/************************************************************************** * Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ // // This class Defines the Geometry for the ITS services and support cones // outside of the central volume (except for the Central support // cylinders). Other classes define the rest of the ITS, specifically the // SSD support cone, the SSD Support central cylinder, the SDD support cone, // the SDD support central cylinder, the SPD Thermal Shield, The supports // and cable trays on both the RB26 (muon dump) and RB24 sides, and all of // the cabling from the ladders/stave ends out past the TPC. // // Here is the calling sequence associated with this file // SPDSector(TGeoVolume *moth,TGeoManager *mgr) // -----CarbonFiberSector(TGeoVolume *moth,Double_t &xAAtubeCenter0, // Double_t &yAAtubeCenter0,TGeoManager *mgr) // -----2* SPDsectorShape(Int_t n,const Double_t *xc,const Double_t *yc, // | const Double_t *r,const Double_t *ths, // | const Double_t *the,Int_t npr,Int_t &m, // | Double_t **xp,Double_t **yp) // -----StavesInSector(TGeoVolume *moth,TGeoManager *mgr) // -----3* CreaeStave(Int_t layer,TArrayD &sizes,Bool_t addClips, // | TGeoManager *mgr) // | -----2* CreateHalfStave(Boot_t isRight,Int_t layer, // | Int_t idxCentral,Int_t idxSide, // | TArrayD &sizes,Bool_t addClips, // | TGeoManager *mgr) // | -----CreateGrondingFoil(Bool_t isRight,TArrayD &sizes, // | | TGeoManager *mgr) // | | -----4* CreateGroundingFoilSingle(Int_t type, // | | TArrayD &sizes, // | | TGeoManger *mgr) // | |----CreateLadder(Int_t layer, TArrayD &sizes, // | | TGeoManager *mgr) // | |----CreateMCM(Bool_t isRight,TArrayD &sizes, // | | TGeoManger *mgr) // | |----CreatePixelBus(Bool_t isRight,TArrayD &sizes, // | | TGeoManager *mgr) // | -----CreateClip(TArrayD &sizes,TGeoManager *mgr) // |----GetSectorMountingPoints(Int_t index,Double_t &x0, // | Double_t &y0,Double_t &x1, // | Double_t y1) // -----3* ParallelPosition(Double_t dist1,Double_t dist2, // Double_t phi,Double_t &x,Double_t &y) // // Obsoleate or presently unused routines are: setAddStave(Bool_t *mask), // CreatePixelBusAndExtensions(...) which calles CreateExtender(...). /* $Id$ */ // General Root includes #include #include #include #include #include #include // Root Geometry includes #include #include #include #include #include #include #include // contains TGeoTubeSeg #include #include #include // AliRoot includes #include "AliLog.h" #include "AliMagF.h" #include "AliRun.h" // Declaration file #include "AliITSv11GeometrySPD.h" // Constant definistions const Double_t AliITSv11GeometrySPD::fgkGapLadder = AliITSv11Geometry::fgkmicron*75.; // 75 microns const Double_t AliITSv11GeometrySPD::fgkGapHalfStave = AliITSv11Geometry::fgkmicron*120.; // 120 microns ClassImp(AliITSv11GeometrySPD) //______________________________________________________________________ AliITSv11GeometrySPD::AliITSv11GeometrySPD(/*Double_t gap*/): AliITSv11Geometry(),// Default constructor of base class fAddStave(), // [DEBUG] must be TRUE for all staves which will be // mounted in the sector (used to check overlaps) fSPDsectorX0(0), // X of first edge of sector plane for stave fSPDsectorY0(0), // Y of first edge of sector plane for stave fSPDsectorX1(0), // X of second edge of sector plane for stave fSPDsectorY1(0), // Y of second edge of sector plane for stave fTubeEndSector() // coordinate of cooling tube ends { // // Default constructor. // This does not initialize anything and is provided just for // completeness. It is recommended to use the other one. // The alignment gap is specified as argument (default = 0.0075 cm). // Inputs: // none. // Outputs: // none. // Return: // A default constructed AliITSv11GeometrySPD class. // Int_t i = 0,j=0,k=0; for (i = 0; i < 6; i++) fAddStave[i] = kTRUE; for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){ this->fTubeEndSector[k][0][i][j] = 0.0; this->fTubeEndSector[k][1][i][j] = 0.0; } // end for i,j } //______________________________________________________________________ AliITSv11GeometrySPD::AliITSv11GeometrySPD(Int_t debug/*, Double_t gap*/): AliITSv11Geometry(debug),// Default constructor of base class fAddStave(), // [DEBUG] must be TRUE for all staves which will be // mounted in the sector (used to check overlaps) fSPDsectorX0(0), // X of first edge of sector plane for stave fSPDsectorY0(0), // Y of first edge of sector plane for stave fSPDsectorX1(0), // X of second edge of sector plane for stave fSPDsectorY1(0), // Y of second edge of sector plane for stave fTubeEndSector() // coordinate of cooling tube ends { // // Constructor with debug setting argument // This is the constructor which is recommended to be used. // It sets a debug level, and initializes the name of the object. // The alignment gap is specified as argument (default = 0.0075 cm). // Inputs: // Int_t debug Debug level, 0= no debug output. // Outputs: // none. // Return: // A default constructed AliITSv11GeometrySPD class. // Int_t i = 0,j=0,k=0; for (i = 0; i < 6; i++) fAddStave[i] = kTRUE; for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){ this->fTubeEndSector[k][0][i][j] = 0.0; this->fTubeEndSector[k][1][i][j] = 0.0; } // end for i,j } //______________________________________________________________________ AliITSv11GeometrySPD::AliITSv11GeometrySPD(const AliITSv11GeometrySPD &s): AliITSv11Geometry(s),// Base Class Copy constructor fAddStave(), // [DEBUG] must be TRUE for all staves which will be // mounted in the sector (used to check overlaps) fSPDsectorX0(s.fSPDsectorX0), // X of first edge of sector plane for stave fSPDsectorY0(s.fSPDsectorY0), // Y of first edge of sector plane for stave fSPDsectorX1(s.fSPDsectorX1), // X of second edge of sector plane for stave fSPDsectorY1(s.fSPDsectorY1) // Y of second edge of sector plane for stave { // // Copy Constructor // Inputs: // AliITSv11GeometrySPD &s source class // Outputs: // none. // Return: // A copy of a AliITSv11GeometrySPD class. // Int_t i=0,j=0,k=0; for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i]; for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){ this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j]; this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j]; } // end for i,j } //______________________________________________________________________ AliITSv11GeometrySPD& AliITSv11GeometrySPD::operator=(const AliITSv11GeometrySPD &s) { // // = operator // Inputs: // AliITSv11GeometrySPD &s source class // Outputs: // none. // Return: // A copy of a AliITSv11GeometrySPD class. // Int_t i=0,j=0,k=0; if(this==&s) return *this; for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i]; this->fSPDsectorX0=s.fSPDsectorX0; this->fSPDsectorY0=s.fSPDsectorY0; this->fSPDsectorX1=s.fSPDsectorX1; this->fSPDsectorY1=s.fSPDsectorY1; for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){ this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j]; this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j]; } // end for i,j return *this; } //______________________________________________________________________ TGeoMedium* AliITSv11GeometrySPD::GetMedium(const char* mediumName, const TGeoManager *mgr) const { // // This function is used to recovery any medium // used to build the geometry volumes. // If the required medium does not exists, // a NULL pointer is returned, and an error message is written. // Char_t itsMediumName[30]; snprintf(itsMediumName, 30, "ITS_%s", mediumName); TGeoMedium* medium = mgr->GetMedium(itsMediumName); if (!medium) AliError(Form("Medium <%s> not found", mediumName)); return medium; } //______________________________________________________________________ void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth, TGeoManager *mgr) { // // Creates a single SPD carbon fiber sector and places it // in a container volume passed as first argument ('moth'). // Second argument points to the TGeoManager which coordinates // the overall volume creation. // The position of the sector is based on distance of // closest point of SPD stave to beam pipe // (figures all-sections-modules.ps) of 7.22mm at section A-A. // // Begin_Html /*

The SPD Sector definition. In HPGL format.

The SPD all sector end view with thermal sheald.

SPD side view cross section with condes and thermal shealds.

Cross section A-A.

Cross updated section A-A.

Cross section B-B.

Cross section C-C.

Cross section D-D.

Cross section E-E.

Cross section F-F.

Cross section G-G. */ // End_Html // Inputs: // TGeoVolume *moth Pointer to mother volume where this object // is to be placed in // TGeoManager *mgr Pointer to the TGeoManager used, defaule is // gGeoManager. // Outputs: // none. // Return: // none. // Updated values for kSPDclossesStaveAA, kBeamPipeRadius, and // staveThicknessAA are taken from // http://physics.mps.ohio-state.edu/~nilsen/ITSfigures/Sezione_layerAA.pdf // const Double_t kSPDclossesStaveAA = 7.25* fgkmm; const Double_t kSectorStartingAngle = -72.0 * fgkDegree; const Int_t kNSectorsTotal = 10; const Double_t kSectorRelativeAngle = 36.0 * fgkDegree; // = 360.0 / 10 const Double_t kBeamPipeRadius = 0.5 * 59.6 * fgkmm; // diam. = 59.6 mm //const Double_t staveThicknessAA = 0.9 *fgkmm; // nominal thickness const Double_t staveThicknessAA = 1.02 * fgkmm; // get from stave geometry. Int_t i, j, k; Double_t angle, radiusSector, xAAtubeCenter0, yAAtubeCenter0; TGeoCombiTrans *secRot = new TGeoCombiTrans(), *comrot; TGeoVolume *vCarbonFiberSector[10]; TGeoMedium *medSPDcf; // Define an assembly and fill it with the support of // a single carbon fiber sector and staves in it medSPDcf = GetMedium("SPD C (M55J)$", mgr); for(Int_t is=0; is<10; is++) { vCarbonFiberSector[is] = new TGeoVolumeAssembly("ITSSPDCarbonFiberSectorV"); vCarbonFiberSector[is]->SetMedium(medSPDcf); CarbonFiberSector(vCarbonFiberSector[is], is, xAAtubeCenter0, yAAtubeCenter0, mgr); } // Compute the radial shift out of the sectors radiusSector = kBeamPipeRadius + kSPDclossesStaveAA + staveThicknessAA; radiusSector = GetSPDSectorTranslation(fSPDsectorX0.At(1), fSPDsectorY0.At(1), fSPDsectorX1.At(1), fSPDsectorY1.At(1), radiusSector); //radiusSector *= radiusSector; // squaring; //radiusSector -= xAAtubeCenter0 * xAAtubeCenter0; //radiusSector = -yAAtubeCenter0 + TMath::Sqrt(radiusSector); AliDebug(1, Form("SPDSector : radiusSector=%f\n",radiusSector)); i = 1; AliDebug(1, Form("i= %d x0=%f y0=%f x1=%f y1=%f\n", i, fSPDsectorX0.At(i), fSPDsectorY0.At(i), fSPDsectorX1.At(i),fSPDsectorY1.At(i))); // add 10 single sectors, by replicating the virtual sector defined above // and placing at different angles Double_t shiftX, shiftY, tub[2][6][3]; for(i=0;i<2;i++)for(j=0;j<6;j++)for(k=0;k<3;k++) tub[i][j][k] = fTubeEndSector[0][i][j][k]; angle = kSectorStartingAngle; secRot->RotateZ(angle); TGeoVolumeAssembly *vcenteral = new TGeoVolumeAssembly("ITSSPD"); moth->AddNode(vcenteral, 1, 0); for(i = 0; i < kNSectorsTotal; i++) { shiftX = -radiusSector * TMath::Sin(angle/fgkRadian); shiftY = radiusSector * TMath::Cos(angle/fgkRadian); //cout << "ANGLE = " << angle << endl; shiftX += 0.1094 * TMath::Cos((angle + 196.)/fgkRadian); shiftY += 0.1094 * TMath::Sin((angle + 196.)/fgkRadian); //shiftX -= 0.105; //shiftY -= 0.031; //shiftX -= 0.11 * TMath::Cos(angle/fgkRadian); // add by Alberto //shiftY -= 0.11 * TMath::Sin(angle/fgkRadian); // don't ask me where that 0.11 comes from! secRot->SetDx(shiftX); secRot->SetDy(shiftY); comrot = new TGeoCombiTrans(*secRot); vcenteral->AddNode(vCarbonFiberSector[i],i+1,comrot); for(j=0;j<2;j++)for(k=0;k<6;k++) // Transform Tube ends for each sector comrot->LocalToMaster(tub[j][k],fTubeEndSector[i][j][k]); if(GetDebug(5)) { AliInfo(Form("i=%d angle=%g angle[rad]=%g radiusSector=%g " "x=%g y=%g \n",i, angle, angle/fgkRadian, radiusSector, shiftX, shiftY)); } // end if GetDebug(5) angle += kSectorRelativeAngle; secRot->RotateZ(kSectorRelativeAngle); } // end for i if(GetDebug(3)) moth->PrintNodes(); delete secRot; CreateCones(moth); } //______________________________________________________________________ void AliITSv11GeometrySPD::CarbonFiberSector(TGeoVolume *moth, Int_t sect, Double_t &xAAtubeCenter0, Double_t &yAAtubeCenter0, TGeoManager *mgr) { // The method has been modified in order to build a support sector // whose shape is dependent on the sector number; the aim is to get // as close as possible to the shape inferred from alignment // and avoid as much as possible overlaps generated by alignment. // // Define the detail SPD Carbon fiber support Sector geometry. // Based on the drawings: /* http:///QA-construzione-profilo-modulo.ps */ // - ALICE-Pixel "Costruzione Profilo Modulo" (march 25 2004) // - ALICE-SUPPORTO "Costruzione Profilo Modulo" // --- // Define outside radii as negative, where "outside" means that the // center of the arc is outside of the object (feb 16 2004). // --- // Arguments [the one passed by ref contain output values]: // Inputs: // TGeoVolume *moth the voulme which will contain this object // TGeoManager *mgr TGeo builder defauls is gGeoManager // Outputs: // Double_t &xAAtubeCenter0 (by ref) x location of the outer surface // of the cooling tube center for tube 0. // Double_t &yAAtubeCenter0 (by ref) y location of the outer surface // of the cooling tube center for tube 0. // Return: // none. // --- // Int the two variables passed by reference values will be stored // which will then be used to correctly locate this sector. // The information used for this is the distance between the // center of the #0 detector and the beam pipe. // Measurements are taken at cross section A-A. // //TGeoMedium *medSPDfs = 0;//SPD support cone inserto stesalite 4411w //TGeoMedium *medSPDfo = 0;//SPD support cone foam, Rohacell 50A. //TGeoMedium *medSPDal = 0;//SPD support cone SDD mounting bracket Al TGeoMedium *medSPDcf = GetMedium("SPD C (M55J)$", mgr); TGeoMedium *medSPDss = GetMedium("INOX$", mgr); TGeoMedium *medSPDair = GetMedium("AIR$", mgr); TGeoMedium *medSPDcoolfl = GetMedium("Freon$", mgr); //ITSspdCoolingFluid // const Double_t ksecDz = 0.5 * 500.0 * fgkmm; //const Double_t ksecLen = 30.0 * fgkmm; const Double_t ksecCthick = 0.2 * fgkmm; const Double_t ksecDipLength = 3.2 * fgkmm; const Double_t ksecDipRadii = 0.4 * fgkmm; //const Double_t ksecCoolingTubeExtraDepth = 0.86 * fgkmm; // // The following positions ('ksecX#' and 'ksecY#') and radii ('ksecR#') // are the centers and radii of curvature of all the rounded corners // between the straight borders of the SPD sector shape. // To draw this SPD sector, the following steps are followed: // 1) the (ksecX, ksecY) points are plotted // and circles of the specified radii are drawn around them. // 2) each pair of consecutive circles is connected by a line // tangent to them, in accordance with the radii being "internal" // or "external" with respect to the closed shape which describes // the sector itself. // The resulting connected shape is the section // of the SPD sector surface in the transverse plane (XY). // const Double_t ksecX0 = -10.725 * fgkmm; const Double_t ksecY0 = -14.853 * fgkmm; const Double_t ksecR0 = -0.8 * fgkmm; // external const Double_t ksecR1 = +0.6 * fgkmm; const Double_t ksecR2 = +0.6 * fgkmm; const Double_t ksecR3 = -0.6 * fgkmm; const Double_t ksecR4 = +0.8 * fgkmm; const Double_t ksecR5 = +0.8 * fgkmm; const Double_t ksecR6 = +0.6 * fgkmm; const Double_t ksecR7 = -0.6 * fgkmm; const Double_t ksecR8 = +0.6 * fgkmm; const Double_t ksecR9 = -0.6 * fgkmm; const Double_t ksecR10 = +0.6 * fgkmm; const Double_t ksecR11 = -0.6 * fgkmm; const Double_t ksecR12 = +0.85 * fgkmm; // // IDEAL GEOMETRY // const Double_t ksecX1[10] ={-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187,-1.3187}; // const Double_t ksecY1[10] ={-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964,-1.9964}; // const Double_t ksecX2[10] ={-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833,-0.3833}; // const Double_t ksecY2[10] ={-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805,-1.7805}; // const Double_t ksecX3[10] ={-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123,-0.3123}; // const Double_t ksecY3[10] ={-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618,-1.4618}; // const Double_t ksecX4[10] ={+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280,+1.1280}; // const Double_t ksecY4[10] ={-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473,-1.4473}; // const Double_t ksecX5[10] ={+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544,+1.9544}; // const Double_t ksecY5[10] ={+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961,+1.0961}; // const Double_t ksecX6[10] ={+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830,+1.0830}; // const Double_t ksecY6[10] ={+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868,+1.6868}; // const Double_t ksecX7[10] ={+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581,+1.1581}; // const Double_t ksecY7[10] ={+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317,+1.3317}; // const Double_t ksecX8[10] ={-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733,-0.0733}; // const Double_t ksecY8[10] ={+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486,+1.7486}; // const Double_t ksecX9[10] ={+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562,+0.0562}; // const Double_t ksecY9[10] ={+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107,+1.4107}; // const Double_t ksecX10[10]={-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252,-1.2252}; // const Double_t ksecY10[10]={+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298,+1.6298}; // const Double_t ksecX11[10]={-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445,-1.0445}; // const Double_t ksecY11[10]={+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162,+1.3162}; // const Double_t ksecX12[10]={-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276,-2.2276}; // const Double_t ksecY12[10]={+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948,+1.2948}; // MODIFIED GEOMETRY according with partial alignment of Staves relative to Sectors // last numbers: 2010/06/11 (ML) const Double_t ksecX1[10]={-1.305917, -1.322242, -1.300649, -1.298700, -1.290830, -1.274307, -1.276433, -1.286468, -1.274381, -1.314864}; const Double_t ksecY1[10]={-1.997857, -2.018611, -2.005854, -2.004897, -1.995517, -2.002552, -1.995860, -2.021062, -2.012931, -2.043967}; const Double_t ksecX2[10]={-0.366115, -0.385562, -0.372689, -0.365682, -0.348432, -0.348442, -0.342468, -0.354071, -0.346900, -0.381275}; const Double_t ksecY2[10]={-1.801679, -1.808306, -1.759315, -1.778851, -1.811655, -1.747888, -1.773811, -1.792427, -1.764514, -1.820324}; // const Double_t ksecX1[10]={-1.305917, -1.322242, -1.300649, -1.298700, -1.290830, -1.274307, -1.276433, -1.286468, -1.274381, -1.325864}; // const Double_t ksecY1[10]={-1.997857, -2.018611, -2.005854, -2.004897, -1.995517, -2.002552, -1.995860, -2.021062, -2.012931, -2.032967}; // const Double_t ksecX2[10]={-0.366115, -0.385562, -0.372689, -0.365682, -0.348432, -0.348442, -0.342468, -0.354071, -0.346900, -0.392275}; // const Double_t ksecY2[10]={-1.801679, -1.808306, -1.759315, -1.778851, -1.811655, -1.747888, -1.773811, -1.792427, -1.764514, -1.809324}; const Double_t ksecX3[10]={-0.314030, -0.315531, -0.347521, -0.337675, -0.300420, -0.378487, -0.330729, -0.330850, -0.362360, -0.321097}; const Double_t ksecY3[10]={-1.452488, -1.460418, -1.447060, -1.443146, -1.472410, -1.430019, -1.469073, -1.472048, -1.462010, -1.444355}; const Double_t ksecX4[10]={1.124299, 1.124162, 1.089523, 1.095520, 1.136171, 1.058616, 1.105626, 1.106433, 1.077455, 1.117946}; const Double_t ksecY4[10]={-1.458714, -1.452649, -1.465297, -1.492717, -1.494665, -1.447732, -1.493369, -1.488126, -1.452925, -1.443447}; const Double_t ksecX5[10]={1.951621, 1.939284, 1.931830, 1.935235, 1.952206, 1.939082, 1.924822, 1.940114, 1.918160, 1.960017}; const Double_t ksecY5[10]={1.092731, 1.118870, 1.129765, 1.129422, 1.081511, 1.127387, 1.103960, 1.101784, 1.121428, 1.150110}; const Double_t ksecX6[10]={1.070070, 1.048297, 1.035920, 1.049049, 1.083621, 1.045882, 1.050399, 1.067823, 1.037967, 1.070850}; const Double_t ksecY6[10]={1.667590, 1.678571, 1.681383, 1.696892, 1.676520, 1.683470, 1.689988, 1.691111, 1.698432, 1.712770}; const Double_t ksecX7[10]={1.139398, 1.150471, 1.150074, 1.132807, 1.150192, 1.124064, 1.124335, 1.137723, 1.143056, 1.130568}; const Double_t ksecY7[10]={1.345588, 1.356062, 1.342468, 1.320467, 1.335807, 1.334477, 1.328622, 1.347184, 1.319861, 1.308420}; const Double_t ksecX8[10]={-0.096963, -0.098603, -0.095286, -0.099990, -0.075132, -0.121593, -0.108673, -0.104237, -0.092082, -0.104044}; const Double_t ksecY8[10]={1.751207, 1.731467, 1.726908, 1.734219, 1.766159, 1.718203, 1.741891, 1.739743, 1.728288, 1.718046}; const Double_t ksecX9[10]={0.047615, 0.087875, 0.034917, 0.071603, 0.026468, 0.091619, 0.051994, 0.059947, 0.079785, 0.043443}; const Double_t ksecY9[10]={1.414699, 1.403187, 1.399061, 1.403430, 1.435056, 1.384557, 1.397692, 1.420269, 1.391372, 1.398954}; const Double_t ksecX10[10]={-1.233255, -1.186874, -1.246702, -1.213368, -1.259425, -1.190067, -1.225655, -1.224171, -1.197833, -1.237182}; const Double_t ksecY10[10]={1.635767, 1.646249, 1.617336, 1.608928, 1.636944, 1.602583, 1.630504, 1.629065, 1.624295, 1.620934}; const Double_t ksecX11[10]={-1.018270, -1.031317, -0.960524, -1.001155, -1.045437, -0.986867, -1.002685, -1.017369, -1.005614, -0.985385}; const Double_t ksecY11[10]={1.318108, 1.330683, 1.301572, 1.314410, 1.326680, 1.295226, 1.306372, 1.309414, 1.306542, 1.307086}; const Double_t ksecX12[10]={-2.199004, -2.214964, -2.139247, -2.180547, -2.224505, -2.165324, -2.175883, -2.193485, -2.183227, -2.161570}; const Double_t ksecY12[10]={1.317677, 1.303982, 1.317057, 1.324766, 1.339537, 1.312715, 1.359642, 1.343638, 1.330234, 1.340836}; const Double_t ksecR13 = -0.8 * fgkmm; // external const Double_t ksecAngleSide13 = 36.0 * fgkDegree; // const Int_t ksecNRadii = 20; const Int_t ksecNPointsPerRadii = 4; const Int_t ksecNCoolingTubeDips = 6; // // Since the rounded parts are approximated by a regular polygon // and a cooling tube of the propper diameter must fit, a scaling factor // increases the size of the polygon for the tube to fit. //const Double_t ksecRCoolScale = 1./TMath::Cos(TMath::Pi()/ // (Double_t)ksecNPointsPerRadii); const Double_t ksecZEndLen = 30.000 * fgkmm; //const Double_t ksecZFlangLen = 45.000 * fgkmm; const Double_t ksecTl = 0.860 * fgkmm; const Double_t ksecCthick2 = 0.600 * fgkmm; //const Double_t ksecCthick3 = 1.80 * fgkmm; //const Double_t ksecSidelen = 22.0 * fgkmm; //const Double_t ksecSideD5 = 3.679 * fgkmm; //const Double_t ksecSideD12 = 7.066 * fgkmm; const Double_t ksecRCoolOut = 2.400 * fgkmm; const Double_t ksecRCoolIn = 2.000 * fgkmm; const Double_t ksecDl1 = 5.900 * fgkmm; const Double_t ksecDl2 = 8.035 * fgkmm; const Double_t ksecDl3 = 4.553 * fgkmm; const Double_t ksecDl4 = 6.978 * fgkmm; const Double_t ksecDl5 = 6.978 * fgkmm; const Double_t ksecDl6 = 6.978 * fgkmm; const Double_t ksecCoolTubeThick = 0.04 * fgkmm; const Double_t ksecCoolTubeROuter = 2.6 * fgkmm; const Double_t ksecCoolTubeFlatX = 3.696 * fgkmm; const Double_t ksecCoolTubeFlatY = 0.68 * fgkmm; //const Double_t ksecBeamX0 = 0.0 * fgkmm; // guess //const Double_t ksecBeamY0 = (15.223 + 40.) * fgkmm; // guess // // redefine some of the points already defined above // in the format of arrays (???) const Int_t ksecNPoints = (ksecNPointsPerRadii + 1) * ksecNRadii + 8; Double_t secX[ksecNRadii] = { ksecX0, ksecX1[sect], -1000.0, ksecX2[sect], ksecX3[sect], -1000.0, ksecX4[sect], ksecX5[sect], -1000.0, ksecX6[sect], ksecX7[sect], -1000.0, ksecX8[sect], ksecX9[sect], -1000.0, ksecX10[sect], ksecX11[sect], -1000.0, ksecX12[sect], -1000.0 }; Double_t secY[ksecNRadii] = { ksecY0, ksecY1[sect], -1000.0, ksecY2[sect], ksecY3[sect], -1000.0, ksecY4[sect], ksecY5[sect], -1000.0, ksecY6[sect], ksecY7[sect], -1000.0, ksecY8[sect], ksecY9[sect], -1000.0, ksecY10[sect], ksecY11[sect], -1000.0, ksecY12[sect], -1000.0 }; Double_t secR[ksecNRadii] = { ksecR0, ksecR1, -.5 * ksecDipLength - ksecDipRadii, ksecR2, ksecR3, -.5 * ksecDipLength - ksecDipRadii, ksecR4, ksecR5, -.5 * ksecDipLength - ksecDipRadii, ksecR6, ksecR7, -.5 * ksecDipLength - ksecDipRadii, ksecR8, ksecR9, -.5 * ksecDipLength - ksecDipRadii, ksecR10, ksecR11, -.5 * ksecDipLength - ksecDipRadii, ksecR12, ksecR13 }; Double_t secX2[ksecNRadii]; Double_t secY2[ksecNRadii]; Double_t secR2[ksecNRadii] = { ksecR0, ksecR1, ksecRCoolOut, ksecR2, ksecR3, ksecRCoolOut, ksecR4, ksecR5, ksecRCoolOut, ksecR6, ksecR7, ksecRCoolOut, ksecR8, ksecR9, ksecRCoolOut, ksecR10, ksecR11, ksecRCoolOut, ksecR12, ksecR13 }; Double_t secDip2[ksecNCoolingTubeDips] = { ksecDl1, ksecDl2, ksecDl3, ksecDl4, ksecDl5, ksecDl6 }; Double_t secX3[ksecNRadii]; Double_t secY3[ksecNRadii]; const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2, 5, 8, 11, 14, 17}; Double_t secAngleStart[ksecNRadii]; Double_t secAngleEnd[ksecNRadii]; for(Int_t i = 0; i < ksecNRadii; i++)secAngleEnd[i] = 0.; Double_t secAngleStart2[ksecNRadii]; Double_t secAngleEnd2[ksecNRadii]; Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0., 0., 0., 0., 0., 0.0}; //Double_t secAngleStart3[ksecNRadii]; //Double_t secAngleEnd3[ksecNRadii]; Double_t xpp[ksecNPoints], ypp[ksecNPoints]; Double_t xpp2[ksecNPoints], ypp2[ksecNPoints]; Double_t *xp[ksecNRadii], *xp2[ksecNRadii]; Double_t *yp[ksecNRadii], *yp2[ksecNRadii]; TGeoXtru *sA0, *sA1, *sB0, *sB1,*sB2; TGeoBBox *sB3; TGeoEltu *sTA0, *sTA1; TGeoTube *sTB0, *sTB1; //,*sM0; TGeoRotation *rot; TGeoTranslation *trans; TGeoCombiTrans *rotrans; Double_t t, t0, t1, a, b, x0, y0,z0, x1, y1; Int_t i, j, k, m; Bool_t tst; if(!moth) { AliError("Container volume (argument) is NULL"); return; } // end if(!moth) for(i = 0; i < ksecNRadii; i++) { xp[i] = &(xpp[i*(ksecNPointsPerRadii+1)]); yp[i] = &(ypp[i*(ksecNPointsPerRadii+1)]); xp2[i] = &(xpp2[i*(ksecNPointsPerRadii+1)]); yp2[i] = &(ypp2[i*(ksecNPointsPerRadii+1)]); secX2[i] = secX[i]; secY2[i] = secY[i]; secX3[i] = secX[i]; secY3[i] = secY[i]; } // end for i // // find starting and ending angles for all but cooling tube sections secAngleStart[0] = 0.5 * ksecAngleSide13; for(i = 0; i < ksecNRadii - 2; i++) { tst = kFALSE; for(j=0;j 0.0 && secR[j] > 0.0) { if(secAngleStart[i] > secAngleEnd[i]) secAngleEnd[i] += 360.0; } // end if(secR[i]>0.0 && secR[j]>0.0) secAngleStart2[i] = secAngleStart[i]; secAngleEnd2[i] = secAngleEnd[i]; } // end for i secAngleEnd[ksecNRadii-2] = secAngleStart[ksecNRadii-2] + (secAngleEnd[ksecNRadii-5] - secAngleStart[ksecNRadii-5]); if (secAngleEnd[ksecNRadii-2] < 0.0) secAngleEnd[ksecNRadii-2] += 360.0; secAngleStart[ksecNRadii-1] = secAngleEnd[ksecNRadii-2] - 180.0; secAngleEnd[ksecNRadii-1] = secAngleStart[0]; secAngleStart2[ksecNRadii-2] = secAngleStart[ksecNRadii-2]; secAngleEnd2[ksecNRadii-2] = secAngleEnd[ksecNRadii-2]; secAngleStart2[ksecNRadii-1] = secAngleStart[ksecNRadii-1]; secAngleEnd2[ksecNRadii-1] = secAngleEnd[ksecNRadii-1]; // // find location of circle last rounded corner. i = 0; j = ksecNRadii - 2; t0 = TanD(secAngleStart[i]-90.); t1 = TanD(secAngleEnd[j]-90.); t = secY[i] - secY[j]; // NOTE: secR[i=0] < 0; secR[j=18] > 0; and secR[j+1=19] < 0 t += (-secR[i]+secR[j+1]) * SinD(secAngleStart[i]); t -= (secR[j]-secR[j+1]) * SinD(secAngleEnd[j]); t += t1 * secX[j] - t0*secX[i]; t += t1 * (secR[j] - secR[j+1]) * CosD(secAngleEnd[j]); t -= t0 * (-secR[i]+secR[j+1]) * CosD(secAngleStart[i]); secX[ksecNRadii-1] = t / (t1-t0); secY[ksecNRadii-1] = TanD(90.0+0.5*ksecAngleSide13)* (secX[ksecNRadii-1]-secX[0])+secY[0]; secX2[ksecNRadii-1] = secX[ksecNRadii-1]; secY2[ksecNRadii-1] = secY[ksecNRadii-1]; secX3[ksecNRadii-1] = secX[ksecNRadii-1]; secY3[ksecNRadii-1] = secY[ksecNRadii-1]; // find location of cooling tube centers for(i = 0; i < ksecNCoolingTubeDips; i++) { j = ksecDipIndex[i]; x0 = secX[j-1] + TMath::Abs(secR[j-1]) * CosD(secAngleEnd[j-1]); y0 = secY[j-1] + TMath::Abs(secR[j-1]) * SinD(secAngleEnd[j-1]); x1 = secX[j+1] + TMath::Abs(secR[j+1]) * CosD(secAngleStart[j+1]); y1 = secY[j+1] + TMath::Abs(secR[j+1]) * SinD(secAngleStart[j+1]); t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1)); t = secDip2[i] / t0; a = x0+(x1-x0) * t; b = y0+(y1-y0) * t; if(i == 0) { // get location of tube center->Surface for locating // this sector around the beam pipe. // This needs to be double checked, but I need my notes for that. // (Bjorn Nilsen) xAAtubeCenter0 = x0 + (x1 - x0) * t * 0.5; yAAtubeCenter0 = y0 + (y1 - y0) * t * 0.5; }// end if i==0 if(a + b*(a - x0) / (b - y0) > 0.0) { secX[j] = a + TMath::Abs(y1-y0) * 2.0 * ksecDipRadii/t0; secY[j] = b - TMath::Sign(2.0*ksecDipRadii,y1-y0) * (x1-x0)/t0; secX2[j] = a + TMath::Abs(y1-y0) * ksecTl/t0; secY2[j] = b - TMath::Sign(ksecTl,y1-y0) * (x1-x0) / t0; secX3[j] = a + TMath::Abs(y1-y0) * (2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0; secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY, y1-y0)*(x1-x0)/t0; } else { secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0; secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0; secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0; secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0; secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii-0.5* ksecCoolTubeFlatY)/t0; secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY, y1-y0)*(x1-x0)/t0; } // end if(a+b*(a-x0)/(b-y0)>0.0) // Set up Start and End angles to correspond to start/end of dips. t1 = (secDip2[i]-TMath::Abs(secR[j])) / t0; secAngleStart[j] =TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j], x0+(x1-x0)*t1-secX[j]); if (secAngleStart[j]<0.0) secAngleStart[j] += 360.0; secAngleStart2[j] = secAngleStart[j]; t1 = (secDip2[i]+TMath::Abs(secR[j]))/t0; secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j], x0+(x1-x0)*t1-secX[j]); if (secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0; secAngleEnd2[j] = secAngleEnd[j]; if (secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0; secR[j] = TMath::Sqrt(secR[j]*secR[j]+4.0*ksecDipRadii*ksecDipRadii); } // end for i // Special cases secAngleStart2[8] -= 360.; secAngleStart2[11] -= 360.; SPDsectorShape(ksecNRadii, secX, secY, secR, secAngleStart, secAngleEnd, ksecNPointsPerRadii, m, xp, yp); // Fix up dips to be square. for(i = 0; i < ksecNCoolingTubeDips; i++) { j = ksecDipIndex[i]; t = 0.5*ksecDipLength+ksecDipRadii; t0 = TMath::RadToDeg()*TMath::ATan(2.0*ksecDipRadii/t); t1 = secAngleEnd[j] + t0; t0 = secAngleStart[j] - t0; x0 = xp[j][1] = secX[j] + t*CosD(t0); y0 = yp[j][1] = secY[j] + t*SinD(t0); x1 = xp[j][ksecNPointsPerRadii-1] = secX[j] + t*CosD(t1); y1 = yp[j][ksecNPointsPerRadii-1] = secY[j] + t*SinD(t1); t0 = 1./((Double_t)(ksecNPointsPerRadii-2)); for(k = 2; k < ksecNPointsPerRadii - 1; k++) { // extra points spread them out. t = ((Double_t)(k-1)) * t0; xp[j][k] = x0+(x1-x0) * t; yp[j][k] = y0+(y1-y0) * t; } // end for k secAngleTurbo[i] = -TMath::RadToDeg() * TMath::ATan2(y1-y0, x1-x0); if(GetDebug(3)) { AliInfo( Form("i=%d -- angle=%f -- x0,y0=(%f, %f) -- x1,y1=(%f, %f)", i, secAngleTurbo[i], x0, y0, x1, y1)); } // end if GetDebug(3) } // end for i sA0 = new TGeoXtru(2); sA0->SetName("ITS SPD Carbon fiber support Sector A0"); sA0->DefinePolygon(m, xpp, ypp); sA0->DefineSection(0, -ksecDz); sA0->DefineSection(1, ksecDz); // store the edges of each XY segment which defines // one of the plane zones where staves will have to be placed fSPDsectorX0.Set(ksecNCoolingTubeDips); fSPDsectorY0.Set(ksecNCoolingTubeDips); fSPDsectorX1.Set(ksecNCoolingTubeDips); fSPDsectorY1.Set(ksecNCoolingTubeDips); Int_t ixy0, ixy1; for(i = 0; i < ksecNCoolingTubeDips; i++) { // Find index in xpp[] and ypp[] corresponding to where the // SPD ladders are to be attached. Order them according to // the ALICE numbering schema. Using array of indexes (+-1 for // cooling tubes. For any "bend/dip/edge, there are // ksecNPointsPerRadii+1 points involved. if(i == 0) j = 1; else if (i == 1) j = 0; else j = i; ixy0 = (ksecDipIndex[j]-1)*(ksecNPointsPerRadii+1)+ (ksecNPointsPerRadii); ixy1 = (ksecDipIndex[j]+1) * (ksecNPointsPerRadii+1); fSPDsectorX0[i] = sA0->GetX(ixy0); fSPDsectorY0[i] = sA0->GetY(ixy0); fSPDsectorX1[i] = sA0->GetX(ixy1); fSPDsectorY1[i] = sA0->GetY(ixy1); } // end for i //printf("SectorA#%d ",0); InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1],ksecCthick, xpp2[0],ypp2[0]); for(i = 1; i < m - 1; i++) { j = i / (ksecNPointsPerRadii+1); //printf("SectorA#%d ",i); InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1], ksecCthick,xpp2[i],ypp2[i]); } // end for i //printf("SectorA#%d ",m); InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0], ksecCthick,xpp2[m-1],ypp2[m-1]); // Fix center value of cooling tube dip and // find location of cooling tube centers for(i = 0; i < ksecNCoolingTubeDips; i++) { j = ksecDipIndex[i]; x0 = xp2[j][1]; y0 = yp2[j][1]; x1 = xp2[j][ksecNPointsPerRadii-1]; y1 = yp2[j][ksecNPointsPerRadii-1]; t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1)); t = secDip2[i]/t0; for(k = 2; k < ksecNPointsPerRadii - 1; k++) { // extra points spread them out. t = ((Double_t)(k-1)) * t0; xp2[j][k] = x0+(x1-x0) * t; yp2[j][k] = y0+(y1-y0) * t; } // end for k } // end for i sA1 = new TGeoXtru(2); sA1->SetName("ITS SPD Carbon fiber support Sector Air A1"); sA1->DefinePolygon(m, xpp2, ypp2); sA1->DefineSection(0, -ksecDz); sA1->DefineSection(1, ksecDz); // // Error in TGeoEltu. Semi-axis X must be < Semi-axis Y (?). sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0", 0.5 * ksecCoolTubeFlatY, 0.5 * ksecCoolTubeFlatX, ksecDz); sTA1 = new TGeoEltu("ITS SPD Cooling Tube coolant TA1", sTA0->GetA() - ksecCoolTubeThick, sTA0->GetB()-ksecCoolTubeThick,ksecDz); SPDsectorShape(ksecNRadii,secX2,secY2,secR2,secAngleStart2,secAngleEnd2, ksecNPointsPerRadii, m, xp, yp); sB0 = new TGeoXtru(2); sB0->SetName("ITS SPD Carbon fiber support Sector End B0"); sB0->DefinePolygon(m, xpp, ypp); sB0->DefineSection(0, ksecDz); sB0->DefineSection(1, ksecDz + ksecZEndLen); //printf("SectorB#%d ",0); // Points around the most sharpened tips have to be avoided - M.S. 24 feb 09 const Int_t nSpecialPoints = 5; const Int_t kSpecialPoints[nSpecialPoints] = {7, 17, 47, 62, 77}; Int_t i2 = 0; InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1], ksecCthick2,xpp2[i2],ypp2[i2]); for(i = 1; i < m - 1; i++) { t = ksecCthick2; for(k = 0; k < ksecNCoolingTubeDips; k++) if((i/(ksecNPointsPerRadii+1))==ksecDipIndex[k]) if(!(ksecDipIndex[k]*(ksecNPointsPerRadii+1) == i || ksecDipIndex[k]*(ksecNPointsPerRadii+1) + ksecNPointsPerRadii == i)) t = ksecRCoolOut-ksecRCoolIn; //printf("SectorB#%d ",i); Bool_t useThisPoint = kTRUE; for(Int_t ii = 0; ii < nSpecialPoints; ii++) if ( (i == kSpecialPoints[ii] - 1) || (i == kSpecialPoints[ii] + 1) ) useThisPoint = kFALSE; if (useThisPoint) { i2++; InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1],t, xpp2[i2],ypp2[i2]); } }// end for i //printf("SectorB#%d ",m); i2++; InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0], ksecCthick2,xpp2[i2],ypp2[i2]); sB1 = new TGeoXtru(2); sB1->SetName("ITS SPD Carbon fiber support Sector Air End B1"); sB1->DefinePolygon(i2+1, xpp2, ypp2); sB1->DefineSection(0,sB0->GetZ(0)); sB1->DefineSection(1,sB0->GetZ(1)-ksecCthick2); const Double_t kspdEndHoleRadius1=5.698*fgkmm; const Double_t kspdEndHoleRadius2=2.336*fgkmm; const Double_t kspdEndHoleDisplacement=6.29*fgkmm; k = (m-1)/4; for(i=0;i<=k;i++){ t= ((Double_t)i)/((Double_t)(k)); if(!CFHolePoints(t,kspdEndHoleRadius1,kspdEndHoleRadius2, kspdEndHoleDisplacement,xpp2[i],ypp2[i])){ Warning("CarbonFiberSector","CFHolePoints failed " "i=%d m=%d k=%d t=%e",i,m,k,t); } // end if // simitry in each quadrant. xpp2[2*k-i] = -xpp2[i]; ypp2[2*k-i] = ypp2[i]; xpp2[2*k+i] = -xpp2[i]; ypp2[2*k+i] = -ypp2[i]; xpp2[4*k-i] = xpp2[i]; ypp2[4*k-i] = -ypp2[i]; }// end for i //xpp2[m-1] = xpp2[0]; // begining point in //ypp2[m-1] = ypp2[0]; // comment with end point sB2 = new TGeoXtru(2); sB2->SetName("ITS SPD Hole in Carbon fiber support End plate"); sB2->DefinePolygon(4*k, xpp2, ypp2); sB2->DefineSection(0,sB1->GetZ(1)); sB2->DefineSection(1,sB0->GetZ(1)); // SPD sector mount blocks const Double_t kMountBlock[3] = {0.5*(1.8-0.2)*fgkmm,0.5*22.0*fgkmm, 0.5*45.0*fgkmm}; sB3 = new TGeoBBox((Double_t*)kMountBlock); // SPD sector cooling tubes sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0", 0.0, 0.5*ksecCoolTubeROuter,0.5*(sB1->GetZ(1)-sB1->GetZ(0))); sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0", 0.0, sTB0->GetRmax() - ksecCoolTubeThick,sTB0->GetDz()); // if(GetDebug(3)) { if(medSPDcf) medSPDcf->Dump(); else AliInfo("medSPDcf = 0"); if(medSPDss) medSPDss->Dump(); else AliInfo("medSPDss = 0"); if(medSPDair) medSPDair->Dump(); else AliInfo("medSPDAir = 0"); if(medSPDcoolfl) medSPDcoolfl->Dump();else AliInfo("medSPDcoolfl = 0"); sA0->InspectShape(); sA1->InspectShape(); sB0->InspectShape(); sB1->InspectShape(); sB2->InspectShape(); } // end if(GetDebug(3)) // create the assembly of the support and place staves on it TGeoVolumeAssembly *vM0 = new TGeoVolumeAssembly( "ITSSPDSensitiveVirtualvolumeM0"); StavesInSector(vM0); // create other volumes with some graphical settings TGeoVolume *vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0", sA0, medSPDcf); vA0->SetVisibility(kTRUE); vA0->SetLineColor(4); // Blue vA0->SetLineWidth(1); vA0->SetFillColor(vA0->GetLineColor()); vA0->SetFillStyle(4010); // 10% transparent TGeoVolume *vA1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorAirA1", sA1, medSPDair); vA1->SetVisibility(kTRUE); vA1->SetLineColor(7); // light Blue vA1->SetLineWidth(1); vA1->SetFillColor(vA1->GetLineColor()); vA1->SetFillStyle(4090); // 90% transparent TGeoVolume *vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0", sTA0, medSPDss); vTA0->SetVisibility(kTRUE); vTA0->SetLineColor(15); // gray vTA0->SetLineWidth(1); vTA0->SetFillColor(vTA0->GetLineColor()); vTA0->SetFillStyle(4000); // 0% transparent TGeoVolume *vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1", sTA1, medSPDcoolfl); vTA1->SetVisibility(kTRUE); vTA1->SetLineColor(6); // Purple vTA1->SetLineWidth(1); vTA1->SetFillColor(vTA1->GetLineColor()); vTA1->SetFillStyle(4000); // 0% transparent TGeoVolume *vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0", sB0, medSPDcf); vB0->SetVisibility(kTRUE); vB0->SetLineColor(1); // Black vB0->SetLineWidth(1); vB0->SetFillColor(vB0->GetLineColor()); vB0->SetFillStyle(4000); // 0% transparent TGeoVolume *vB1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB1", sB1, medSPDair); vB1->SetVisibility(kTRUE); vB1->SetLineColor(0); // white vB1->SetLineWidth(1); vB1->SetFillColor(vB1->GetLineColor()); vB1->SetFillStyle(4100); // 100% transparent TGeoVolume *vB2 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB2", sB2, medSPDair); vB2->SetVisibility(kTRUE); vB2->SetLineColor(0); // white vB2->SetLineWidth(1); vB2->SetFillColor(vB2->GetLineColor()); vB2->SetFillStyle(4100); // 100% transparent TGeoVolume *vB3 = new TGeoVolume( "ITSSPDCarbonFiberSupportSectorMountBlockB3",sB3, medSPDcf); vB3->SetVisibility(kTRUE); vB3->SetLineColor(1); // Black vB3->SetLineWidth(1); vB3->SetFillColor(vB3->GetLineColor()); vB3->SetFillStyle(4000); // 0% transparent TGeoVolume *vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0",sTB0,medSPDss); vTB0->SetVisibility(kTRUE); vTB0->SetLineColor(15); // gray vTB0->SetLineWidth(1); vTB0->SetFillColor(vTB0->GetLineColor()); vTB0->SetFillStyle(4000); // 0% transparent TGeoVolume *vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1",sTB1, medSPDcoolfl); vTB1->SetVisibility(kTRUE); vTB1->SetLineColor(7); // light blue vTB1->SetLineWidth(1); vTB1->SetFillColor(vTB1->GetLineColor()); vTB1->SetFillStyle(4050); // 0% transparent // add volumes to mother container passed as argument of this method moth->AddNode(vM0,1,0); // Add virtual volume to mother vA0->AddNode(vA1,1,0); // Put air inside carbon fiber. vB0->AddNode(vB1,1,0); // Put air inside carbon fiber ends. vB0->AddNode(vB2,1,0); // Put air wholes inside carbon fiber ends vTA0->AddNode(vTA1,1,0); // Put cooling liquid indide tube middel. vTB0->AddNode(vTB1,1,0); // Put cooling liquid inside tube end. Double_t tubeEndLocal[3]={0.0,0.0,sTA0->GetDz()}; for(i = 0; i < ksecNCoolingTubeDips; i++) { x0 = secX3[ksecDipIndex[i]]; y0 = secY3[ksecDipIndex[i]]; t = 90.0 - secAngleTurbo[i]; trans = new TGeoTranslation("",x0,y0,0.5*(sB1->GetZ(0)+sB1->GetZ(1))); vB1->AddNode(vTB0, i+1, trans); // Find location of tube ends for later use. trans->LocalToMaster(tubeEndLocal,fTubeEndSector[0][0][i]); rot = new TGeoRotation("", 0.0, 0.0, t); rotrans = new TGeoCombiTrans("", x0, y0, 0.0, rot); vM0->AddNode(vTA0, i+1, rotrans); } // end for i vM0->AddNode(vA0, 1, 0); vM0->AddNode(vB0, 1, 0); // Reflection. rot = new TGeoRotation("", 90., 0., 90., 90., 180., 0.); vM0->AddNode(vB0,2,rot); // Find location of tube ends for later use. for(i=0;iLocalToMaster( fTubeEndSector[0][0][i],fTubeEndSector[0][1][i]); // left side t = -TMath::RadToDeg()*TMath::ATan2( sB0->GetX(0)-sB0->GetX(sB0->GetNvert()-1), sB0->GetY(0)-sB0->GetY(sB0->GetNvert()-1)); rot = new TGeoRotation("",t,0.0,0.0);// z axis rotation x0 = 0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))+ sB3->GetDX()*TMath::Cos(t*TMath::DegToRad()); y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))+ sB3->GetDX()*TMath::Sin(t*TMath::DegToRad()); z0 = sB0->GetZ(0)+sB3->GetDZ(); rotrans = new TGeoCombiTrans("",x0,y0,z0,rot); vM0->AddNode(vB3,1,rotrans); // Put Mounting bracket on sector rotrans = new TGeoCombiTrans("",x0,y0,-z0,rot); vM0->AddNode(vB3,2,rotrans); // Put Mounting bracket on sector t *= -1.0; rot = new TGeoRotation("",t,0.0,0.0); // z axis rotation x0 = -0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))-3.5* sB3->GetDX()*TMath::Cos(t*TMath::DegToRad()); y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))-3.5* sB3->GetDX()*TMath::Sin(t*TMath::DegToRad()); rotrans = new TGeoCombiTrans("",1.01*x0,y0,z0,rot); vM0->AddNode(vB3,3,rotrans); // Put Mounting bracket on sector rotrans = new TGeoCombiTrans("",1.01*x0,y0,-z0,rot); vM0->AddNode(vB3,4,rotrans); // Put Mounting bracket on sector if(GetDebug(3)){ vM0->PrintNodes(); vA0->PrintNodes(); vA1->PrintNodes(); vB0->PrintNodes(); vB1->PrintNodes(); vB2->PrintNodes(); vB3->PrintNodes(); vTA0->PrintNodes(); vTA1->PrintNodes(); vTB0->PrintNodes(); vTB1->PrintNodes(); } // end if(GetDebug(3)) } //______________________________________________________________________ Bool_t AliITSv11GeometrySPD::CFHolePoints(Double_t s,Double_t r1, Double_t r2,Double_t l,Double_t &x,Double_t &y) const { // // Step along arck a distancs ds and compute boundry of // two holes (radius r1 and r2) a distance l apart (along // x-axis). // Inputs: // Double_t s fractional Distance along arcs [0-1] // where 0-> alpha=beta=0, 1-> alpha=90 degrees. // Double_t r1 radius at center circle // Double_t r2 radius of displaced circle // Double_t l Distance displaced circle is displaces (x-axis) // Output: // Double_t x x coordinate along double circle. // Double_t y y coordinate along double circle. // Return: // logical, kFALSE if an error // Double_t alpha,beta; Double_t ac,bc,scb,sca,t,alphac,betac; // at intersection of two circles x=y=0.0; ac = r1*r1-l*l-r2*r2; bc = 2.*l*r2; if(bc==0.0) {printf("bc=0 l=%e r2=%e\n",l,r2);return kFALSE;} betac = TMath::ACos(ac/bc); alphac = TMath::Sqrt((bc-ac)*(bc+ac))/(2.*l*r1); scb = r2*betac; sca = r1*alphac; t = r1*0.5*TMath::Pi() - sca + scb; if(s<= scb/t){ beta = s*t/r2; x = r2*TMath::Cos(beta) + l; y = r2*TMath::Sin(beta); //printf("betac=%e scb=%e t=%e s=%e beta=%e x=%e y=%e\n", // betac,scb,t,s,beta,x,y); return kTRUE; }else{ beta = (s*t-scb+sca)/(r1*0.5*TMath::Pi()); alpha = beta*0.5*TMath::Pi(); x = r1*TMath::Cos(alpha); y = r1*TMath::Sin(alpha); //printf("alphac=%e sca=%e t=%e s=%e beta=%e alpha=%e x=%e y=%e\n", // alphac,sca,t,s,beta,alpha,x,y); return kTRUE; } // end if return kFALSE; } //______________________________________________________________________ Bool_t AliITSv11GeometrySPD::GetSectorMountingPoints(Int_t index,Double_t &x0, Double_t &y0, Double_t &x1, Double_t &y1) const { // // Returns the edges of the straight borders in the SPD sector shape, // which are used to mount staves on them. // Coordinate system is that of the carbon fiber sector volume. // --- // Index numbering is as follows: // /5 // /\/4 // 1\ \/3 // 0|___\/2 // --- // Arguments [the ones passed by reference contain output values]: // Int_t index --> location index according to above scheme [0-5] // Double_t &x0 --> (by ref) x0 location or the ladder sector [cm] // Double_t &y0 --> (by ref) y0 location of the ladder sector [cm] // Double_t &x1 --> (by ref) x1 location or the ladder sector [cm] // Double_t &y1 --> (by ref) y1 location of the ladder sector [cm] // TGeoManager *mgr --> The TGeo builder // --- // The location is described by a line going from (x0, y0) to (x1, y1) // --- // Returns kTRUE if no problems encountered. // Returns kFALSE if a problem was encountered (e.g.: shape not found). // Int_t isize = fSPDsectorX0.GetSize(); x0 = x1 = y0 = y1 = 0.0; if(index < 0 || index > isize) { AliError(Form("index = %d: allowed 0 --> %d", index, isize)); return kFALSE; } // end if(index<0||index>isize) x0 = fSPDsectorX0[index]; x1 = fSPDsectorX1[index]; y0 = fSPDsectorY0[index]; y1 = fSPDsectorY1[index]; return kTRUE; } //______________________________________________________________________ void AliITSv11GeometrySPD::SPDsectorShape(Int_t n,const Double_t *xc, const Double_t *yc, const Double_t *r, const Double_t *ths, const Double_t *the, Int_t npr, Int_t &m, Double_t **xp, Double_t **yp) const { // // Code to compute the points that make up the shape of the SPD // Carbon fiber support sections // Inputs: // Int_t n size of arrays xc,yc, and r. // Double_t *xc array of x values for radii centers. // Double_t *yc array of y values for radii centers. // Double_t *r array of signed radii values. // Double_t *ths array of starting angles [degrees]. // Double_t *the array of ending angles [degrees]. // Int_t npr the number of lines segments to aproximate the arc. // Outputs (arguments passed by reference): // Int_t m the number of enetries in the arrays *xp[npr+1] // and *yp[npr+1]. // Double_t **xp array of x coordinate values of the line segments // which make up the SPD support sector shape. // Double_t **yp array of y coordinate values of the line segments // which make up the SPD support sector shape. // Int_t i, k; Double_t t, t0, t1; m = n*(npr + 1); if(GetDebug(2)) { cout <<" X \t Y \t R \t S \t E" << m << endl; for(i = 0; i < n; i++) { cout << "{" << xc[i] << ", "; cout << yc[i] << ", "; cout << r[i] << ", "; cout << ths[i] << ", "; cout << the[i] << "}, " << endl; } // end for i } // end if(GetDebug(2)) if (GetDebug(3)) cout << "Double_t sA0 = [" << n*(npr+1)+1<<"]["; if (GetDebug(4)) cout << "3] {"; else if(GetDebug(3)) cout <<"2] {"; t0 = (Double_t)npr; for(i = 0; i < n; i++) { t1 = (the[i] - ths[i]) / t0; if(GetDebug(5)) cout << "t1 = " << t1 << endl; for(k = 0; k <= npr; k++) { t = ths[i] + ((Double_t)k) * t1; xp[i][k] = TMath::Abs(r[i]) * CosD(t) + xc[i]; yp[i][k] = TMath::Abs(r[i]) * SinD(t) + yc[i]; if(GetDebug(3)) { cout << "{" << xp[i][k] << "," << yp[i][k]; if (GetDebug(4)) cout << "," << t; cout << "},"; } // end if GetDebug } // end for k if(GetDebug(3)) cout << endl; } // end of i if(GetDebug(3)) cout << "{" << xp[0][0] << ", " << yp[0][0]; if(GetDebug(4)) cout << "," << ths[0]; if(GetDebug(3)) cout << "}}" << endl; } //______________________________________________________________________ TGeoVolume* AliITSv11GeometrySPD::CreateLadder(Int_t layer,TArrayD &sizes, TGeoManager *mgr) const { // // Creates the "ladder" = silicon sensor + 5 chips. // Returns a TGeoVolume containing the following components: // - the sensor (TGeoBBox), whose name depends on the layer // - 5 identical chips (TGeoBBox) // - a guard ring around the sensor (subtraction of TGeoBBoxes), // which is separated from the rest of sensor because it is not // a sensitive part // - bump bondings (TGeoBBox stripes for the whole width of the // sensor, one per column). // --- // Arguments: // 1 - the owner layer (MUST be 1 or 2 or a fatal error is raised) // 2 - a TArrayD passed by reference, which will contain relevant // dimensions related to this object: // size[0] = 'thickness' (the smallest dimension) // size[1] = 'length' (the direction along the ALICE Z axis) // size[2] = 'width' (extension in the direction perp. to the // above ones) // 3 - the used TGeoManager // ** CRITICAL CHECK ** // layer number can be ONLY 1 or 2 if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2"); // ** MEDIA ** TGeoMedium *medAir = GetMedium("AIR$",mgr); TGeoMedium *medSPDSiChip = GetMedium("SPD SI CHIP$",mgr); // SPD SI CHIP TGeoMedium *medSi = GetMedium("SI$",mgr); TGeoMedium *medBumpBond = GetMedium("COPPER$",mgr); // ??? BumpBond // ** SIZES ** Double_t chipThickness = fgkmm * 0.150; Double_t chipWidth = fgkmm * 15.950; Double_t chipLength = fgkmm * 13.600; Double_t chipSpacing = fgkmm * 0.400; // separation of chips along Z Double_t sensThickness = fgkmm * 0.200; Double_t sensLength = fgkmm * 69.600; Double_t sensWidth = fgkmm * 12.800; Double_t guardRingWidth = fgkmm * 0.560; // a border of this thickness // all around the sensor Double_t bbLength = fgkmm * 0.042; Double_t bbWidth = sensWidth; Double_t bbThickness = fgkmm * 0.012; Double_t bbPos = 0.080; // Z position w.r. to left pixel edge // compute the size of the container volume which // will also be returned in the referenced TArrayD; // for readability, they are linked by reference to a more meaningful name sizes.Set(3); Double_t &thickness = sizes[0]; Double_t &length = sizes[1]; Double_t &width = sizes[2]; // the container is a box which exactly enclose all the stuff; width = chipWidth; length = sensLength + 2.0*guardRingWidth; thickness = sensThickness + chipThickness + bbThickness; // ** VOLUMES ** // While creating this volume, since it is a sensitive volume, // we must respect some standard criteria for its local reference frame. // Local X must correspond to x coordinate of the sensitive volume: // this means that we are going to create the container with a local // reference system that is **not** in the middle of the box. // This is accomplished by calling the shape constructor with an // additional option ('originShift'): Double_t xSens = 0.5 * (width - sensWidth - 2.0*guardRingWidth); Double_t originShift[3] = {-xSens, 0., 0.}; TGeoBBox *shapeContainer = new TGeoBBox(0.5*width,0.5*thickness, 0.5*length,originShift); // then the volume is made of air, and using this shape TGeoVolume *container = new TGeoVolume(Form("ITSSPDlay%d-Ladder",layer), shapeContainer, medAir); // the chip is a common box TGeoVolume *volChip = mgr->MakeBox("ITSSPDchip",medSPDSiChip, 0.5*chipWidth,0.5*chipThickness,0.5*chipLength); // the sensor as well TGeoVolume *volSens = mgr->MakeBox(GetSenstiveVolumeName(layer),medSi, 0.5*sensWidth,0.5*sensThickness,0.5*sensLength); // the guard ring shape is the subtraction of two boxes with the // same center. TGeoBBox *shIn = new TGeoBBox(0.5*sensWidth,sensThickness,0.5*sensLength); TGeoBBox *shOut = new TGeoBBox(0.5*sensWidth+guardRingWidth, 0.5*sensThickness,0.5*sensLength+guardRingWidth); shIn->SetName("ITSSPDinnerBox"); shOut->SetName("ITSSPDouterBox"); TGeoCompositeShape *shBorder = new TGeoCompositeShape( "ITSSPDgaurdRingBorder",Form("%s-%s",shOut->GetName(),shIn->GetName())); TGeoVolume *volBorder = new TGeoVolume("ITSSPDgaurdRing",shBorder,medSi); // bump bonds for one whole column TGeoVolume *volBB = mgr->MakeBox("ITSSPDbb",medBumpBond,0.5*bbWidth, 0.5*bbThickness,0.5*bbLength); // set colors of all objects for visualization volSens->SetLineColor(kYellow + 1); volChip->SetLineColor(kGreen); volBorder->SetLineColor(kYellow + 3); volBB->SetLineColor(kGray); // ** MOVEMENTS ** // sensor is translated along thickness (X) and width (Y) Double_t ySens = 0.5 * (thickness - sensThickness); Double_t zSens = 0.0; // we want that the x of the ladder is the same as the one of // its sensitive volume TGeoTranslation *trSens = new TGeoTranslation(0.0, ySens, zSens); // bump bonds are translated along all axes: // keep same Y used for sensors, but change the Z TGeoTranslation *trBB[160]; Double_t x = 0.0; Double_t y = 0.5 * (thickness - bbThickness) - sensThickness; Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos; Int_t i; for (i = 0; i < 160; i++) { trBB[i] = new TGeoTranslation(x, y, z); switch(i) { case 31:case 63:case 95:case 127: z += fgkmm * 0.625 + fgkmm * 0.2; break; default: z += fgkmm * 0.425; } // end switch } // end for i // the chips are translated along the length (Z) and thickness (X) TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0}; x = -xSens; y = 0.5 * (chipThickness - thickness); z = 0.0; for (i = 0; i < 5; i++) { z = -0.5*length + guardRingWidth + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength; trChip[i] = new TGeoTranslation(x, y, z); } // end ofr i // add nodes to container container->AddNode(volSens, 1, trSens); container->AddNode(volBorder, 1, trSens); for (i = 0; i < 160; i++) container->AddNode(volBB,i+1,trBB[i]); for (i = 0; i < 5; i++) container->AddNode(volChip,i+3,trChip[i]); // return the container return container; } //______________________________________________________________________ TGeoVolume* AliITSv11GeometrySPD::CreateClip(TArrayD &sizes,Bool_t isDummy, TGeoManager *mgr) const { // // Creates the carbon fiber clips which are added to the central ladders. // They have a complicated shape which is approximated by a TGeoXtru // Implementation of a single clip over an half-stave. // It has a complicated shape which is approximated to a section like this: // // 6 // /\ . // 7 //\\ 5 // / 1\\___________________4 // 0 \___________________ // 2 3 // with a finite thickness for all the shape // Its local reference frame is such that point A corresponds to origin. // // MODIFIED geometry Double_t sposty = fgkmm * -0.5; // lower internal side to avoid overlaps with modified geometry Double_t fullLength = fgkmm * 12.6; // = x4 - x0 Double_t flatLength = fgkmm * 5.4; // = x4 - x3 Double_t inclLongLength = fgkmm * 5.0; // = 5-6 Double_t inclShortLength = fgkmm * 2.0; // = 6-7 Double_t fullHeight = fgkmm * 2.8; // = y6 - y3 Double_t thickness = fgkmm * 0.18; // thickness Double_t totalLength = fgkmm * 52.0; // total length in Z Double_t holeSize = fgkmm * 5.0; // dimension of cubic // hole inserted for pt1000 Double_t angle1 = 27.0; // supplementary of angle DCB Double_t angle2; // angle DCB Double_t angle3; // angle of GH with vertical angle2 = 0.5 * (180.0 - angle1); angle3 = 90.0 - TMath::ACos(fullLength - flatLength - inclLongLength*TMath::Cos(angle1)) * TMath::RadToDeg(); angle1 *= TMath::DegToRad(); angle2 *= TMath::DegToRad(); angle3 *= TMath::DegToRad(); Double_t x[8], y[8]; x[0] = 0.0; x[1] = x[0] + fullLength - flatLength - inclLongLength*TMath::Cos(angle1); x[2] = x[0] + fullLength - flatLength; x[3] = x[0] + fullLength; x[4] = x[3]; x[5] = x[4] - flatLength + thickness * TMath::Cos(angle2); x[6] = x[1]; x[7] = x[0]; y[0] = 0.0; y[1] = y[0] + inclShortLength * TMath::Cos(angle3); y[2] = y[1] - inclLongLength * TMath::Sin(angle1); y[3] = y[2]; y[4] = y[3] + thickness; y[5] = y[4]; y[6] = y[1] + thickness; y[7] = y[0] + thickness; y[0] += sposty; y[7] += sposty; sizes.Set(7); sizes[0] = totalLength; sizes[1] = fullHeight; sizes[2] = y[2]; sizes[3] = y[6]; sizes[4] = x[0]; sizes[5] = x[3]; sizes[6] = x[2]; if(isDummy){// use this argument when on ewant just the // positions without create any volume return NULL; } // end if isDummy TGeoXtru *shClip = new TGeoXtru(2); shClip->SetName("ITSSPDshclip"); shClip->DefinePolygon(8, x, y); shClip->DefineSection(0, -0.5*totalLength, 0., 0., 1.0); shClip->DefineSection(1, 0.5*totalLength, 0., 0., 1.0); TGeoBBox *shHole = new TGeoBBox("ITSSPDSHClipHole",0.5*holeSize, 0.5*holeSize,0.5*holeSize); TGeoTranslation *tr1 = new TGeoTranslation("ITSSPDTRClipHole1",x[2],0.0, fgkmm*14.); TGeoTranslation *tr2 = new TGeoTranslation("ITSSPDTRClipHole2",x[2],0.0, 0.0); TGeoTranslation *tr3 = new TGeoTranslation("ITSSPDTRClipHole3",x[2],0.0, -fgkmm*14.); tr1->RegisterYourself(); tr2->RegisterYourself(); tr3->RegisterYourself(); //TString strExpr("ITSSPDshclip-("); TString strExpr(shClip->GetName()); strExpr.Append("-("); strExpr.Append(Form("%s:%s+", shHole->GetName(), tr1->GetName())); strExpr.Append(Form("%s:%s+", shHole->GetName(), tr2->GetName())); strExpr.Append(Form("%s:%s)", shHole->GetName(), tr3->GetName())); TGeoCompositeShape *shClipHole = new TGeoCompositeShape( "ITSSPDSHClipHoles",strExpr.Data()); TGeoMedium *mat = GetMedium("SPD C (M55J)$", mgr); TGeoVolume *vClip = new TGeoVolume("ITSSPDclip", shClipHole, mat); vClip->SetLineColor(kGray + 2); return vClip; } //______________________________________________________________________ TGeoVolume* AliITSv11GeometrySPD::CreatePatchPanel(TArrayD &sizes, TGeoManager *mgr) const { // // Creates the patch panel approximated with a "L"-shaped TGeoXtru // with a finite thickness for all the shape // Its local reference frame is such that point A corresponds to origin. // Double_t hLength = fgkmm * 50.0; // horizontal length Double_t vLength = fgkmm * 50.0; // vertical length Double_t angle = 88.3; // angle between hor and vert Double_t thickness = fgkmm * 4.0; // thickness Double_t width = fgkmm * 100.0; // width looking from cone Double_t x[7], y[7]; y[0] = 0.0; y[1] = y[0] + hLength; y[2] = y[1]; y[3] = y[0] + thickness; y[4] = y[3] + vLength * TMath::Cos(angle*TMath::DegToRad()); y[5] = y[4] - thickness / TMath::Sin(angle*TMath::DegToRad()); y[6] = y[0]; x[0] = 0.0; x[1] = x[0]; x[2] = x[1] + thickness; x[3] = x[2]; x[4] = x[3] + vLength * TMath::Sin(angle*TMath::DegToRad()); x[5] = x[4]; x[6] = x[0] + thickness; sizes.Set(3); sizes[0] = hLength; sizes[1] = vLength; sizes[2] = thickness; TGeoXtru *shPatch = new TGeoXtru(2); shPatch->SetName("ITSSPDpatchShape1"); shPatch->DefinePolygon(7, x, y); shPatch->DefineSection(0, -0.5*width, 0., 0., 1.0); shPatch->DefineSection(1, 0.5*width, 0., 0., 1.0); /* Double_t subThickness = 10.0 * fgkmm; Double_t subWidth = 55.0 * fgkmm; new TGeoBBox("ITSSPDpatchShape2", 0.5*subThickness, 60.0 * fgkmm, 0.5*subWidth); TGeoRotation *rotSub = new TGeoRotation(*gGeoIdentity); rotSub->SetName("shPatchSubRot"); rotSub->RotateZ(50.0); rotSub->RegisterYourself(); TGeoCombiTrans *trSub = new TGeoCombiTrans(0.26*hLength, 0.26*vLength, 0.0, rotSub); trSub->SetName("shPatchSubTr"); trSub->RegisterYourself(); TGeoCompositeShape *shPatchFinal = new TGeoCompositeShape("ITSSPDpatchShape1-(ITSSPDpatchShape2:shPatchSubTr)"); */ TGeoMedium *mat = GetMedium("AL$", mgr); //TGeoVolume *vPatch = new TGeoVolume("ITSSPDpatchPanel", shPatchFinal, mat); TGeoVolume *vPatch = new TGeoVolume("ITSSPDpatchPanel", shPatch, mat); vPatch->SetLineColor(kAzure); return vPatch; } //___________________________________________________________________ TGeoCompositeShape* AliITSv11GeometrySPD::CreateGroundingFoilShape (Int_t itype,Double_t &length,Double_t &width, Double_t thickness,TArrayD &sizes) { // // Creates the typical composite shape of the grounding foil: // // +---------------------------------------------------------+ // | 5 6 9 | // | +-----------+ +------------+ 10 // | O | | | // | 3 /-----+ 4 +------+ // | 1 / 7 8 // | /----------/ // +-----/ 2 + // 0 // Z + 11 // // This shape is used 4 times: two layers of glue, one in kapton // and one in aluminum, taking into account that the aliminum // layer has small differences in the size of some parts. // --- // In order to overcome problems apparently due to a large number // of points, the shape creation is done according the following // steps: // 1) a TGeoBBox is created with a size right enough to contain // the whole shape (0-1-X-13) // 2) holes are defined as other TGeoBBox which are subtracted // from the main shape // 3) a TGeoXtru is defined connecting the points (0-->11-->0) // and is also subtracted from the main shape // --- // The argument ("type") is used to choose between all these // possibilities: // - type = 0 --> kapton layer // - type = 1 --> aluminum layer // - type = 2 --> glue layer between support and GF // - type = 3 --> glue layer between GF and ladders // Returns: a TGeoCompositeShape which will then be used to shape // several volumes. Since TGeoXtru is used, the local reference // frame of this object has X horizontal and Y vertical w.r to // the shape drawn above, and Z axis going perpendicularly to the screen. // This is not the correct reference for the half stave, for which // the "long" dimension is Z and the "short" is X, while Y goes in // the direction of thickness. This will imply some rotations when // using the volumes created with this shape. // suffix to differentiate names Char_t type[10]; // size of the virtual box containing exactly this volume length = fgkmm * 243.18; width = fgkmm * 15.95; if (itype == 1) { length -= fgkmm * 0.4; width -= fgkmm * 0.4; } // end if itype==1 switch (itype) { case 0: snprintf(type,10,"Kap"); break; case 1: snprintf(type,10, "Alu"); break; case 2: snprintf(type,10,"Glue1"); break; case 3: snprintf(type,10,"Glue2"); break; } // we divide the shape in several slices along the horizontal // direction (local X) here we define define the length of all // sectors (from leftmost to rightmost) Int_t i; Double_t sliceLength[] = { 140.71, 2.48, 26.78, 4.00, 10.00, 24.40, 10.00, 24.81 }; for (i = 0; i < 8; i++) sliceLength[i] *= fgkmm; if (itype == 1) { sliceLength[0] -= fgkmm * 0.2; sliceLength[4] -= fgkmm * 0.2; sliceLength[5] += fgkmm * 0.4; sliceLength[6] -= fgkmm * 0.4; } // end if itype ==1 // as shown in the drawing, we have four different widths // (along local Y) in this shape: Double_t widthMax = fgkmm * 15.95; Double_t widthMed1 = fgkmm * 15.00; Double_t widthMed2 = fgkmm * 11.00; Double_t widthMin = fgkmm * 4.40; if (itype == 1) { widthMax -= fgkmm * 0.4; widthMed1 -= fgkmm * 0.4; widthMed2 -= fgkmm * 0.4; widthMin -= fgkmm * 0.4; } // end if itype==1 // create the main shape TGeoBBox *shGroundFull = 0; shGroundFull = new TGeoBBox(Form("ITSSPDSHgFoil%sFull", type), 0.5*length,0.5*width, 0.5*thickness); if(GetDebug(5)) shGroundFull->Print(); // Avoid Coverity warning // create the polygonal shape to be subtracted to give the correct // shape to the borders its vertices are defined in sugh a way that // this polygonal will be placed in the correct place considered // that the origin of the local reference frame is in the center // of the main box: we fix the starting point at the lower-left // edge of the shape (point 12), and add all points in order, // following a clockwise rotation Double_t x[13], y[13]; x[ 0] = -0.5 * length + sliceLength[0]; y[ 0] = -0.5 * widthMax; x[ 1] = x[0] + sliceLength[1]; y[ 1] = y[0] + (widthMax - widthMed1); x[ 2] = x[1] + sliceLength[2]; y[ 2] = y[1]; x[ 3] = x[2] + sliceLength[3]; y[ 3] = y[2] + (widthMed1 - widthMed2); x[ 4] = x[3] + sliceLength[4]; y[ 4] = y[3]; x[ 5] = x[4]; y[ 5] = y[4] + (widthMed2 - widthMin); x[ 6] = x[5] + sliceLength[5]; y[ 6] = y[5]; x[ 7] = x[6]; y[ 7] = y[4]; x[ 8] = x[7] + sliceLength[6]; y[ 8] = y[7]; x[ 9] = x[8]; y[ 9] = y[6]; x[10] = x[9] + sliceLength[7] + 0.5; y[10] = y[9]; x[11] = x[10]; y[11] = y[0] - 0.5; x[12] = x[0]; y[12] = y[11]; // create the shape TGeoXtru *shGroundXtru = new TGeoXtru(2); shGroundXtru->SetName(Form("ITSSPDSHgFoil%sXtru", type)); shGroundXtru->DefinePolygon(13, x, y); shGroundXtru->DefineSection(0, -thickness, 0., 0., 1.0); shGroundXtru->DefineSection(1, thickness, 0., 0., 1.0); // define a string which will express the algebric operations among volumes // and add the subtraction of this shape from the main one TString strComposite(Form("ITSSPDSHgFoil%sFull-(%s+", type, shGroundXtru->GetName())); // define the holes according to size information coming from drawings: Double_t holeLength = fgkmm * 10.00; Double_t holeWidth = fgkmm * 7.50; Double_t holeSepX0 = fgkmm * 7.05; // separation between center // of first hole and left border Double_t holeSepXC = fgkmm * 14.00; // separation between the centers // of two consecutive holes Double_t holeSepX1 = fgkmm * 15.42; // separation between centers of // 5th and 6th hole Double_t holeSepX2 = fgkmm * 22.00; // separation between centers of // 10th and 11th hole if (itype == 1) { holeSepX0 -= fgkmm * 0.2; holeLength += fgkmm * 0.4; holeWidth += fgkmm * 0.4; } // end if itype==1 sizes.Set(7); sizes[0] = holeLength; sizes[1] = holeWidth; sizes[2] = holeSepX0; sizes[3] = holeSepXC; sizes[4] = holeSepX1; sizes[5] = holeSepX2; sizes[6] = fgkmm * 4.40; // X position of hole center (will change for each hole) Double_t holeX = -0.5*length; // Y position of center of all holes (= 4.4 mm from upper border) Double_t holeY = 0.5*(width - holeWidth) - widthMin; // create a shape for the holes (common) new TGeoBBox(Form("ITSSPD%sGfoilHole", type),0.5*holeLength, 0.5*holeWidth, thickness); // insert the holes in the XTRU shape: // starting from the first value of X, they are simply // shifted along this axis char name[200]; TGeoTranslation *transHole[11]; for (i = 0; i < 11; i++) { // set the position of the hole, depending on index if (i == 0) { holeX += holeSepX0; }else if (i < 5) { holeX += holeSepXC; }else if (i == 5) { holeX += holeSepX1; }else if (i < 10) { holeX += holeSepXC; }else { holeX += holeSepX2; } // end if else if's //cout << i << " --> X = " << holeX << endl; snprintf(name,200,"ITSSPDTRgFoil%sHole%d", type, i); transHole[i] = new TGeoTranslation(name, holeX, holeY, 0.0); transHole[i]->RegisterYourself(); strComposite.Append(Form("ITSSPD%sGfoilHole:%s", type, name)); if (i < 10) strComposite.Append("+"); else strComposite.Append(")"); } // end for i // create composite shape TGeoCompositeShape *shGround = new TGeoCompositeShape( Form("ITSSPDSHgFoil%s", type), strComposite.Data()); return shGround; } //______________________________________________________________________ TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateGroundingFoil(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) { // // Create a volume containing all parts of the grounding foil a // for a half-stave. // It consists of 4 layers with the same shape but different thickness: // 1) a layer of glue // 2) the aluminum layer // 3) the kapton layer // 4) another layer of glue // --- // Arguments: // 1: a boolean value to know if it is the grounding foir for // the right or left side // 2: a TArrayD which will contain the dimension of the container box: // - size[0] = length along Z (the beam line direction) // - size[1] = the 'width' of the stave, which defines, together // with Z, the plane of the carbon fiber support // - size[2] = 'thickness' (= the direction along which all // stave components are superimposed) // 3: the TGeoManager // --- // The return value is a TGeoBBox volume containing all grounding // foil components. // to avoid strange behaviour of the geometry manager, // create a suffix to be used in the names of all shapes // char suf[5]; if (isRight) strncpy(suf, "R", 5); else strncpy(suf, "L", 5); // this volume will be created in order to ease its placement in // the half-stave; then, it is added here the small distance of // the "central" edge of each volume from the Z=0 plane in the stave // reference (which coincides with ALICE one) Double_t dist = fgkmm * 0.71; // define materials TGeoMedium *medKap = GetMedium("SPD KAPTON(POLYCH2)$", mgr); TGeoMedium *medAlu = GetMedium("AL$", mgr); TGeoMedium *medGlue = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT // compute the volume shapes (thicknesses change from one to the other) Double_t kpLength, kpWidth, alLength, alWidth; TArrayD kpSize, alSize, glSize; Double_t kpThickness = fgkmm * 0.04; Double_t alThickness = fgkmm * 0.01; //cout << "AL THICKNESS" << alThickness << endl; //Double_t g0Thickness = fgkmm * 0.1175 - fgkGapHalfStave; //Double_t g1Thickness = fgkmm * 0.1175 - fgkGapLadder; Double_t g0Thickness = fgkmm * 0.1275 - fgkGapHalfStave; Double_t g1Thickness = fgkmm * 0.1275 - fgkGapLadder; TGeoCompositeShape *kpShape = CreateGroundingFoilShape(0,kpLength,kpWidth, kpThickness, kpSize); TGeoCompositeShape *alShape = CreateGroundingFoilShape(1,alLength,alWidth, alThickness, alSize); TGeoCompositeShape *g0Shape = CreateGroundingFoilShape(2,kpLength,kpWidth, g0Thickness, glSize); TGeoCompositeShape *g1Shape = CreateGroundingFoilShape(3,kpLength,kpWidth, g1Thickness, glSize); // create the component volumes and register their sizes in the // passed arrays for readability reasons, some reference variables // explicit the meaning of the array slots TGeoVolume *kpVol = new TGeoVolume(Form("ITSSPDgFoilKap%s",suf), kpShape, medKap); TGeoVolume *alVol = new TGeoVolume(Form("ITSSPDgFoilAlu%s",suf), alShape, medAlu); TGeoVolume *g0Vol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf), g0Shape, medGlue); TGeoVolume *g1Vol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf), g1Shape, medGlue); // set colors for the volumes kpVol->SetLineColor(kRed); alVol->SetLineColor(kGray); g0Vol->SetLineColor(kYellow); g1Vol->SetLineColor(kYellow); // create references for the final size object if (sizes.GetSize() != 3) sizes.Set(3); Double_t &fullThickness = sizes[0]; Double_t &fullLength = sizes[1]; Double_t &fullWidth = sizes[2]; // kapton leads the larger dimensions of the foil // (including the cited small distance from Z=0 stave reference plane) // the thickness is the sum of the ones of all components fullLength = kpLength + dist; fullWidth = kpWidth; fullThickness = kpThickness + alThickness + g0Thickness + g1Thickness; // create the container // TGeoMedium *air = GetMedium("AIR$", mgr); TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form("ITSSPDgFOIL-%s",suf)); // TGeoVolume *container = mgr->MakeBox(Form("ITSSPDgFOIL-%s",suf), // air, 0.5*fullThickness, 0.5*fullWidth, 0.5*fullLength); // create the common correction rotation (which depends of what side // we are building) TGeoRotation *rotCorr = new TGeoRotation(*gGeoIdentity); if (isRight) rotCorr->RotateY(90.0); else rotCorr->RotateY(-90.0); // compute the translations, which are in the length and // thickness directions Double_t x, y, z, shift = 0.0; if (isRight) shift = dist; // glue (bottom) x = -0.5*(fullThickness - g0Thickness); z = 0.5*(fullLength - kpLength) - shift; TGeoCombiTrans *glTrans0 = new TGeoCombiTrans(x, 0.0, z, rotCorr); // kapton x += 0.5*(g0Thickness + kpThickness); TGeoCombiTrans *kpTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr); // aluminum x += 0.5*(kpThickness + alThickness); z = 0.5*(fullLength - alLength) - shift - 0.5*(kpLength - alLength); TGeoCombiTrans *alTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr); // glue (top) x += 0.5*(alThickness + g1Thickness); z = 0.5*(fullLength - kpLength) - shift; TGeoCombiTrans *glTrans1 = new TGeoCombiTrans(x, 0.0, z, rotCorr); //cout << fgkGapHalfStave << endl; //cout << g0Thickness << endl; //cout << kpThickness << endl; //cout << alThickness << endl; //cout << g1Thickness << endl; // add to container container->SetLineColor(kMagenta-10); container->AddNode(kpVol, 1, kpTrans); container->AddNode(alVol, 1, alTrans); container->AddNode(g0Vol, 1, glTrans0); container->AddNode(g1Vol, 2, glTrans1); // to add the grease we remember the sizes of the holes, stored as // additional parameters in the kapton layer size: // - sizes[3] = hole length // - sizes[4] = hole width // - sizes[5] = position of first hole center // - sizes[6] = standard separation between holes // - sizes[7] = separation between 5th and 6th hole // - sizes[8] = separation between 10th and 11th hole // - sizes[9] = separation between the upper hole border and // the foil border Double_t holeLength = kpSize[0]; Double_t holeWidth = kpSize[1]; Double_t holeFirstZ = kpSize[2]; Double_t holeSepZ = kpSize[3]; Double_t holeSep5th6th = kpSize[4]; Double_t holeSep10th11th = kpSize[5]; Double_t holeSepY = kpSize[6]; // volume (common) // Grease has not been defined to date. Need much more information // no this material! TGeoMedium *grease = GetMedium("SPD KAPTON(POLYCH2)$", mgr); // ??? GREASE TGeoVolume *hVol = mgr->MakeBox("ITSSPDGrease", grease, 0.5*fullThickness, 0.5*holeWidth, 0.5*holeLength); hVol->SetLineColor(kBlue); // displacement of volumes in the container Int_t idx = 1; // copy numbers start from 1. x = 0.0; y = 0.5*(fullWidth - holeWidth) - holeSepY; if (isRight) z = holeFirstZ - 0.5*fullLength + dist; else z = 0.5*fullLength - holeFirstZ - dist; for (Int_t i = 0; i < 11; i++) { TGeoTranslation *t = 0; t = new TGeoTranslation(x, y, -z); container->AddNode(hVol, idx++, t); if (i < 4) shift = holeSepZ; else if (i == 4) shift = holeSep5th6th; else if (i < 9) shift = holeSepZ; else shift = holeSep10th11th; if (isRight) z += shift; else z -= shift; } // end for i return container; } //___________________________________________________________________ TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateMCM(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const { // // Create a TGeoAssembly containing all the components of the MCM. // The TGeoVolume container is rejected due to the possibility of overlaps // when placing this object on the carbon fiber sector. // The assembly contains: // - the thin part of the MCM (integrated circuit) // - the MCM chips (specifications from EDMS) // - the cap which covers the zone where chips are bound to MCM // --- // The local reference frame of this assembly is defined in such a way // that all volumes are contained in a virtual box whose center // is placed exactly in the middle of the occupied space w.r to all // directions. This will ease the positioning of this object in the // half-stave. The sizes of this virtual box are stored in // the array passed by reference. // --- // Arguments: // - a boolean flag to know if this is the "left" or "right" MCM, when // looking at the stave from above (i.e. the direction from which // one sees bus over ladders over grounding foil) and keeping the // continuous border in the upper part, one sees the thicker part // on the left or right. // - an array passed by reference which will contain the size of // the virtual container. // - a pointer to the used TGeoManager. // // to distinguish the "left" and "right" objects, a suffix is created char suf[5]; if (isRight) strncpy(suf, "R", 5); else strncpy(suf, "L", 5); // ** MEDIA ** TGeoMedium *medBase = GetMedium("SPD KAPTON(POLYCH2)$",mgr);// ??? MCM BASE TGeoMedium *medChip = GetMedium("SPD SI CHIP$",mgr); TGeoMedium *medCap = GetMedium("AL$",mgr); // The shape of the MCM is divided into 3 sectors with different // widths (Y) and lengths (X), like in this sketch: // // 0 1 2 // +---------------------+-----------------------------------+ // | 4 sect 2 | // | 6 sect 1 /-------------------+ // | sect 0 /--------------/ 3 // +--------------------/ 5 // 8 7 // // the inclination of all oblique borders (6-7, 4-5) is always 45 degrees. // From drawings we can parametrize the dimensions of all these sectors, // then the shape of this part of the MCM is implemented as a // TGeoXtru centerd in the virtual XY space. // The first step is definig the relevant sizes of this shape: Int_t i, j; Double_t mcmThickness = fgkmm * 0.35; Double_t sizeXtot = fgkmm * 105.6; // total distance (0-2) // resp. 7-8, 5-6 and 3-4 Double_t sizeXsector[3] = {fgkmm * 28.4, fgkmm * 41.4, fgkmm * 28.8}; // resp. 0-8, 1-6 and 2-3 Double_t sizeYsector[3] = {fgkmm * 15.0, fgkmm * 11.0, fgkmm * 8.0}; Double_t sizeSep01 = fgkmm * 4.0; // x(6)-x(7) Double_t sizeSep12 = fgkmm * 3.0; // x(4)-x(5) // define sizes of chips (last is the thickest) Double_t chipLength[5] = { 4.00, 6.15, 3.85, 5.60, 18.00 }; Double_t chipWidth[5] = { 3.00, 4.10, 3.85, 5.60, 5.45 }; Double_t chipThickness[5] = { 0.60, 0.30, 0.30, 1.00, 1.20 }; TString name[5]; name[0] = "ITSSPDanalog"; name[1] = "ITSSPDpilot"; name[2] = "ITSSPDgol"; name[3] = "ITSSPDrx40"; name[4] = "ITSSPDoptical"; Color_t color[5] = { kCyan, kGreen, kYellow, kBlue, kOrange }; // define the sizes of the cover Double_t capThickness = fgkmm * 0.3; Double_t capHeight = fgkmm * 1.7; // compute the total size of the virtual container box sizes.Set(3); Double_t &thickness = sizes[0]; Double_t &length = sizes[1]; Double_t &width = sizes[2]; length = sizeXtot; width = sizeYsector[0]; thickness = mcmThickness + capHeight; // define all the relevant vertices of the polygon // which defines the transverse shape of the MCM. // These values are used to several purposes, and // for each one, some points must be excluded Double_t xRef[9], yRef[9]; xRef[0] = -0.5*sizeXtot; yRef[0] = 0.5*sizeYsector[0]; xRef[1] = xRef[0] + sizeXsector[0] + sizeSep01; yRef[1] = yRef[0]; xRef[2] = -xRef[0]; yRef[2] = yRef[0]; xRef[3] = xRef[2]; yRef[3] = yRef[2] - sizeYsector[2]; xRef[4] = xRef[3] - sizeXsector[2]; yRef[4] = yRef[3]; xRef[5] = xRef[4] - sizeSep12; yRef[5] = yRef[4] - sizeSep12; xRef[6] = xRef[5] - sizeXsector[1]; yRef[6] = yRef[5]; xRef[7] = xRef[6] - sizeSep01; yRef[7] = yRef[6] - sizeSep01; xRef[8] = xRef[0]; yRef[8] = -yRef[0]; // the above points are defined for the "right" MCM (if ve view the // stave from above) in order to change to the "left" one, we must // change the sign to all X values: if (isRight) for (i = 0; i < 9; i++) xRef[i] = -xRef[i]; // the shape of the MCM and glue layer are done excluding point 1, // which is not necessary and cause the geometry builder to get confused j = 0; Double_t xBase[8], yBase[8]; for (i = 0; i < 9; i++) { if (i == 1) continue; xBase[j] = xRef[i]; yBase[j] = yRef[i]; j++; } // end for i // the MCM cover is superimposed over the zones 1 and 2 only Double_t xCap[6], yCap[6]; j = 0; for (i = 1; i <= 6; i++) { xCap[j] = xRef[i]; yCap[j] = yRef[i]; j++; } // end for i // define positions of chips, // which must be added to the bottom-left corner of MCM // and divided by 1E4; Double_t chipX[5], chipY[5]; if (isRight) { chipX[0] = 666320.; chipX[1] = 508320.; chipX[2] = 381320.; chipX[3] = 295320.; chipX[4] = 150320.; chipY[0] = 23750.; chipY[1] = 27750.; chipY[2] = 20750.; chipY[3] = 42750.; chipY[4] = 39750.; } else { chipX[0] = 389730.; chipX[1] = 548630.; chipX[2] = 674930.; chipX[3] = 761430.; chipX[4] = 905430.; chipY[0] = 96250.; chipY[1] = 91950.; chipY[2] = 99250.; chipY[3] = 107250.; chipY[4] = 109750.; } // end if isRight for (i = 0; i < 5; i++) { chipX[i] *= 0.00001; chipY[i] *= 0.00001; if (isRight) { chipX[i] += xRef[3]; chipY[i] += yRef[3]; } else { chipX[i] += xRef[8]; chipY[i] += yRef[8]; } // end for isRight chipLength[i] *= fgkmm; chipWidth[i] *= fgkmm; chipThickness[i] *= fgkmm; } // end for i // create shapes for MCM Double_t z1, z2; TGeoXtru *shBase = new TGeoXtru(2); z1 = -0.5*thickness; z2 = z1 + mcmThickness; shBase->DefinePolygon(8, xBase, yBase); shBase->DefineSection(0, z1, 0., 0., 1.0); shBase->DefineSection(1, z2, 0., 0., 1.0); // create volumes of MCM TGeoVolume *volBase = new TGeoVolume("ITSSPDbase", shBase, medBase); volBase->SetLineColor(kRed); // to create the border of the MCM cover, it is required the // subtraction of two shapes the outer is created using the // reference points defined here TGeoXtru *shCapOut = new TGeoXtru(2); shCapOut->SetName(Form("ITSSPDshCAPOUT%s", suf)); z1 = z2; z2 = z1 + capHeight - capThickness; shCapOut->DefinePolygon(6, xCap, yCap); shCapOut->DefineSection(0, z1, 0., 0., 1.0); shCapOut->DefineSection(1, z2, 0., 0., 1.0); // the inner is built similarly but subtracting the thickness Double_t angle, cs; Double_t xin[6], yin[6]; if (!isRight) { angle = 45.0; cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) ); xin[0] = xCap[0] + capThickness; yin[0] = yCap[0] - capThickness; xin[1] = xCap[1] - capThickness; yin[1] = yin[0]; xin[2] = xin[1]; yin[2] = yCap[2] + capThickness; xin[3] = xCap[3] - capThickness*cs; yin[3] = yin[2]; xin[4] = xin[3] - sizeSep12; yin[4] = yCap[4] + capThickness; xin[5] = xin[0]; yin[5] = yin[4]; } else { angle = 45.0; cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) ); xin[0] = xCap[0] - capThickness; yin[0] = yCap[0] - capThickness; xin[1] = xCap[1] + capThickness; yin[1] = yin[0]; xin[2] = xin[1]; yin[2] = yCap[2] + capThickness; xin[3] = xCap[3] - capThickness*cs; yin[3] = yin[2]; xin[4] = xin[3] + sizeSep12; yin[4] = yCap[4] + capThickness; xin[5] = xin[0]; yin[5] = yin[4]; } // end if !isRight TGeoXtru *shCapIn = new TGeoXtru(2); shCapIn->SetName(Form("ITSSPDshCAPIN%s", suf)); shCapIn->DefinePolygon(6, xin, yin); shCapIn->DefineSection(0, z1 - 0.01, 0., 0., 1.0); shCapIn->DefineSection(1, z2 + 0.01, 0., 0., 1.0); // compose shapes TGeoCompositeShape *shCapBorder = new TGeoCompositeShape( Form("ITSSPDshBORDER%s", suf), Form("%s-%s", shCapOut->GetName(), shCapIn->GetName())); // create volume TGeoVolume *volCapBorder = new TGeoVolume("ITSSPDcapBoarder", shCapBorder,medCap); volCapBorder->SetLineColor(kGreen); // finally, we create the top of the cover, which has the same // shape of outer border and a thickness equal of the one othe // cover border one TGeoXtru *shCapTop = new TGeoXtru(2); z1 = z2; z2 = z1 + capThickness; shCapTop->DefinePolygon(6, xCap, yCap); shCapTop->DefineSection(0, z1, 0., 0., 1.0); shCapTop->DefineSection(1, z2, 0., 0., 1.0); TGeoVolume *volCapTop = new TGeoVolume("ITSSPDcapTop", shCapTop, medCap); volCapTop->SetLineColor(kBlue); // create container assembly with right suffix TGeoVolumeAssembly *mcmAssembly = new TGeoVolumeAssembly( Form("ITSSPDmcm%s", suf)); // add mcm layer mcmAssembly->AddNode(volBase, 1, gGeoIdentity); // add chips for (i = 0; i < 5; i++) { TGeoVolume *box = gGeoManager->MakeBox(name[i],medChip, 0.5*chipLength[i], 0.5*chipWidth[i], 0.5*chipThickness[i]); TGeoTranslation *tr = new TGeoTranslation(chipX[i],chipY[i], 0.5*(-thickness + chipThickness[i]) + mcmThickness); box->SetLineColor(color[i]); mcmAssembly->AddNode(box, 1, tr); } // end for i // add cap border mcmAssembly->AddNode(volCapBorder, 1, gGeoIdentity); // add cap top mcmAssembly->AddNode(volCapTop, 1, gGeoIdentity); return mcmAssembly; } //______________________________________________________________________ TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus (Bool_t isRight, Int_t ilayer, TArrayD &sizes, TGeoManager *mgr) const { // // The pixel bus is implemented as a TGeoBBox with some objects on it, // which could affect the particle energy loss. // --- // In order to avoid confusion, the bus is directly displaced // according to the axis orientations which are used in the final stave: // X --> thickness direction // Y --> width direction // Z --> length direction // // ** CRITICAL CHECK ****************************************************** // layer number can be ONLY 1 or 2 if (ilayer != 1 && ilayer != 2) AliFatal("Layer number MUST be 1 or 2"); // ** MEDIA ** //PIXEL BUS TGeoMedium *medBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr); TGeoMedium *medPt1000 = GetMedium("CERAMICS$",mgr); // ??? PT1000 // Capacity TGeoMedium *medCap = GetMedium("SDD X7R capacitors$",mgr); // ??? Resistance //TGeoMedium *medRes = GetMedium("SDD X7R capacitors$",mgr); TGeoMedium *medRes = GetMedium("ALUMINUM$",mgr); //TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr); TGeoMedium *medExt = GetMedium("SPD-MIX CU KAPTON$", mgr); // ** SIZES & POSITIONS ** Double_t busLength = 170.501 * fgkmm; // length of plane part Double_t busWidth = 13.800 * fgkmm; // width Double_t busThickness = 0.280 * fgkmm; // thickness Double_t pt1000Length = fgkmm * 1.50; Double_t pt1000Width = fgkmm * 3.10; Double_t pt1000Thickness = fgkmm * 0.60; Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus Double_t capLength = fgkmm * 2.55; Double_t capWidth = fgkmm * 1.50; Double_t capThickness = fgkmm * 1.35; Double_t capY[2], capZ[2]; Double_t resLength = fgkmm * 2.20; Double_t resWidth = fgkmm * 0.80; Double_t resThickness = fgkmm * 0.35; Double_t resY[2], resZ[2]; Double_t extThickness = fgkmm * 0.25; Double_t ext1Length = fgkmm * (26.7 - 10.0); Double_t ext2Length = fgkmm * 284.0 - ext1Length + extThickness; Double_t extWidth = fgkmm * 11.0; Double_t extHeight = fgkmm * 2.5; // position of pt1000, resistors and capacitors depends on the // bus if it's left or right one if (!isRight) { pt1000Y = 64400.; pt1000Z[0] = 66160.; pt1000Z[1] = 206200.; pt1000Z[2] = 346200.; pt1000Z[3] = 486200.; pt1000Z[4] = 626200.; pt1000Z[5] = 776200.; pt1000Z[6] = 916200.; pt1000Z[7] = 1056200.; pt1000Z[8] = 1196200.; pt1000Z[9] = 1336200.; resZ[0] = 1397500.; resY[0] = 26900.; resZ[1] = 682500.; resY[1] = 27800.; capZ[0] = 1395700.; capY[0] = 45700.; capZ[1] = 692600.; capY[1] = 45400.; } else { pt1000Y = 66100.; pt1000Z[0] = 319700.; pt1000Z[1] = 459700.; pt1000Z[2] = 599700.; pt1000Z[3] = 739700.; pt1000Z[4] = 879700.; pt1000Z[5] = 1029700.; pt1000Z[6] = 1169700.; pt1000Z[7] = 1309700.; pt1000Z[8] = 1449700.; pt1000Z[9] = 1589700.; capY[0] = 44500.; capZ[0] = 266700.; capY[1] = 44300.; capZ[1] = 974700.; resZ[0] = 266500.; resY[0] = 29200.; resZ[1] = 974600.; resY[1] = 29900.; } // end if isRight Int_t i; pt1000Y *= 1E-4 * fgkmm; for (i = 0; i < 10; i++) { pt1000Z[i] *= 1E-4 * fgkmm; if (i < 2) { capZ[i] *= 1E-4 * fgkmm; capY[i] *= 1E-4 * fgkmm; resZ[i] *= 1E-4 * fgkmm; resY[i] *= 1E-4 * fgkmm; } // end if iM2 } // end for i Double_t &fullLength = sizes[1]; Double_t &fullWidth = sizes[2]; Double_t &fullThickness = sizes[0]; fullLength = busLength; fullWidth = busWidth; // add the thickness of the thickest component on bus (capacity) fullThickness = busThickness + capThickness; // ** VOLUMES ** TGeoVolumeAssembly *container = new TGeoVolumeAssembly("ITSSPDpixelBus"); TGeoVolume *bus = mgr->MakeBox("ITSSPDbus", medBus, 0.5*busThickness, 0.5*busWidth, 0.5*busLength); TGeoVolume *pt1000 = mgr->MakeBox("ITSSPDpt1000",medPt1000, 0.5*pt1000Thickness,0.5*pt1000Width, 0.5*pt1000Length); TGeoVolume *res = mgr->MakeBox("ITSSPDresistor", medRes, 0.5*resThickness, 0.5*resWidth, 0.5*resLength); TGeoVolume *cap = mgr->MakeBox("ITSSPDcapacitor", medCap, 0.5*capThickness, 0.5*capWidth, 0.5*capLength); char extname[12]; snprintf(extname,12,"Extender1l%d",ilayer); TGeoVolume *ext1 = mgr->MakeBox(extname, medExt, 0.5*extThickness, 0.5*extWidth, 0.5*ext1Length); snprintf(extname,12,"Extender2l%d",ilayer); TGeoVolume *ext2 = mgr->MakeBox(extname, medExt, 0.5*extHeight - 2.*extThickness, 0.5*extWidth, 0.5*extThickness); TGeoVolume *ext3=0; snprintf(extname,12,"Extender3l%d",ilayer); if (ilayer==1) { Double_t halflen=(0.5*ext2Length + extThickness); Double_t xprof[6],yprof[6]; Double_t alpha=24; xprof[0] = -halflen; yprof[0] = -0.5*extThickness; xprof[1] = halflen/2; yprof[1] = yprof[0]; xprof[2] = xprof[1] + 0.5*halflen*CosD(alpha); yprof[2] = yprof[1] + 0.5*halflen*SinD(alpha); xprof[3] = xprof[2] - extThickness*SinD(alpha); yprof[3] = yprof[2] + extThickness*CosD(alpha); InsidePoint(xprof[0], yprof[0], xprof[1], yprof[1], xprof[2], yprof[2], extThickness, xprof[4], yprof[4]); xprof[5] = xprof[0]; yprof[5] = 0.5*extThickness; TGeoXtru *ext3sh = new TGeoXtru(2); ext3sh->DefinePolygon(6, xprof, yprof); ext3sh->DefineSection(0, -0.5*(extWidth-0.8*fgkmm)); ext3sh->DefineSection(1, 0.5*(extWidth-0.8*fgkmm)); ext3 = new TGeoVolume(extname, ext3sh, medExt); } else ext3 = mgr->MakeBox(extname, medExt, 0.5*extThickness, 0.5*(extWidth-0.8*fgkmm), 0.5*ext2Length + extThickness); // Hardcode fix of a small overlap bus->SetLineColor(kYellow + 2); pt1000->SetLineColor(kGreen + 3); res->SetLineColor(kRed + 1); cap->SetLineColor(kBlue - 7); ext1->SetLineColor(kGray); ext2->SetLineColor(kGray); ext3->SetLineColor(kGray); // ** MOVEMENTS AND POSITIONEMENT ** // bus TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness - fullThickness), 0.0, 0.0); container->AddNode(bus, 1, trBus); Double_t zRef, yRef, x, y, z; if (isRight) { zRef = -0.5*fullLength; yRef = -0.5*fullWidth; } else { zRef = -0.5*fullLength; yRef = -0.5*fullWidth; } // end if isRight // pt1000 x = 0.5*(pt1000Thickness - fullThickness) + busThickness; for (i = 0; i < 10; i++) { y = yRef + pt1000Y; z = zRef + pt1000Z[i]; TGeoTranslation *tr = new TGeoTranslation(x, y, z); container->AddNode(pt1000, i+1, tr); } // end for i // capacitors x = 0.5*(capThickness - fullThickness) + busThickness; for (i = 0; i < 2; i++) { y = yRef + capY[i]; z = zRef + capZ[i]; TGeoTranslation *tr = new TGeoTranslation(x, y, z); container->AddNode(cap, i+1, tr); } // end for i // resistors x = 0.5*(resThickness - fullThickness) + busThickness; for (i = 0; i < 2; i++) { y = yRef + resY[i]; z = zRef + resZ[i]; TGeoTranslation *tr = new TGeoTranslation(x, y, z); container->AddNode(res, i+1, tr); } // end for i // extender if (ilayer == 2) { if (isRight) { y = 0.5 * (fullWidth - extWidth) - 0.1; z = 0.5 * (-fullLength + fgkmm * 10.0); } else { y = 0.5 * (fullWidth - extWidth) - 0.1; z = 0.5 * ( fullLength - fgkmm * 10.0); } } else { if (isRight) { y = -0.5 * (fullWidth - extWidth); z = 0.5 * (-fullLength + fgkmm * 10.0); } else { y = -0.5 * (fullWidth - extWidth); z = 0.5 * ( fullLength - fgkmm * 10.0); } } x = 0.5 * (extThickness - fullThickness) + busThickness; //y = 0.5 * (fullWidth - extWidth); TGeoTranslation *trExt1 = new TGeoTranslation(x, y, z); if (isRight) { z -= 0.5 * (ext1Length - extThickness); } else { z += 0.5 * (ext1Length - extThickness); } x += 0.5*(extHeight - 3.*extThickness); TGeoTranslation *trExt2 = new TGeoTranslation(x, y, z); if (isRight) { z -= 0.5 * (ext2Length - extThickness) + 2.5*extThickness; } else { z += 0.5 * (ext2Length - extThickness) + 2.5*extThickness; } x += 0.5*(extHeight - extThickness) - 2.*extThickness; TGeoCombiTrans *trExt3=0; if (ilayer==1) { if (isRight) trExt3 = new TGeoCombiTrans(x, y, z, new TGeoRotation("",0.,-90.,90.)); else trExt3 = new TGeoCombiTrans(x, y, z, new TGeoRotation("",0., 90.,90.)); } else trExt3 = new TGeoCombiTrans(x, y, z, 0); container->AddNode(ext1, 0, trExt1); container->AddNode(ext2, 0, trExt2); container->AddNode(ext3, 0, trExt3); sizes[3] = yRef + pt1000Y; sizes[4] = zRef + pt1000Z[2]; sizes[5] = zRef + pt1000Z[7]; return container; } //______________________________________________________________________ TList* AliITSv11GeometrySPD::CreateConeModule(Bool_t sideC, const Double_t angrot, TGeoManager *mgr) const { // // Creates all services modules and places them in a TList // angrot is the rotation angle (passed as an argument to avoid // defining the same quantity in two different places) // // Created: ?? ??? 2008 A. Pulvirenti // Updated: 03 May 2010 M. Sitta // Updated: 20 Jun 2010 A. Pulvirenti Optical patch panels // Updated: 22 Jun 2010 M. Sitta Fiber cables // Updated: 04 Jul 2010 M. Sitta Water cooling // Updated: 08 Jul 2010 A. Pulvirenti Air cooling on Side C // TGeoMedium *medInox = GetMedium("INOX$",mgr); //TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr); TGeoMedium *medExtB = GetMedium("SPD-BUS CU KAPTON$", mgr); TGeoMedium *medExtM = GetMedium("SPD-MCM CU KAPTON$", mgr); TGeoMedium *medPlate = GetMedium("SPD C (M55J)$", mgr); TGeoMedium *medFreon = GetMedium("Freon$", mgr); TGeoMedium *medGas = GetMedium("GASEOUS FREON$", mgr); TGeoMedium *medFibs = GetMedium("SDD OPTICFIB$",mgr); TGeoMedium *medCopper= GetMedium("COPPER$",mgr); TGeoMedium *medPVC = GetMedium("PVC$",mgr); Double_t extThickness = fgkmm * 0.25; Double_t ext1Length = fgkmm * (26.7 - 10.0); // Double_t ext2Length = fgkmm * (285.0 - ext1Length + extThickness); Double_t ext2Length = fgkmm * 285.0 - ext1Length + extThickness; const Double_t kCableThickness = 1.5 *fgkmm; Double_t cableL0 = 10.0 * fgkmm; Double_t cableL1 = 340.0 * fgkmm - extThickness - ext1Length - ext2Length; Double_t cableL2 = 300.0 * fgkmm; //Double_t cableL3 = 570.0 * fgkmm; Double_t cableL3 = 57.0 * fgkmm; Double_t cableW1 = 11.0 * fgkmm; Double_t cableW2 = 30.0 * fgkmm; Double_t cableW3 = 50.0 * fgkmm; const Double_t kMCMLength = cableL0 + cableL1 + cableL2 + cableL3; const Double_t kMCMWidth = cableW1; const Double_t kMCMThickness = 1.2 *fgkmm; const Double_t kPlateLength = 200.0 *fgkmm; const Double_t kPlateWidth = 50.0 *fgkmm; const Double_t kPlateThickness = 5.0 *fgkmm; const Double_t kConeTubeRmin = 2.0 *fgkmm; const Double_t kConeTubeRmax = 3.0 *fgkmm; const Double_t kHorizTubeLen = 150.0 *fgkmm; const Double_t kYtoHalfStave = 9.5 *fgkmm; const Double_t kWaterCoolRMax = 2.6 *fgkmm; const Double_t kWaterCoolThick = 0.04 *fgkmm; const Double_t kWaterCoolLen = 250.0 *fgkmm; const Double_t kWCPlateThick = 0.5 *fgkmm; const Double_t kWCPlateWide = 33.0 *fgkmm; const Double_t kWCPlateLen = 230.0 *fgkmm; const Double_t kWCFittingRext1 = 2.4 *fgkmm; const Double_t kWCFittingRext2 = 3.7 *fgkmm; const Double_t kWCFittingRint1 = 1.9 *fgkmm; const Double_t kWCFittingRint2 = kWaterCoolRMax; const Double_t kWCFittingLen1 = 7.0 *fgkmm; const Double_t kWCFittingLen2 = 8.0 *fgkmm; const Double_t kCollWidth = 40.0 *fgkmm; const Double_t kCollLength = 60.0 *fgkmm; const Double_t kCollThickness = 10.0 *fgkmm; const Double_t kCollTubeThick = 1.0 *fgkmm; const Double_t kCollTubeRadius = 7.0 *fgkmm; const Double_t kCollTubeLength = 190.0 *fgkmm; const Double_t kOptFibDiamet = 4.5 *fgkmm; Double_t x[12], y[12]; Double_t xloc, yloc, zloc; Int_t kPurple = 6; // Purple (Root does not define it) TGeoVolumeAssembly* container[5]; container[0] = new TGeoVolumeAssembly("ITSSPDConeModule"); container[1] = new TGeoVolumeAssembly("ITSSPDCoolingModuleSideA"); container[2] = new TGeoVolumeAssembly("ITSSPDCoolingModuleSideC"); container[3] = new TGeoVolumeAssembly("ITSSPDPatchPanelModule"); container[4] = new TGeoVolumeAssembly("ITSSPDWaterCooling"); // The extender on the cone as a Xtru x[0] = -cableL0; y[0] = 0.0 + 0.5 * cableW1; x[1] = x[0] + cableL0 + cableL1 - 0.5*(cableW2 - cableW1); y[1] = y[0]; x[2] = x[0] + cableL0 + cableL1; y[2] = y[1] + 0.5*(cableW2 - cableW1); x[3] = x[2] + cableL2; y[3] = y[2]; x[4] = x[3] + 0.5*(cableW3 - cableW2); y[4] = y[3] + 0.5*(cableW3 - cableW2); x[5] = x[4] + cableL3 - 0.5*(cableW3 - cableW2); y[5] = y[4]; for (Int_t i = 6; i < 12; i++) { x[i] = x[11 - i]; y[i] = -y[11 - i]; } TGeoXtru *shCable = new TGeoXtru(2); shCable->DefinePolygon(12, x, y); shCable->DefineSection(0, 0.0); shCable->DefineSection(1, kCableThickness); TGeoVolume *volCable = new TGeoVolume("ITSSPDExtender", shCable, medExtB); volCable->SetLineColor(kGreen); // The MCM extender on the cone as a Xtru TGeoBBox *shMCMExt = new TGeoBBox(0.5*kMCMLength, 0.5*kMCMWidth, 0.5*kMCMThickness); TGeoVolume *volMCMExt = new TGeoVolume("ITSSPDExtenderMCM", shMCMExt, medExtM); volMCMExt->SetLineColor(kGreen+3); // The support plate on the cone as a composite shape Double_t thickness = kCableThickness + kMCMThickness; TGeoBBox *shOut = new TGeoBBox("ITSSPD_shape_plateout", 0.5*kPlateLength, 0.5*kPlateWidth, 0.5*kPlateThickness); TGeoBBox *shIn = new TGeoBBox("ITSSPD_shape_platein" , 0.5*kPlateLength, 0.5*cableW2, 0.5*thickness); Char_t string[255]; snprintf(string, 255, "%s-%s", shOut->GetName(), shIn->GetName()); TGeoCompositeShape *shPlate = new TGeoCompositeShape("ITSSPDPlate_shape", string); TGeoVolume *volPlate = new TGeoVolume("ITSSPDPlate", shPlate, medPlate); volPlate->SetLineColor(kRed); // The air cooling tubes TGeoBBox *shCollBox = new TGeoBBox("ITSSPD_shape_collector_box", 0.5*kCollLength, 0.5*kCollWidth, 0.5*kCollThickness); TGeoTube *shCollTube = new TGeoTube("ITSSPD_shape_collector_tube",kCollTubeRadius - kCollTubeThick, kCollTubeRadius, 0.5*kCollTubeLength); TGeoVolume *volCollBox = new TGeoVolume("ITSSPDCollectorBox", shCollBox, medPVC); TGeoVolume *volCollTube = new TGeoVolume("ITSSPDCollectorTube", shCollTube, medPVC); volCollBox->SetLineColor(kAzure); volCollTube->SetLineColor(kAzure); // The cooling tube on the cone as a Ctub Double_t tubeLength = shCable->GetX(5) - shCable->GetX(0) + kYtoHalfStave; TGeoCtub *shTube = new TGeoCtub(0, kConeTubeRmax, 0.5*tubeLength, 0, 360, 0, SinD(angrot/2), -CosD(angrot/2), 0, 0, 1); TGeoVolume *volTubeA = new TGeoVolume("ITSSPDCoolingTubeOnConeA", shTube, medInox); volTubeA->SetLineColor(kGray); TGeoVolume *volTubeC = new TGeoVolume("ITSSPDCoolingTubeOnConeC", shTube, medInox); volTubeC->SetLineColor(kGray); // The freon in the cooling tubes on the cone as a Ctub TGeoCtub *shFreon = new TGeoCtub(0, kConeTubeRmin, 0.5*tubeLength, 0, 360, 0, SinD(angrot/2), -CosD(angrot/2), 0, 0, 1); TGeoVolume *volFreon = new TGeoVolume("ITSSPDCoolingFreonOnCone", shFreon, medFreon); volFreon->SetLineColor(kPurple); TGeoVolume *volGasFr = new TGeoVolume("ITSSPDCoolingFreonGasOnCone", shFreon, medGas); volGasFr->SetLineColor(kPurple); // The cooling tube inside the cylinder as a Ctub TGeoCtub *shCylTub = new TGeoCtub(0, kConeTubeRmax, 0.5*kHorizTubeLen, 0, 360, 0, 0, -1, 0, SinD(angrot/2), CosD(angrot/2)); TGeoVolume *volCylTubA = new TGeoVolume("ITSSPDCoolingTubeOnCylA", shCylTub, medInox); volCylTubA->SetLineColor(kGray); TGeoVolume *volCylTubC = new TGeoVolume("ITSSPDCoolingTubeOnCylC", shCylTub, medInox); volCylTubC->SetLineColor(kGray); // The freon in the cooling tubes in the cylinder as a Ctub TGeoCtub *shCylFr = new TGeoCtub(0, kConeTubeRmin, 0.5*kHorizTubeLen, 0, 360, 0, 0, -1, 0, SinD(angrot/2), CosD(angrot/2)); TGeoVolume *volCylFr = new TGeoVolume("ITSSPDCoolingFreonOnCyl", shCylFr, medFreon); volCylFr->SetLineColor(kPurple); TGeoVolume *volCylGasFr = new TGeoVolume("ITSSPDCoolingFreonGasOnCyl", shCylFr, medGas); volCylGasFr->SetLineColor(kPurple); // The optical fibers bundle on the cone as a Tube Double_t optLength = shCable->GetX(5) - shCable->GetX(0) + kYtoHalfStave; TGeoTube *shOptFibs = new TGeoTube(0., 0.5*kOptFibDiamet, 0.5*optLength); TGeoVolume *volOptFibs = new TGeoVolume("ITSSPDOpticalFibersOnCone", shOptFibs, medFibs); volOptFibs->SetLineColor(kOrange); // The optical patch panels TArrayD psizes; TGeoVolume *volPatch = CreatePatchPanel(psizes, mgr); // The water cooling tube as a Tube TGeoTube *shWatCool = new TGeoTube(kWaterCoolRMax-kWaterCoolThick, kWaterCoolRMax, kWaterCoolLen/2); TGeoVolume *volWatCool = new TGeoVolume("ITSSPDWaterCoolingOnCone", shWatCool, medInox); volWatCool->SetLineColor(kGray); // The support plate for the water tubes: a Tubs and a BBox TGeoTubeSeg *shWCPltT = new TGeoTubeSeg(kWaterCoolRMax, kWaterCoolRMax+kWCPlateThick, kWCPlateLen/2, 180., 360.); Double_t plateBoxWide = (kWCPlateWide - 2*kWaterCoolRMax)/2; TGeoBBox *shWCPltB = new TGeoBBox(plateBoxWide/2, kWCPlateThick/2, kWCPlateLen/2); TGeoVolume *volWCPltT = new TGeoVolume("ITSSPDWaterCoolingTubsPlate", shWCPltT, medPlate); volWCPltT->SetLineColor(kRed); TGeoVolume *volWCPltB = new TGeoVolume("ITSSPDWaterCoolingBoxPlate", shWCPltB, medPlate); volWCPltB->SetLineColor(kRed); // The fitting for the water cooling tube: a Pcon TGeoPcon *shFitt = new TGeoPcon(0., 360., 4); shFitt->Z(0) = -kWCFittingLen1; shFitt->Rmin(0) = kWCFittingRint1; shFitt->Rmax(0) = kWCFittingRext1; shFitt->Z(1) = 0; shFitt->Rmin(1) = kWCFittingRint1; shFitt->Rmax(1) = kWCFittingRext1; shFitt->Z(2) = 0; shFitt->Rmin(2) = kWCFittingRint2; shFitt->Rmax(2) = kWCFittingRext2; shFitt->Z(3) = kWCFittingLen2; shFitt->Rmin(3) = kWCFittingRint2; shFitt->Rmax(3) = kWCFittingRext2; TGeoVolume *volFitt = new TGeoVolume("ITSSPDWaterCoolingFitting", shFitt, medCopper); volFitt->SetLineColor(kOrange); // Now place everything in the containers volTubeA->AddNode(volGasFr, 1, 0); volTubeC->AddNode(volFreon, 1, 0); volCylTubA->AddNode(volCylGasFr, 1, 0); volCylTubC->AddNode(volCylFr , 1, 0); container[0]->AddNode(volCable, 1, 0); xloc = shMCMExt->GetDX() - cableL0; zloc = shMCMExt->GetDZ(); container[0]->AddNode(volMCMExt, 1, new TGeoTranslation( xloc, 0.,-zloc)); xloc = shMCMExt->GetDX(); zloc = shCable->GetZ(1)/2 - shMCMExt->GetDZ(); container[0]->AddNode(volPlate, 1, new TGeoTranslation( xloc, 0., zloc)); TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity); rot2->SetName("rotPatch"); rot2->RotateX(90.0); rot2->RotateY(163.0); //rot2->RotateZ(132.5); // add collectors only on side C if (sideC) { TGeoTranslation *trCollBox = new TGeoTranslation(xloc - 0.5*kPlateLength + 0.5*kCollLength, 0.0, +0.5*(kPlateThickness+1.1*kCollThickness)); TGeoRotation *rotCollTube = new TGeoRotation(*gGeoIdentity); rotCollTube->RotateY(90.0); TGeoCombiTrans *trCollTube = new TGeoCombiTrans(xloc + 0.5*kCollTubeLength - (0.5*kPlateLength - kCollLength), 0.0, +0.5*(kPlateThickness+2.0*kCollTubeRadius+kCollTubeThick), rotCollTube); container[0]->AddNode(volCollBox, 1, trCollBox); container[0]->AddNode(volCollTube, 1, trCollTube); } Double_t dxPatch = 2.9; Double_t dzPatch = 2.8; TGeoCombiTrans *tr2 = new TGeoCombiTrans(1.7*ext2Length - dxPatch, 0.0, dzPatch, rot2); container[3]->AddNode(volPatch, 0, tr2); xloc = shTube->GetRmax(); yloc = shTube->GetRmax(); zloc = shTube->GetDz() - shTube->GetRmax() - kYtoHalfStave; container[1]->AddNode(volTubeA, 1, new TGeoTranslation(-xloc, -yloc, zloc)); container[2]->AddNode(volTubeC, 1, new TGeoTranslation(-xloc, -yloc, zloc)); xloc = shTube->GetRmax(); yloc = (shCylTub->GetDz())*SinD(angrot) - shTube->GetRmax(); zloc = (shCylTub->GetDz())*CosD(angrot) + shTube->GetRmax() +kYtoHalfStave; container[1]->AddNode(volCylTubA, 1, new TGeoCombiTrans(-xloc, yloc,-zloc, new TGeoRotation("",0.,angrot,0.))); container[2]->AddNode(volCylTubC, 1, new TGeoCombiTrans(-xloc, yloc,-zloc, new TGeoRotation("",0.,angrot,0.))); xloc = shOptFibs->GetRmax() + 2*shTube->GetRmax(); yloc = 1.6*shOptFibs->GetRmax(); zloc = shOptFibs->GetDZ() - shTube->GetRmax() - kYtoHalfStave; container[1]->AddNode(volOptFibs, 1, new TGeoTranslation(-xloc, -yloc, zloc)); container[2]->AddNode(volOptFibs, 1, new TGeoTranslation(-xloc, -yloc, zloc)); yloc = shWatCool->GetRmax(); zloc = (2*shTube->GetDz() - shTube->GetRmax() - kYtoHalfStave)/2; container[4]->AddNode(volWatCool, 1, new TGeoTranslation(0, -yloc, zloc)); container[4]->AddNode(volWCPltT, 1, new TGeoTranslation(0, -yloc, zloc)); yloc -= shWCPltB->GetDY(); xloc = shWatCool->GetRmax() + shWCPltB->GetDX(); container[4]->AddNode(volWCPltB, 1, new TGeoTranslation( xloc, -yloc, zloc)); container[4]->AddNode(volWCPltB, 2, new TGeoTranslation(-xloc, -yloc, zloc)); yloc = shWatCool->GetRmax(); zloc -= shWatCool->GetDz(); container[4]->AddNode(volFitt, 1, new TGeoTranslation(0, -yloc, zloc)); // Finally create the list of assemblies and return it to the caller TList* conemodulelist = new TList(); conemodulelist->Add(container[0]); conemodulelist->Add(container[1]); conemodulelist->Add(container[2]); conemodulelist->Add(container[3]); conemodulelist->Add(container[4]); return conemodulelist; } //______________________________________________________________________ void AliITSv11GeometrySPD::CreateCones(TGeoVolume *moth) const { // // Places all services modules in the mother reference system // // Created: ?? ??? 2008 Alberto Pulvirenti // Updated: 03 May 2010 Mario Sitta // Updated: 04 Jul 2010 Mario Sitta Water cooling // const Int_t kNumberOfModules = 10; const Double_t kInnerRadius = 80.775*fgkmm; const Double_t kZTrans = 452.000*fgkmm; const Double_t kAlphaRot = 46.500*fgkDegree; const Double_t kAlphaSpaceCool = 9.200*fgkDegree; TList* modulelistA = CreateConeModule(kFALSE, 90-kAlphaRot); TList* modulelistC = CreateConeModule(kTRUE , 90-kAlphaRot); TList* &modulelist = modulelistC; TGeoVolumeAssembly* module, *moduleA, *moduleC; Double_t xloc, yloc, zloc; //Double_t angle[10] = {18., 54., 90., 126., 162., -18., -54., -90., -126., -162.}; // anglem for cone modules (cables and cooling tubes) // anglep for pathc panels Double_t anglem[10] = {18., 54., 90., 126., 162., 198., 234., 270., 306., 342.}; Double_t anglep[10] = {18., 62., 90., 115., 162., 198., 242., 270., 295., 342.}; // Double_t angle1m[10] = {23., 53., 90., 127., 157., 203.0, 233.0, 270.0, 307.0, 337.0}; // Double_t angle2m[10] = {18., 53., 90., 126., 162., 198.0, 233.0, 270.0, 309.0, 342.0}; // Double_t angle1c[10] = {23., 53., 90., 124., 157., 203.0, 233.0, 270.0, 304.0, 337.0}; // Double_t angle2c[10] = {18., 44., 90., 126., 162., 198.0, 223.0, 270.0, 309.0, 342.0}; // First add the cables moduleA = (TGeoVolumeAssembly*)modulelistA->At(0); moduleC = (TGeoVolumeAssembly*)modulelistC->At(0); for (Int_t i = 0; i < kNumberOfModules; i++) { TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity); rot1->RotateY(-kAlphaRot); rot1->RotateZ(anglem[i]); xloc = kInnerRadius*CosD(anglem[i]); yloc = kInnerRadius*SinD(anglem[i]); zloc = kZTrans; moth->AddNode(moduleA, 2*i+2, new TGeoCombiTrans( xloc, yloc, zloc, rot1)); TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity); rot2->RotateY(180.-kAlphaRot); rot2->RotateZ(anglem[i]); xloc = kInnerRadius*CosD(anglem[i]); yloc = kInnerRadius*SinD(anglem[i]); zloc = kZTrans; moth->AddNode(moduleC, 2*i+1, new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2)); } // Then the cooling tubes on Side A module = (TGeoVolumeAssembly*)modulelist->At(1); Double_t anglec; for (Int_t i = 0; i < kNumberOfModules; i++) { anglec = anglem[i] + kAlphaSpaceCool; TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity); rot1->RotateX(-90.0+kAlphaRot-0.04); // 0.04 fixes small overlap rot1->RotateZ(-90.0+anglec); xloc = kInnerRadius*CosD(anglec); yloc = kInnerRadius*SinD(anglec); zloc = kZTrans+0.162; // 0.162 fixes small overlap moth->AddNode(module, 2*i+2, new TGeoCombiTrans( xloc, yloc, zloc, rot1)); } // And the cooling tubes on Side C module = (TGeoVolumeAssembly*)modulelist->At(2); for (Int_t i = 0; i < kNumberOfModules; i++) { anglec = anglem[i] - kAlphaSpaceCool; TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity); rot2->RotateX(-90.0+kAlphaRot-0.04); // 0.04 fixes small overlap rot2->RotateY(180.); rot2->RotateZ(90.0+anglec); xloc = kInnerRadius*CosD(anglec); yloc = kInnerRadius*SinD(anglec); zloc = kZTrans+0.162; // 0.162 fixes small overlap moth->AddNode(module, 2*i+1, new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2)); } // Then the water cooling tubes module = (TGeoVolumeAssembly*)modulelist->At(4); for (Int_t i = 1; i < kNumberOfModules; i++) { // i = 1,2,...,9 if (i != 5) { // There is no tube in this position anglec = (anglem[i-1]+anglem[i])/2; TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity); rot1->RotateX(-90.0+kAlphaRot); rot1->RotateZ(-90.0+anglec); xloc = kInnerRadius*CosD(anglec); yloc = kInnerRadius*SinD(anglec); zloc = kZTrans; moth->AddNode(module, 2*i+2, new TGeoCombiTrans( xloc, yloc, zloc, rot1)); TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity); rot2->RotateX(-90.0+kAlphaRot); rot2->RotateY(180.); rot2->RotateZ(90.0+anglec); xloc = kInnerRadius*CosD(anglec); yloc = kInnerRadius*SinD(anglec); zloc = kZTrans; moth->AddNode(module, 2*i+1, new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2)); } } // Finally the optical patch panels module = (TGeoVolumeAssembly*)modulelist->At(3); for (Int_t i = 0; i < kNumberOfModules; i++) { TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity); rot1->RotateY(-kAlphaRot); rot1->RotateZ(anglep[i]); xloc = kInnerRadius*CosD(anglep[i]); yloc = kInnerRadius*SinD(anglep[i]); zloc = kZTrans; moth->AddNode(module, 2*i+2, new TGeoCombiTrans( xloc, yloc, zloc, rot1)); TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity); rot2->RotateY(180.-kAlphaRot); rot2->RotateZ(anglep[i]); xloc = kInnerRadius*CosD(anglep[i]); yloc = kInnerRadius*SinD(anglep[i]); zloc = kZTrans; moth->AddNode(module, 2*i+1, new TGeoCombiTrans(-xloc,-yloc,-zloc, rot2)); } } //______________________________________________________________________ TGeoVolume* AliITSv11GeometrySPD::CreateExtender( const Double_t *extenderParams, const TGeoMedium *extenderMedium, TArrayD& sizes) const { // // ------------------ CREATE AN EXTENDER ------------------------ // // This function creates the following picture (in plane xOy) // Should be useful for the definition of the pixel bus and MCM extenders // The origin corresponds to point 0 on the picture, at half-width // in Z direction // // Y 7 6 5 // ^ +---+---------------------+ // | / | // | / | // 0------> X / +---------------------+ // / / 3 4 // / / // 9 8 / / // +-----------+ / // | / // | / // ---> +-----------+---+ // | 0 1 2 // | // origin (0,0,0) // // // Takes 6 parameters in the following order : // |--> par 0 : inner length [0-1] / [9-8] // |--> par 1 : thickness ( = [0-9] / [4-5]) // |--> par 2 : angle of the slope // |--> par 3 : total height in local Y direction // |--> par 4 : outer length [3-4] / [6-5] // |--> par 5 : width in local Z direction // Double_t slopeDeltaX = (extenderParams[3] - extenderParams[1] * TMath::Cos(extenderParams[2])) / TMath::Tan(extenderParams[2]); Double_t extenderXtruX[10] = { 0 , extenderParams[0] , extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2]) , extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ slopeDeltaX , extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ slopeDeltaX + extenderParams[4], extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ slopeDeltaX + extenderParams[4], extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ slopeDeltaX , extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+ slopeDeltaX - extenderParams[1] * TMath::Sin(extenderParams[2]) , extenderParams[0] , 0 }; Double_t extenderXtruY[10] = { 0 , 0 , extenderParams[1] * (1-TMath::Cos(extenderParams[2])) , extenderParams[3] - extenderParams[1] , extenderParams[3] - extenderParams[1] , extenderParams[3] , extenderParams[3] , extenderParams[3]-extenderParams[1]*(1-TMath::Cos(extenderParams[2])) , extenderParams[1] , extenderParams[1] }; if (sizes.GetSize() != 3) sizes.Set(3); Double_t &thickness = sizes[0]; Double_t &length = sizes[1]; Double_t &width = sizes[2]; thickness = extenderParams[3]; width = extenderParams[5]; length = extenderParams[0]+extenderParams[1]* TMath::Sin(extenderParams[2])+slopeDeltaX+extenderParams[4]; // creation of the volume TGeoXtru *extenderXtru = new TGeoXtru(2); TGeoVolume *extenderXtruVol = new TGeoVolume("ITSSPDextender",extenderXtru, extenderMedium); extenderXtru->DefinePolygon(10,extenderXtruX,extenderXtruY); extenderXtru->DefineSection(0,-0.5*extenderParams[4]); extenderXtru->DefineSection(1, 0.5*extenderParams[4]); return extenderXtruVol; } //______________________________________________________________________ TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateHalfStave(Bool_t isRight, Int_t layer,Int_t idxCentral,Int_t idxSide,TArrayD &sizes,TGeoManager *mgr) { // // Implementation of an half-stave, which depends on the side where // we are on the stave. The convention for "left" and "right" is the // same as for the MCM. The return value is a TGeoAssembly which is // structured in such a way that the origin of its local reference // frame coincides with the origin of the whole stave. // The TArrayD passed by reference will contain details of the shape: // - sizes[0] = thickness // - sizes[1] = length // - sizes[2] = width // - sizes[3] = common 'x' position for eventual clips // - sizes[4] = common 'y' position for eventual clips // - sizes[5] = 'z' position of first clip // - sizes[6] = 'z' position of second clip // // ** CHECK ** // idxCentral and idxSide must be different if (idxCentral == idxSide) { AliInfo("Ladders must be inserted in half-stave with " "different indexes."); idxSide = idxCentral + 1; AliInfo(Form("Central ladder will be inserted with index %d", idxCentral)); AliInfo(Form("Side ladder will be inserted with index %d",idxSide)); } // end if // define the separations along Z direction between the objects Double_t sepLadderLadder = fgkmm * 0.2; // sep. btw the 2 ladders Double_t sepLadderCenter = fgkmm * 0.4; // sep. btw the "central" ladder // and the Z=0 plane in stave ref. Double_t sepLadderMCM = fgkmm * 0.3; // sep. btw the "external" ladder // and MCM Double_t sepBusCenter = fgkmm * 0.3; // sep. btw the bus central edge // and the Z=0 plane in stave ref. // ** VOLUMES ** // grounding foil TArrayD grndSize(3); // This one line repalces the 3 bellow, BNS. TGeoVolume *grndVol = CreateGroundingFoil(isRight, grndSize, mgr); Double_t &grndThickness = grndSize[0]; Double_t &grndLength = grndSize[1]; // ladder TArrayD ladderSize(3); TGeoVolume *ladder = CreateLadder(layer, ladderSize, mgr); Double_t ladderThickness = ladderSize[0]; Double_t ladderLength = ladderSize[1]; Double_t ladderWidth = ladderSize[2]; // MCM TArrayD mcmSize(3); TGeoVolumeAssembly *mcm = CreateMCM(!isRight,mcmSize,mgr); Double_t mcmThickness = mcmSize[0]; Double_t mcmLength = mcmSize[1]; Double_t mcmWidth = mcmSize[2]; // bus TArrayD busSize(6); TGeoVolumeAssembly *bus = CreatePixelBus(isRight, layer, busSize, mgr); Double_t busThickness = busSize[0]; Double_t busLength = busSize[1]; Double_t busWidth = busSize[2]; // glue between ladders and pixel bus TGeoMedium *medLadGlue = GetMedium("EPOXY$", mgr); Double_t ladGlueThickness = fgkmm * 0.1175 - fgkGapLadder; TGeoVolume *ladderGlue = mgr->MakeBox("ITSSPDladderGlue",medLadGlue, 0.5*ladGlueThickness, 0.5*busWidth, 0.5*busLength); ladderGlue->SetLineColor(kYellow + 5); // create references for the whole object, as usual sizes.Set(7); Double_t &fullThickness = sizes[0]; Double_t &fullLength = sizes[1]; Double_t &fullWidth = sizes[2]; // compute the full size of the container fullLength = sepLadderCenter+2.0*ladderLength+sepLadderMCM+ sepLadderLadder+mcmLength; fullWidth = ladderWidth; fullThickness = grndThickness + fgkGapLadder + mcmThickness + busThickness; //cout << "HSTAVE FULL THICKNESS = " << fullThickness << endl; // ** MOVEMENTS ** // grounding foil (shifted only along thickness) Double_t xGrnd = -0.5*fullThickness + 0.5*grndThickness; Double_t zGrnd = -0.5*grndLength; if (!isRight) zGrnd = -zGrnd; TGeoTranslation *grndTrans = new TGeoTranslation(xGrnd, 0.0, zGrnd); // ladders (translations along thickness and length) // layers must be sorted going from the one at largest Z to the // one at smallest Z: // -|Zmax| ------> |Zmax| // 3 2 1 0 // then, for layer 1 ladders they must be placed exactly this way, // and in layer 2 at the opposite. In order to remember the placements, // we define as "inner" and "outer" ladder respectively the one close // to barrel center, and the one closer to MCM, respectively. Double_t xLad, zLadIn, zLadOut; xLad = xGrnd + 0.5*(grndThickness + ladderThickness) + 0.01175 - fgkGapLadder; zLadIn = -sepLadderCenter - 0.5*ladderLength; zLadOut = zLadIn - sepLadderLadder - ladderLength; if (!isRight) { zLadIn = -zLadIn; zLadOut = -zLadOut; } // end if !isRight TGeoRotation *rotLad = new TGeoRotation(*gGeoIdentity); rotLad->RotateZ(90.0); rotLad->RotateY(180.0); Double_t sensWidth = fgkmm * 12.800; Double_t chipWidth = fgkmm * 15.950; Double_t guardRingWidth = fgkmm * 0.560; Double_t ladderShift = 0.5 * (chipWidth - sensWidth - 2.0*guardRingWidth); TGeoCombiTrans *trLadIn = new TGeoCombiTrans(xLad,ladderShift,zLadIn, rotLad); TGeoCombiTrans *trLadOut = new TGeoCombiTrans(xLad,ladderShift,zLadOut, rotLad); // MCM (length and thickness direction, placing at same level as the // ladder, which implies to recompute the position of center, because // ladder and MCM have NOT the same thickness) the two copies of the // MCM are placed at the same distance from the center, on both sides Double_t xMCM = xGrnd + 0.5*grndThickness + 0.5*mcmThickness + 0.01175 - fgkGapLadder; Double_t yMCM = 0.5*(fullWidth - mcmWidth); Double_t zMCM = zLadOut - 0.5*ladderLength - 0.5*mcmLength - sepLadderMCM; if (!isRight) zMCM = zLadOut + 0.5*ladderLength + 0.5*mcmLength + sepLadderMCM; // create the correction rotations TGeoRotation *rotMCM = new TGeoRotation(*gGeoIdentity); rotMCM->RotateY(90.0); TGeoCombiTrans *trMCM = new TGeoCombiTrans(xMCM, yMCM, zMCM, rotMCM); // glue between ladders and pixel bus Double_t xLadGlue = xLad + 0.5*ladderThickness + 0.01175 - fgkGapLadder + 0.5*ladGlueThickness; // bus (length and thickness direction) Double_t xBus = xLadGlue + 0.5*ladGlueThickness + 0.5*busThickness; Double_t yBus = 0.5*(fullWidth - busWidth) + 0.075; // Hardcode fix of a small overlap Double_t zBus = -0.5*busLength - sepBusCenter; if (!isRight) zBus = -zBus; TGeoTranslation *trBus = new TGeoTranslation(xBus, yBus, zBus); TGeoTranslation *trLadGlue = new TGeoTranslation(xLadGlue, 0.0, zBus); // create the container TGeoVolumeAssembly *container = 0; if (idxCentral+idxSide==5) { container = new TGeoVolumeAssembly("ITSSPDhalf-Stave1"); } else { container = new TGeoVolumeAssembly("ITSSPDhalf-Stave0"); } // end if // add to container all objects container->AddNode(grndVol, 1, grndTrans); // ladders are inserted in different order to respect numbering scheme // which is inverted when going from outer to inner layer container->AddNode(ladder, idxCentral+1, trLadIn); container->AddNode(ladder, idxSide+1, trLadOut); container->AddNode(ladderGlue, 1, trLadGlue); container->AddNode(mcm, 1, trMCM); container->AddNode(bus, 1, trBus); // since the clips are placed in correspondence of two pt1000s, // their position is computed here, but they are not added by default // it will be the StavesInSector method which will decide to add them // anyway, to recovery some size informations on the clip, it must be // created TArrayD clipSize; // TGeoVolume *clipDummy = CreateClip(clipSize, kTRUE, mgr); CreateClip(clipSize, kTRUE, mgr); // define clip movements (width direction) sizes[3] = xBus + 0.5*busThickness; sizes[4] = 0.5 * (fullWidth - busWidth) - clipSize[6] - fgkmm*0.26; sizes[5] = zBus + busSize[4]; sizes[6] = zBus + busSize[5]; return container; } //______________________________________________________________________ TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateStave(Int_t layer, TArrayD &sizes, TGeoManager *mgr) { // // This method uses all other ones which create pieces of the stave // and assemblies everything together, in order to return the whole // stave implementation, which is returned as a TGeoVolumeAssembly, // due to the presence of some parts which could generate fake overlaps // when put on the sector. // This assembly contains, going from bottom to top in the thickness // direction: // - the complete grounding foil, defined by the "CreateGroundingFoil" // method which already joins some glue and real groudning foil // layers for the whole stave (left + right); // - 4 ladders, which are sorted according to the ALICE numbering // scheme, which depends on the layer we are building this stave for; // - 2 MCMs (a left and a right one); // - 2 pixel buses (a left and a right one); // --- // Arguments: // - the layer number, which determines the displacement and naming // of sensitive volumes // - a TArrayD passed by reference which will contain the size // of virtual box containing the stave // - the TGeoManager // // create the container TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form( "ITSSPDlay%d-Stave",layer)); // define the indexes of the ladders in order to have the correct order // keeping in mind that the staves will be inserted as they are on layer // 2, while they are rotated around their local Y axis when inserted // on layer 1, so in this case they must be put in the "wrong" order // to turn out to be right at the end. The convention is: // -|Zmax| ------> |Zmax| // 3 2 1 0 // with respect to the "native" stave reference frame, "left" is in // the positive Z this leads the definition of these indexes: Int_t idxCentralL, idxSideL, idxCentralR, idxSideR; if (layer == 1) { idxSideL = 3; idxCentralL = 2; idxCentralR = 1; idxSideR = 0; } else { idxSideL = 0; idxCentralL = 1; idxCentralR = 2; idxSideR = 3; } // end if layer ==1 // create the two half-staves TArrayD sizeL, sizeR; TGeoVolumeAssembly *hstaveL = CreateHalfStave(kFALSE, layer, idxCentralL, idxSideL, sizeL,mgr); TGeoVolumeAssembly *hstaveR = CreateHalfStave(kTRUE, layer, idxCentralR, idxSideR, sizeR, mgr); // copy the size to the stave's one sizes.Set(9); sizes[0] = sizeL[0]; sizes[1] = sizeR[1] + sizeL[1]; sizes[2] = sizeL[2]; sizes[3] = sizeL[3]; sizes[4] = sizeL[4]; sizes[5] = sizeL[5]; sizes[6] = sizeL[6]; sizes[7] = sizeR[5]; sizes[8] = sizeR[6]; // add to container all objects container->AddNode(hstaveL, 1); container->AddNode(hstaveR, 1); return container; } //______________________________________________________________________ void AliITSv11GeometrySPD::SetAddStave(Bool_t *mask) { // // Define a mask which states qhich staves must be placed. // It is a string which must contain '0' or '1' depending if // a stave must be placed or not. // Each place is referred to one of the staves, so the first // six characters of the string will be checked. // Int_t i; for (i = 0; i < 6; i++) fAddStave[i] = mask[i]; } //______________________________________________________________________ void AliITSv11GeometrySPD::StavesInSector(TGeoVolume *moth, TGeoManager *mgr) { // // Unification of essentially two methods: // - the one which creates the sector structure // - the one which returns the complete stave // --- // For compatibility, this method requires the same arguments // asked by "CarbonFiberSector" method, which is recalled here. // Like this cited method, this one does not return any value, // but it inserts in the mother volume (argument 'moth') all the stuff // which composes the complete SPD sector. // --- // In the following, the stave numbering order used for arrays is the // same as defined in the GetSectorMountingPoints(): // /5 // /\/4 // 1\ \/3 // 0|___\/2 // --- // Arguments: see description of "CarbonFiberSector" method. // Double_t shift[6]; // shift from the innermost position in the // sector placement plane (where the stave // edge is in the point where the rounded // corner begins) shift[0] = fgkmm * -0.691; shift[1] = fgkmm * 5.041; shift[2] = fgkmm * 1.816; shift[3] = fgkmm * -0.610; shift[4] = fgkmm * -0.610; shift[5] = fgkmm * -0.610; // corrections after interaction with Andrea and CAD Double_t corrX[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; Double_t corrY[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; corrX[0] = 0.0046; corrX[1] = -0.0041; corrX[2] = corrX[3] = corrX[4] = corrX[5] = -0.0016; corrY[0] = -0.0007; corrY[1] = -0.0009; corrY[2] = corrY[3] = corrY[4] = corrY[5] = -0.0003; corrX[0] += 0.00026; corrY[0] += -0.00080; corrX[1] += 0.00018; corrY[1] += -0.00086; corrX[2] += 0.00020; corrY[2] += -0.00062; corrX[3] += 0.00017; corrY[3] += -0.00076; corrX[4] += 0.00016; corrY[4] += -0.00096; corrX[5] += 0.00018; corrY[5] += -0.00107; // create stave volumes (different for layer 1 and 2) TArrayD staveSizes1(9), staveSizes2(9), clipSize(5); Double_t &staveHeight = staveSizes1[2], &staveThickness = staveSizes1[0]; TGeoVolume *stave1 = CreateStave(1, staveSizes1, mgr); TGeoVolume *stave2 = CreateStave(2, staveSizes2, mgr); TGeoVolume *clip = CreateClip(clipSize, kFALSE, mgr); Double_t xL, yL; // leftmost edge of mounting point (XY projection) Double_t xR, yR; // rightmost edge of mounting point (XY projection) Double_t xM, yM; // middle point of the segment L-R Double_t dx, dy; // (xL - xR) and (yL - yR) Double_t widthLR; // width of the segment L-R Double_t angle; // stave rotation angle in degrees Double_t diffWidth; // difference between mounting plane width and // stave width (smaller) Double_t xPos, yPos; // final translation of the stave Double_t parMovement; // translation in the LR plane direction staveThickness += fgkGapHalfStave; // loop on staves Int_t i, iclip = 1; for (i = 0; i < 6; i++) { // in debug mode, if this stave is not required, it is skipped if (!fAddStave[i]) continue; // retrieve reference points GetSectorMountingPoints(i, xL, yL, xR, yR); xM = 0.5 * (xL + xR); yM = 0.5 * (yL + yR); dx = xL - xR; dy = yL - yR; angle = TMath::ATan2(dy, dx); widthLR = TMath::Sqrt(dx*dx + dy*dy); diffWidth = 0.5*(widthLR - staveHeight); // first, a movement along this plane must be done // by an amount equal to the width difference // and then the fixed shift must also be added parMovement = diffWidth + shift[i]; // due to stave thickness, another movement must be done // in the direction normal to the mounting plane // which is computed using an internal method, in a reference // frame where the LR segment has its middle point in the origin // and axes parallel to the master reference frame if (i == 0) { ParallelPosition(-0.5*staveThickness, -parMovement, angle, xPos, yPos); } // end if i==0 if (i == 1) { ParallelPosition( 0.5*staveThickness, -parMovement, angle, xPos, yPos); }else { ParallelPosition( 0.5*staveThickness, parMovement, angle, xPos, yPos); } // end if i==1 // then we go into the true reference frame xPos += xM; yPos += yM; xPos += corrX[i]; yPos += corrY[i]; // using the parameters found here, compute the // translation and rotation of this stave: TGeoRotation *rot = new TGeoRotation(*gGeoIdentity); if (i == 0 || i == 1) rot->RotateX(180.0); rot->RotateZ(90.0 + angle * TMath::RadToDeg()); TGeoCombiTrans *trans = new TGeoCombiTrans(xPos, yPos, 0.0, rot); if (i == 0 || i == 1) { moth->AddNode(stave1, i+1, trans); }else { moth->AddNode(stave2, i - 1, trans); if (i != 2) { // except in the case of stave #2, // clips must be added, and this is done directly on the sector Int_t j; //TArrayD clipSize; TGeoRotation *rotClip = new TGeoRotation(*gGeoIdentity); rotClip->RotateZ(-90.0); rotClip->RotateX(180.0); Double_t x = staveSizes2[3] + fgkGapHalfStave; Double_t y = staveSizes2[4]; Double_t z[4] = { staveSizes2[5], staveSizes2[6], staveSizes2[7], staveSizes2[8] }; for (j = 0; j < 4; j++) { TGeoCombiTrans *trClip = new TGeoCombiTrans(x, y, z[j], rotClip); *trClip = *trans * *trClip; moth->AddNode(clip, iclip++, trClip); } // end for j } // end if i!=2 } // end if i==0||i==1 else } // end for i // Add a box representing the collector for cooling tubes Double_t collWidth = fgkmm * 22.0; Double_t collLength = fgkmm * 50.0; Double_t collThickness = fgkmm * 7.0; Double_t collInSize = fgkmm * 10.5; TGeoMedium *medColl = GetMedium("INOX$"); TGeoMedium *medCollIn = GetMedium("COPPER$"); TGeoVolume *vColl = mgr->MakeBox("ITSSPDSectorTubeColl" , medColl, 0.5*collWidth, 0.5*collThickness, 0.5*collLength); TGeoVolume *vCollIn = mgr->MakeBox("ITSSPDSectorTubeCollIn", medCollIn, 0.5*collInSize, 0.5*collInSize, 0.5*collInSize); vColl->SetLineColor(kGreen+2); vCollIn->SetLineColor(kYellow); TGeoTranslation *tr1 = new TGeoTranslation( 0.1, 1.2, 35.0); TGeoTranslation *tr2 = new TGeoTranslation(-0.1, 1.2, -35.0); TGeoTranslation *tr3 = new TGeoTranslation( 0.1, 1.2 - 0.5*(collThickness+collInSize), 35.0 + 0.5*(collLength - collInSize)); TGeoTranslation *tr4 = new TGeoTranslation(-0.1, 1.2 - 0.5*(collThickness+collInSize), -35.0 - 0.5*(collLength - collInSize)); moth->AddNode(vColl, 0, tr1); moth->AddNode(vColl, 1, tr2); moth->AddNode(vCollIn, 0, tr3); moth->AddNode(vCollIn, 1, tr4); } //______________________________________________________________________ void AliITSv11GeometrySPD::ParallelPosition(Double_t dist1, Double_t dist2, Double_t phi, Double_t &x, Double_t &y) const { // // Performs the following steps: // 1 - finds a straight line parallel to the one passing through // the origin and with angle 'phi' with X axis(phi in RADIANS); // 2 - finds another line parallel to the previous one, with a // distance 'dist1' from it // 3 - takes a reference point in the second line in the intersection // between the normal to both lines passing through the origin // 4 - finds a point whith has distance 'dist2' from this reference, // in the second line (point 2) // ---- // According to the signs given to dist1 and dist2, the point is // found in different position w.r. to the origin // compute the point // Double_t cs = TMath::Cos(phi); Double_t sn = TMath::Sin(phi); x = dist2*cs - dist1*sn; y = dist1*cs + dist2*sn; } //______________________________________________________________________ Double_t AliITSv11GeometrySPD::GetSPDSectorTranslation( Double_t x0,Double_t y0,Double_t x1,Double_t y1,Double_t r) const { // // Comutes the radial translation of a sector to give the // proper distance between SPD detectors and the beam pipe. // Units in are units out. // //Begin_Html /* Figure showing the geometry used in the computation below. */ //End_Html // Inputs: // Double_t x0 Point x0 on Sector surface for the inner // most detector mounting // Double_t y0 Point y0 on Sector surface for the innor // most detector mounting // Double_t x1 Point x1 on Sector surface for the inner // most detector mounting // Double_t y1 Point y1 on Sector surface for the innor // most detector mounting // Double_t r The radial distance this mounting surface // should be from the center of the beam pipe. // Outputs: // none. // Return: // The distance the SPD sector should be displaced radialy. // Double_t a,b,c; a = x0-x1; if(a==0.0) return 0.0; a = (y0-y1)/a; b = TMath::Sqrt(1.0+a*a); c = y0-a*x0-r*b; return -c; } //______________________________________________________________________ void AliITSv11GeometrySPD::PrintAscii(ostream *os) const { // // Print out class data values in Ascii Form to output stream // Inputs: // ostream *os Output stream where Ascii data is to be writen // Outputs: // none. // Return: // none. // Int_t i,j,k; #if defined __GNUC__ #if __GNUC__ > 2 ios::fmtflags fmt = cout.flags(); #else Int_t fmt; #endif #else #if defined __ICC || defined __ECC || defined __xlC__ ios::fmtflags fmt; #else Int_t fmt; #endif #endif *os<< fgkGapLadder <<" "<< fgkGapHalfStave<<" "<< 6 <<" "; for(i=0;i<6;i++) *os<< fAddStave[i] <<" "<flags(fmt); // reset back to old Formating. return; } // //______________________________________________________________________ void AliITSv11GeometrySPD::ReadAscii(istream* is) { // // Read in class data values in Ascii Form to output stream // Inputs: // istream *is Input stream where Ascii data is to be read in from // Outputs: // none. // Return: // none. // Int_t i,j,k,n; Double_t gapLadder,gapHalfStave; const Int_t kLimits = 100; *is>>gapLadder>>gapHalfStave>>n; if(n!=6){ AliError(Form("fAddStave Array !=6 n=%d",n)); return; } // end if for(i=0;i>fAddStave[i]; *is>>n; if(n<0 || n> kLimits){ AliError("Anomalous value for parameter n"); return; } fSPDsectorX0.Set(n); fSPDsectorY0.Set(n); fSPDsectorX1.Set(n); fSPDsectorY1.Set(n); for(i=0;i>fSPDsectorX0[i]; for(i=0;i>fSPDsectorY0[i]; for(i=0;i>fSPDsectorX1[i]; for(i=0;i>fSPDsectorY1[i]; *is>> i>>j>>n; if(i!=2||j!=6||n!=3){ Warning("ReadAscii","fTubeEndSector array wrong size [2][6][3]," "found [%d][%d][%d]",i,j,n); return; } // end if for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++) *is>>fTubeEndSector[k][0][i][j]; for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++) *is>>fTubeEndSector[k][1][i][j]; return; } // //______________________________________________________________________ ostream &operator<<(ostream &os,const AliITSv11GeometrySPD &s) { // // Standard output streaming function // Inputs: // ostream &os output steam // AliITSvPPRasymmFMD &s class to be streamed. // Output: // none. // Return: // ostream &os The stream pointer // s.PrintAscii(&os); return os; } // //______________________________________________________________________ istream &operator>>(istream &is,AliITSv11GeometrySPD &s) { // // Standard inputput streaming function // Inputs: // istream &is input steam // AliITSvPPRasymmFMD &s class to be streamed. // Output: // none. // Return: // ostream &os The stream pointer // s.ReadAscii(&is); return is; }