees] SPDcone[5] = 1.0; // stemax [cm] SPDcone[6] = 0.5; // deemax [fraction] SPDcone[7] = 1.0E-3; // epsil [cm] SPDcone[8] = 0.0; // stmin [cm] new TGeoMedium("ITSspdCarbonFiber",1,Cfiber,SPDcone); SPDcone[0] += 1.0; new TGeoMedium("ITSspdStaselite4411w",2,Staselite,SPDcone); SPDcone[0] += 1.0; new TGeoMedium("ITSspdRohacell50A",3,Rohacell,SPDcone); SPDcone[0] += 1.0; new TGeoMedium("ITSspdStainlesSteal",4,Stainless,SPDcone); SPDcone[0] += 1.0; new TGeoMedium("ITSspdAir",5,Air,SPDcone); SPDcone[0] += 1.0; new TGeoMedium("ITSspdAl",6,Al,SPDcone); // Double_t SSDcone[20]; SSDcone[0] = 1.0; // imat SSDcone[1] = 0.0; // isvol SSDcone[2] = gAlice->Field()->Integ(); // ifield SSDcone[3] = gAlice->Field()->Max(); // fieldm SSDcone[4] = 1.0; // tmaxfd [degrees] SSDcone[5] = 1.0; // stemax [cm] SSDcone[6] = 0.5; // deemax [fraction] SSDcone[7] = 1.0E-3; // epsil [cm] SSDcone[8] = 0.0; // stmin [cm] new TGeoMedium("ITSssdCarbonFiber",1,Cfiber,SSDcone); SSDcone[0] += 1.0; new TGeoMedium("ITSssdStaselite4411w",2,Staselite,SSDcone); SSDcone[0] += 1.0; new TGeoMedium("ITSssdRohacell50A",3,Rohacell,SSDcone); SSDcone[0] += 1.0; new TGeoMedium("ITSssdStainlesSteal",4,Stainless,SSDcone); SSDcone[0] += 1.0; new TGeoMedium("ITSssdAir",5,Air,SSDcone); SSDcone[0] += 1.0; new TGeoMedium("ITSssdAl",6,Al,SSDcone); } //______________________________________________________________________ void AliITSv11::ServicesCableSupport(TGeoVolume *Moth){ // Define the detail ITS cable support trays on both the RB24 and // RB26 sides.. // Inputs: // none. // Outputs: // none. // Return: // none. // Based on the Drawings SSup_201A.jpg unless otherwise stated, // Volumes A..., TGeoMedium *SUPcf = 0; // SUP support cone Carbon Fiber materal number. TGeoMedium *SUPfs = 0; // SUP support cone inserto stesalite 4411w. TGeoMedium *SUPfo = 0; // SUP support cone foam, Rohacell 50A. TGeoMedium *SUPss = 0; // SUP support cone screw material,Stainless TGeoMedium *SUPair = 0; // SUP support cone Air TGeoMedium *SUPal = 0; // SUP support cone SDD mounting bracket Al TGeoMedium *SUPwater = 0; // SUP support cone Water TGeoManager *mgr = gGeoManager; SUPcf = mgr->GetMedium("ITSssdCarbonFiber"); SUPfs = mgr->GetMedium("ITSssdStaselite4411w"); SUPfo = mgr->GetMedium("ITSssdRohacell50A"); SUPss = mgr->GetMedium("ITSssdStainlessSteal"); SUPair = mgr->GetMedium("ITSssdAir"); SUPal = mgr->GetMedium("ITSssdAl"); SUPwater = mgr->GetMedium("ITSssdWater"); // Int_t i,j; Double_t x,y,z,t,t0,dt,di,r; // RB 24 side const Double_t Z024 = 900*kmm;//SSup_203A.jpg const Double_t ThssFrame24 = 5.0*kmm; const Double_t RssFrame24 = 444.5*kmm-ThssFrame24; // SSup_204A.jpg const Double_t WidthFrame24 = 10.0*kmm; const Double_t HightFrame24 = 10.0*kmm; const Double_t Phi0Frame24 = 15.2*kDegree; // SSup_602A.jpg const Double_t Phi1Frame24 = (90.0-7.6)*kDegree; // SSup_802A.jpg const Double_t ZssFrameSection24 = (415.0-10.0)*kmm; const Int_t NZsections24 = 4; const Int_t NPhiSections24 = 4; const Int_t NFramesPhi24 = 4; TGeoTubeSeg *A24,*M24; // Cylinderial support structure TGeoBBox *B24; // Cylinderial support structure M24 = new TGeoTubeSeg("ITS sup Cable tray support frame mother volume M24", RssFrame24,RssFrame24+ThssFrame24, 0.5*(4.*ZssFrameSection24+5*WidthFrame24), Phi0Frame24,Phi1Frame24); A24 = new TGeoTubeSeg("ITS sup Cable tray support frame radial section A24", RssFrame24,RssFrame24+ThssFrame24,0.5*WidthFrame24, Phi0Frame24,Phi1Frame24); B24 = new TGeoBBox("ITS sup Cable tray support frame Z section B24", 0.5*ThssFrame24,0.5*HightFrame24,0.5*ZssFrameSection24); printTubeSeg(A24); printTubeSeg(M24); printBBox(B24); TGeoVolume *A24v,*B24v,*M24v; TGeoTranslation *tran; TGeoRotation *rot; TGeoCombiTrans *tranrot; // A24v = new TGeoVolume("ITSsupFrameA24",A24,SUPss); A24v->SetVisibility(kTRUE); A24v->SetLineColor(1); // black A24v->SetLineWidth(1); A24v->SetFillColor(A24v->GetLineColor()); A24v->SetFillStyle(4000); // 0% transparent B24v = new TGeoVolume("ITSsupFrameB24",B24,SUPss); B24v->SetVisibility(kTRUE); B24v->SetLineColor(1); // black B24v->SetLineWidth(1); B24v->SetFillColor(B24v->GetLineColor()); B24v->SetFillStyle(4000); // 0% transparent M24v = new TGeoVolume("ITSsupFrameM24",M24,SUPair); M24v->SetVisibility(kTRUE); M24v->SetLineColor(7); // light blue M24v->SetLineWidth(1); M24v->SetFillColor(M24v->GetLineColor()); M24v->SetFillStyle(4090); // 90% transparent // Int_t NcA24=1,NcB24=1; t0 = Phi0Frame24; dt = (Phi1Frame24-Phi0Frame24)/((Double_t)NPhiSections24); for(i=0;i<=NZsections24;i++){ di = (Double_t) i; z = -M24->GetDz()+A24->GetDz() + di*(ZssFrameSection24+WidthFrame24); tran = new TGeoTranslation("",0.0,0.0,z); M24v->AddNode(A24v,NcA24++,tran); r = RssFrame24+B24->GetDX(); z = z + A24->GetDz()+B24->GetDZ(); if(iAddNode(B24v,NcB24++,tranrot); } // end for j } // end for i tran = new TGeoTranslation("",0.0,0.0,Z024+M24->GetDz()); Moth->AddNode(M24v,1,tran); for(i=1;iGetDz(),rot); delete rot;// rot not explicity used in AddNode functions. Moth->AddNode(M24v,i+1,tranrot); } // end for i if(GetDebug()){ A24v->PrintNodes(); B24v->PrintNodes(); M24v->PrintNodes(); } // end if // Cable support tray // Material is Aluminum const Double_t RS24in = TMath::Max(RssFrame24,444.5*kmm); // SSup_204A & SSup_206A const Double_t RS24Airout = 459.5*kmm; // SSup_204A & SSup_206A const Double_t RS24out = 494.5*kmm; // SSup_206A & SSup_204A const Double_t RS24PPout = 550.0*kmm; // SSup_206A const Double_t LS24PP = 350.0*kmm; // SSup_202A const Double_t LS24 = (2693.0-900.0)*kmm; //SSup_205A & SSup_207A const Double_t ThS24wall = 1.0*kmm; // SSup_209A & SSup_210A const Double_t WbS24 = 42.0*kmm; // SSup_209A & SSup_210A const Double_t WtS24 = 46.9*kmm; // SSup_209A & SSup_210A const Double_t WcapS24 = 50.0*kmm; // SSup_209A & SSup_210A const Double_t WdS24 = 41.0*kmm; // SSup_209A ? should be 41.46938776 const Double_t HS24 = 50.0*kmm; // SSup_209A & SSup_210A const Double_t OutDcoolTub= 12.0*kmm; // SSup_209A const Double_t InDcoolTub = 10.0*kmm; // SSup_209A const Double_t BlkNozInDS24= 6.0*kmm; // SSup_209A // The following are deduced or guessed at const Double_t LtopLipS24 = 6.0*kmm; // Guessed at. const Double_t LdLipS24 = 6.0*kmm; // Guessed at. const Double_t HdS24 = OutDcoolTub; // const Double_t BlkNozZS24 = 6.0*kmm; // Guessed at. // Simplifided exterior shape. The side wall size is 2.5*thicker than // it should be (due to simplification). TGeoArb8 *C24 = new TGeoArb8("ITS Sup Cable Tray Element C24",0.5*LS24); C24->SetVertex(0,-0.5*WcapS24,HS24+ThS24wall); C24->SetVertex(1,+0.5*WcapS24,HS24+ThS24wall); C24->SetVertex(2,+0.5*WbS24,0.0); C24->SetVertex(3,-0.5*WbS24,0.0); C24->SetVertex(4,-0.5*WcapS24,HS24+ThS24wall); C24->SetVertex(5,+0.5*WcapS24,HS24+ThS24wall); C24->SetVertex(6,+0.5*WbS24,0.0); C24->SetVertex(7,-0.5*WbS24,0.0); TGeoArb8 *D24 = new TGeoArb8("ITS Sup Cable Tray lower Element D24", 0.5*LS24); // Because of question about the value of WdS24, compute what it // should be assuming cooling tube fixes hight of volume. x = OutDcoolTub*(0.5*WcapS24-0.5*WbS24-ThS24wall)/(HS24-ThS24wall); D24->SetVertex(0,-x,OutDcoolTub+ThS24wall); D24->SetVertex(1,+x,OutDcoolTub+ThS24wall); D24->SetVertex(2,+0.5*WbS24-ThS24wall,ThS24wall); D24->SetVertex(3,-0.5*WbS24+ThS24wall,ThS24wall); D24->SetVertex(4,-x,OutDcoolTub+ThS24wall); D24->SetVertex(5,+x,OutDcoolTub+ThS24wall); D24->SetVertex(6,+0.5*WbS24-ThS24wall,ThS24wall); D24->SetVertex(7,-0.5*WbS24+ThS24wall,ThS24wall); TGeoTube *E24 = new TGeoTube("ITS Sup Cooling Tube E24",0.5*InDcoolTub, 0.5*OutDcoolTub,0.5*LS24-BlkNozZS24); TGeoArb8 *F24 = new TGeoArb8("ITS Sup Cable Tray lower Element block F24", 0.5*BlkNozZS24); for(i=0;i<8;i++) F24->SetVertex(i,D24->GetVertices()[i*2+0], D24->GetVertices()[i*2+1]); // TGeoTube *G24 = new TGeoTube("ITS Sup Cooling Tube hole in block G24", 0.0,0.5*BlkNozInDS24,0.5*BlkNozZS24); TGeoArb8 *H24 = new TGeoArb8("ITS Sup Cable Tray upper Element H24", 0.5*(LS24- LS24PP)); H24->SetVertex(0,C24->GetVertices()[0*2+0]+2.*ThS24wall, C24->GetVertices()[0*2+1]-ThS24wall); H24->SetVertex(1,C24->GetVertices()[1*2+0]-2.*ThS24wall, C24->GetVertices()[1*2+1]-ThS24wall); H24->SetVertex(2,D24->GetVertices()[1*2+0]-ThS24wall, D24->GetVertices()[1*2+1]+ThS24wall); H24->SetVertex(3,D24->GetVertices()[0*2+0]+ThS24wall, D24->GetVertices()[0*2+1]+ThS24wall); for(i=4;i<8;i++) H24->SetVertex(i,H24->GetVertices()[(i-4)*2+0], H24->GetVertices()[(i-4)*2+1]); // printArb8(C24); printArb8(D24); printTube(E24); printArb8(F24); printTube(G24); printArb8(H24); TGeoVolume *C24v,*D24v,*E24v,*F24v,*Ga24v,*Gw24v,*Gf24v,*H24v; // C24v = new TGeoVolume("ITSsupCableTrayC24",C24,SUPal); C24v->SetVisibility(kTRUE); C24v->SetLineColor(6); // C24v->SetLineWidth(1); C24v->SetFillColor(C24v->GetLineColor()); C24v->SetFillStyle(4000); // 0% transparent D24v = new TGeoVolume("ITSsupCableTrayLowerD24",D24,SUPair); D24v->SetVisibility(kTRUE); D24v->SetLineColor(6); // D24v->SetLineWidth(1); D24v->SetFillColor(D24v->GetLineColor()); D24v->SetFillStyle(4000); // 0% transparent E24v = new TGeoVolume("ITSsupCableTrayCoolTubeE24",E24,SUPss); E24v->SetVisibility(kTRUE); E24v->SetLineColor(6); // E24v->SetLineWidth(1); E24v->SetFillColor(E24v->GetLineColor()); E24v->SetFillStyle(4000); // 0% transparent F24v = new TGeoVolume("ITSsupCableTrayBlockF24",F24,SUPal); F24v->SetVisibility(kTRUE); F24v->SetLineColor(6); // F24v->SetLineWidth(1); F24v->SetFillColor(F24v->GetLineColor()); F24v->SetFillStyle(4000); // 0% transparent Gw24v = new TGeoVolume("ITSsupCableTrayCoolantWaterG24",G24,SUPwater); Gw24v->SetVisibility(kTRUE); Gw24v->SetLineColor(6); // Gw24v->SetLineWidth(1); Gw24v->SetFillColor(Gw24v->GetLineColor()); Gw24v->SetFillStyle(4000); // 0% transparent Ga24v = new TGeoVolume("ITSsupCableTrayCoolantAirG24",G24,SUPair); Ga24v->SetVisibility(kTRUE); Ga24v->SetLineColor(6); // Ga24v->SetLineWidth(1); Ga24v->SetFillColor(Ga24v->GetLineColor()); Ga24v->SetFillStyle(4000); // 0% transparent H24v = new TGeoVolume("ITSsupCableTrayUpperC24",H24,SUPair); H24v->SetVisibility(kTRUE); H24v->SetLineColor(6); // H24v->SetLineWidth(1); H24v->SetFillColor(H24v->GetLineColor()); H24v->SetFillStyle(4000); // 0% transparent // tran = new TGeoTranslation("",-OutDcoolTub,OutDcoolTub+ThS24wall,0.0); F24v->AddNode(Gw24v,1,tran); D24v->AddNode(E24v,1,tran); tran = new TGeoTranslation("",0.0,OutDcoolTub+ThS24wall,0.0); F24v->AddNode(Gw24v,2,tran); D24v->AddNode(E24v,2,tran); tran = new TGeoTranslation("",+OutDcoolTub,OutDcoolTub+ThS24wall,0.0); F24v->AddNode(Gw24v,3,tran); D24v->AddNode(E24v,3,tran); tran = new TGeoTranslation("",0.0,0.0,0.5*LS24-0.5*BlkNozZS24); D24v->AddNode(F24v,1,tran); tran = new TGeoTranslation("",0.0,0.0,-(0.5*LS24-0.5*BlkNozZS24)); D24v->AddNode(F24v,2,tran); C24v->AddNode(D24v,1,0); C24v->AddNode(H24v,1,0); //================================================================== // // RB 26 side const Double_t Z026 = -900*kmm;//SSup_203A.jpg const Double_t ThssFrame26 = 5.0*kmm; const Double_t R0ssFrame26 = 444.5*kmm-ThssFrame26; // SSup_204A.jpg const Double_t R1ssFrame26 = 601.6*kmm-ThssFrame26; // SSup_208A.jpg const Double_t WidthFrame26 = 10.0*kmm; //const Double_t HightFrame26 = 10.0*kmm; const Double_t Phi0Frame26 = 15.2*kDegree; // SSup_602A.jpg const Double_t Phi1Frame26 = (90.0-7.6)*kDegree; // SSup_802A.jpg const Double_t ZssFrameSection26 = (415.0-10.0)*kmm; const Int_t NZsections26 = 4; const Int_t NPhiSections26 = 4; const Int_t NFramesPhi26 = 4; TGeoConeSeg *A26[NZsections26+1],*M26; // Cylinderial support structure TGeoArb8 *B26; // Cylinderial support structure Char_t name[100]; Double_t r1,r2,m; M26 = new TGeoConeSeg("ITS sup Cable tray support frame mother volume M26", 0.5*(4.*ZssFrameSection26+5*WidthFrame26), R1ssFrame26,R1ssFrame26+ThssFrame26, R0ssFrame26,R0ssFrame26+ThssFrame26, Phi0Frame26,Phi1Frame26); m = -((R1ssFrame26-R0ssFrame26)/ (((Double_t)NZsections26)*(ZssFrameSection26+WidthFrame26))); for(i=0;iGetRmax1()+A26[0]->GetRmin1()+ A26[1]->GetRmax2()+A26[1]->GetRmin2()); B26->SetVertex(0,A26[0]->GetRmax2()-r,+0.5*WidthFrame26); B26->SetVertex(1,A26[0]->GetRmax2()-r,-0.5*WidthFrame26); B26->SetVertex(2,A26[0]->GetRmin2()-r,-0.5*WidthFrame26); B26->SetVertex(3,A26[0]->GetRmin2()-r,+0.5*WidthFrame26); B26->SetVertex(4,A26[1]->GetRmax1()-r,+0.5*WidthFrame26); B26->SetVertex(5,A26[1]->GetRmax1()-r,-0.5*WidthFrame26); B26->SetVertex(6,A26[1]->GetRmin1()-r,-0.5*WidthFrame26); B26->SetVertex(7,A26[1]->GetRmin1()-r,+0.5*WidthFrame26); for(i=0;iSetVisibility(kTRUE); A26v[i]->SetLineColor(1); // black A26v[i]->SetLineWidth(1); A26v[i]->SetFillColor(A26v[i]->GetLineColor()); A26v[i]->SetFillStyle(4000); // 0% transparent } // end for i B26v = new TGeoVolume("ITSsupFrameB26",B26,SUPss); B26v->SetVisibility(kTRUE); B26v->SetLineColor(1); // black B26v->SetLineWidth(1); B26v->SetFillColor(B26v->GetLineColor()); B26v->SetFillStyle(4000); // 0% transparent M26v = new TGeoVolume("ITSsupFrameM26",M26,SUPair); M26v->SetVisibility(kTRUE); M26v->SetLineColor(7); // light blue M26v->SetLineWidth(1); M26v->SetFillColor(M26v->GetLineColor()); M26v->SetFillStyle(4090); // 90% transparent // Int_t NcB26=1; t0 = Phi0Frame26; dt = (Phi1Frame26-Phi0Frame26)/((Double_t)NPhiSections26); for(i=0;i<=NZsections26;i++){ di = ((Double_t) i)*(ZssFrameSection26+WidthFrame26); z = -M26->GetDz()+A26[i]->GetDz() + di; tran = new TGeoTranslation("",0.0,0.0,z); M26v->AddNode(A26v[i],1,tran); z = z+B26->GetDz(); if(iGetRmax1()+A26[i]->GetRmin1()+ A26[i+1]->GetRmax2()+A26[i+1]->GetRmin2()); t = t0 + ((Double_t)j)*dt; rot = new TGeoRotation("",0.0,0.0,t); y = r*TMath::Sin(t*kRadian); x = r*TMath::Cos(t*kRadian); tranrot = new TGeoCombiTrans("",x,y,z,rot); delete rot; // rot not explicity used in AddNode functions. M26v->AddNode(B26v,NcB26++,tranrot); } // end for j } // end for i tran = new TGeoTranslation("",0.0,0.0,Z026-M26->GetDz()); Moth->AddNode(M26v,1,tran); for(i=1;iAddNode(M26v,i+1,tranrot); } // end for i if(GetDebug()){ for(i=0;iPrintNodes(); B26v->PrintNodes(); M26v->PrintNodes(); } // end if } //______________________________________________________________________ void AliITSv11::InitAliITSgeom(){ // Based on the geometry tree defined in Geant 3.21, this // routine initilizes the Class AliITSgeom from the Geant 3.21 ITS // geometry sturture. // Inputs: // none. // Outputs: // none. // Return // none. } //______________________________________________________________________ void AliITSv11::Init(){ // Initialise the ITS after it has been created. // Inputs: // none. // Outputs: // none. // Return // none. } //______________________________________________________________________ void AliITSv11::SetDefaults(){ // Sets the default segmentation, response, digit and raw cluster // classes to be used. These defaults can be overwritten in the // macros that do these later steps. Defaults are give hear for the // general user. // Inputs: // none. // Outputs: // none. // Return // none. } //______________________________________________________________________ void AliITSv11::DrawModule(){ // Draw a standard set of shaded view of the ITS version 11. // Inputs: // none. // Outputs: // none. // Return // none. } //______________________________________________________________________ void AliITSv11::StepManager(){ // Called for every step in the ITS, then calles the AliITShit class // creator with the information to be recoreded about that hit. // The value of the macro ALIITSPRINTGEOM if set to 1 will allow the // printing of information to a file which can be used to create a .det // file read in by the routine CreateGeometry(). If set to 0 or any other // value except 1, the default behavior, then no such file is created nor // is the extra variables and the like used in the printing allocated. }