/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ // $Id$ #include "AliMUONCalibParam2F.h" #include "AliLog.h" #include "Riostream.h" #include "TMath.h" #include "TString.h" /// /// \class AliMUONCalibParam2F /// \brief Implementation of AliMUONVCalibParam for pair of floats. /// /// Handle the case of 2 floating point parameters per channel. /// Conceptually, this class is the equivalent of a vector or float pairs, /// but it is implemented using bare Float_t[] array. /// /// \author Laurent Aphecetche /// \cond CLASSIMP ClassImp(AliMUONCalibParam2F) /// \endcond //_____________________________________________________________________________ AliMUONCalibParam2F::AliMUONCalibParam2F() : AliMUONVCalibParam(), fSize(0), fN(0), fValues(0x0) { /// Default constructor. } //_____________________________________________________________________________ AliMUONCalibParam2F::AliMUONCalibParam2F(Int_t theSize, Float_t fillWithValue) : AliMUONVCalibParam(), fSize(theSize), fN(fSize*Dimension()), fValues(0x0) { /// Normal constructor, where theSize specifies the number of channels handled /// by this object, and fillWithValue the default value assigned to each /// channel. if ( fN > 0 ) { fValues = new Float_t[fN]; for ( Int_t i = 0; i < fN; ++i ) { fValues[i] = fillWithValue; } } } //_____________________________________________________________________________ AliMUONCalibParam2F::AliMUONCalibParam2F(const AliMUONCalibParam2F& other) : AliMUONVCalibParam(), fSize(0), fN(0), fValues(0x0) { /// Copy constructor. other.CopyTo(*this); } //_____________________________________________________________________________ AliMUONCalibParam2F& AliMUONCalibParam2F::operator=(const AliMUONCalibParam2F& other) { /// Assignment operator other.CopyTo(*this); return *this; } //_____________________________________________________________________________ AliMUONCalibParam2F::~AliMUONCalibParam2F() { /// Destructor delete[] fValues; } //_____________________________________________________________________________ void AliMUONCalibParam2F::CopyTo(AliMUONCalibParam2F& destination) const { /// Copy *this to destination delete[] destination.fValues; destination.fN = fN; destination.fSize = fSize; if ( fN > 0 ) { destination.fValues = new Float_t[fN]; for ( Int_t i = 0; i < fN; ++i ) { destination.fValues[i] = fValues[i]; } } } //_____________________________________________________________________________ Int_t AliMUONCalibParam2F::Index(Int_t i, Int_t j) const { /// Compute the 1D index of the internal storage from the pair (i,j) /// Returns -1 if the (i,j) pair is invalid if ( i >= 0 && i < Size() && j >= 0 && j < Dimension() ) { return i + Size()*j; } return -1; } //_____________________________________________________________________________ void AliMUONCalibParam2F::Print(Option_t* opt) const { /// Output this object to stdout. /// If opt=="full", then all channels are printed, /// if opt=="mean", only the mean and sigma value are printed, /// otherwise only the general characteristics are printed. TString sopt(opt); sopt.ToUpper(); cout << "AliMUONCalibParam2F - Size=" << Size() << " Dimension=" << Dimension(); if ( sopt.Contains("FULL") ) { cout << endl; for ( Int_t i = 0; i < Size(); ++i ) { cout << Form("CH %3d %e %e",i,ValueAsFloat(i,0),ValueAsFloat(i,1)) << endl; } } if ( sopt.Contains("MEAN") ) { Float_t mean(0); Float_t v2(0); Int_t n = Size(); for ( Int_t i = 0; i < Size(); ++i ) { Float_t v = ValueAsFloat(i); mean += v; v2 += v*v; } mean /= n; float sigma = 0; if ( n > 1 ) sigma = TMath::Sqrt( (v2-n*mean*mean)/(n-1) ); cout << Form(" Mean=%f Sigma=%f",mean,sigma) << endl; } } //_____________________________________________________________________________ void AliMUONCalibParam2F::SetValueAsFloat(Int_t i, Int_t j, Float_t value) { /// Set one value as a float, after checking that the indices are correct. Int_t ix = Index(i,j); if ( ix < 0 ) { AliError(Form("Invalid (i,j)=(%d,%d) max allowed is (%d,%d)", i,j,Size()-1,Dimension()-1)); } else { fValues[ix]=value; } } //_____________________________________________________________________________ void AliMUONCalibParam2F::SetValueAsInt(Int_t i, Int_t j, Int_t value) { /// Set one value as an int. SetValueAsFloat(i,j,static_cast(value)); } //_____________________________________________________________________________ Float_t AliMUONCalibParam2F::ValueAsFloat(Int_t i, Int_t j) const { /// Return the value as a float (which it is), after checking indices. Int_t ix = Index(i,j); if ( ix < 0 ) { AliError(Form("Invalid (i,j)=(%d,%d) max allowed is (%d,%d)", i,j,Size()-1,Dimension()-1)); return 0.0; } else { return fValues[ix]; } } //_____________________________________________________________________________ Int_t AliMUONCalibParam2F::ValueAsInt(Int_t i, Int_t j) const { /// Return the value as an int, by rounding the internal float value. Float_t v = ValueAsFloat(i,j); return TMath::Nint(v); }