#include "AliMUONClusterFinderAZ.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "AliHeader.h" #include "AliRun.h" #include "AliMUON.h" #include "AliMUONChamber.h" #include "AliMUONDigit.h" #include "AliMUONHit.h" #include "AliMUONChamber.h" #include "AliMUONRawCluster.h" #include "AliMUONClusterInput.h" #include "AliMUONPixel.h" // This function is used for fitting void fcn1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag); ClassImp(AliMUONClusterFinderAZ) AliMUONClusterFinderAZ* AliMUONClusterFinderAZ::fgClusterFinder = NULL; TMinuit* AliMUONClusterFinderAZ::fgMinuit = NULL; //_____________________________________________________________________________ AliMUONClusterFinderAZ::AliMUONClusterFinderAZ(Bool_t draw=0, Int_t iReco=0) { // Constructor for (Int_t i=0; i<4; i++) {fHist[i] = 0;} fMuonDigits = 0; fSegmentation[1] = fSegmentation[0] = 0; if (!fgClusterFinder) fgClusterFinder = this; if (!fgMinuit) fgMinuit = new TMinuit(8); fDraw = draw; fReco = iReco; fPixArray = new TObjArray(20); /* fPoints = 0; fPhits = 0; fRpoints = 0; fCanvas = 0; fNextCathode = kFALSE; fColPad = 0; */ } //_____________________________________________________________________________ AliMUONClusterFinderAZ::~AliMUONClusterFinderAZ() { // Destructor delete fgMinuit; fgMinuit = 0; delete fPixArray; fPixArray = 0; /* // Delete space point structure if (fPoints) fPoints->Delete(); delete fPoints; fPoints = 0; // if (fPhits) fPhits->Delete(); delete fPhits; fPhits = 0; // if (fRpoints) fRpoints->Delete(); delete fRpoints; fRpoints = 0; */ } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::FindRawClusters() { // To provide the same interface as in AliMUONClusterFinderVS EventLoop (gAlice->GetHeader()->GetEvent(), AliMUONClusterInput::Instance()->Chamber()); } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::EventLoop(Int_t nev=0, Int_t ch=0) { // Loop over events FILE *lun = 0; TCanvas *c1 = 0; TView *view = 0; TH2F *hist = 0; Double_t p1[3]={0}, p2[3]; TTree *TR = 0; if (fDraw) { // File lun = fopen("pool.dat","w"); c1 = new TCanvas("c1","Clusters",0,0,600,700); c1->Divide(1,2); new TCanvas("c2","Mlem",700,0,600,350); } newev: Int_t nparticles = 0, nent; //Loaders AliRunLoader * rl = AliRunLoader::GetRunLoader(); AliLoader * gime = rl->GetLoader("MUONLoader"); if (!fReco) nparticles = rl->GetEvent(nev); else nparticles = gAlice->GetNtrack(); cout << "nev " << nev <TreeH(); Int_t ntracks = (Int_t) TH->GetEntries(); cout<<"ntracks "<GetModule("MUON"); if (!MUON) return; // TClonesArray *Particles = gAlice->Particles(); if (!fReco) { TR = gime->TreeR(); if (TR) { MUON->ResetRawClusters(); nent = (Int_t) TR->GetEntries(); if (nent != 1) { cout << "Error in MUONdrawClust" << endl; cout << " nent = " << nent << " not equal to 1" << endl; //exit(0); } } // if (TR) } // if (!fReco) TTree *TD = gime->TreeD(); //MUON->ResetDigits(); TClonesArray *MUONrawclust; AliMUONChamber* iChamber = 0; // As default draw the first cluster of the chamber #0 newchamber: if (ch > 9) {if (fReco) return; nev++; ch = 0; goto newev;} //gAlice->ResetDigits(); fMuonDigits = MUON->DigitsAddress(ch); if (fMuonDigits == 0) return; iChamber = &(MUON->Chamber(ch)); fSegmentation[0] = iChamber->SegmentationModel(1); fSegmentation[1] = iChamber->SegmentationModel(2); fResponse = iChamber->ResponseModel(); nent = 0; if (TD) { nent = (Int_t) TD->GetEntries(); //printf(" entries %d \n", nent); } Int_t ndigits[2]={9,9}, nShown[2]={0}; for (Int_t i=0; i<2; i++) { for (Int_t j=0; jResetDigits(); TD->GetEvent(cath); fMuonDigits = MUON->DigitsAddress(ch); ndigits[cath] = fMuonDigits->GetEntriesFast(); if (!ndigits[0] && !ndigits[1]) {if (fReco) return; ch++; goto newchamber;} if (ndigits[cath] == 0) continue; cout << " ndigits: " << ndigits[cath] << " " << cath << endl; AliMUONDigit *mdig; Int_t digit; Bool_t EOC = kTRUE; // end-of-cluster for (digit = 0; digit < ndigits[cath]; digit++) { mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit); if (mdig->Cathode() != cath) continue; if (first) { // Find first unused pad if (fUsed[cath][digit]) continue; fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad0); } else { if (fUsed[cath][digit]) continue; fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad); if (TMath::Abs(zpad-zpad0)>0.1) continue; // different slats // Find a pad overlapping with the cluster if (!Overlap(cath,mdig)) continue; } // Add pad - recursive call AddPad(cath,digit); EOC = kFALSE; if (digit >= 0) break; } if (first && EOC) { // No more unused pads if (cath == 0) continue; // on cathode #0 - check #1 else { // No more clusters if (fReco) return; ch++; goto newchamber; // next chamber } } if (EOC) break; // cluster found first = kFALSE; cout << " nPads: " << fnPads[cath] << " " << nShown[cath]+fnPads[cath] << " " << cath << endl; } // for (Int_t iii = 0; if (fReco) goto skip; char hName[4]; for (Int_t cath = 0; cath<2; cath++) { // Build histograms if (fHist[cath*2]) {fHist[cath*2]->Delete(); fHist[cath*2] = 0;} if (fHist[cath*2+1]) {fHist[cath*2+1]->Delete(); fHist[cath*2+1] = 0;} if (fnPads[cath] == 0) continue; // cluster on one cathode only Float_t wxMin=999, wxMax=0, wyMin=999, wyMax=0; Int_t minDx=0, maxDx=0, minDy=0, maxDy=0; for (Int_t i=0; i wxMax) {wxMax = fXyq[3][i]; maxDx = i;} if (fXyq[4][i] < wyMin) {wyMin = fXyq[4][i]; minDy = i;} if (fXyq[4][i] > wyMax) {wyMax = fXyq[4][i]; maxDy = i;} } cout << minDx << maxDx << minDy << maxDy << endl; Int_t nx, ny, padSize; Float_t xmin=9999, xmax=-9999, ymin=9999, ymax=-9999; if (TMath::Nint(fXyq[3][minDx]*1000) == TMath::Nint(fXyq[3][maxDx]*1000) && TMath::Nint(fXyq[4][minDy]*1000) == TMath::Nint(fXyq[4][maxDy]*1000)) { // the same segmentation cout << " Same" << endl; cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl; for (Int_t i=0; i xmax) xmax = fXyq[0][i]; if (fXyq[1][i] < ymin) ymin = fXyq[1][i]; if (fXyq[1][i] > ymax) ymax = fXyq[1][i]; } xmin -= fXyq[3][minDx]; xmax += fXyq[3][minDx]; ymin -= fXyq[4][minDy]; ymax += fXyq[4][minDy]; nx = TMath::Nint ((xmax-xmin)/wxMin/2); ny = TMath::Nint ((ymax-ymin)/wyMin/2); sprintf(hName,"h%d",cath*2); fHist[cath*2] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax); cout << fHist[cath*2] << " " << fnPads[cath] << endl; for (Int_t i=0; iFill(fXyq[0][i],fXyq[1][i],fXyq[2][i]); //cout << fXyq[0][i] << fXyq[1][i] << fXyq[2][i] << endl; } } else { // different segmentation in the cluster cout << " Different" << endl; cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl; Int_t nOK = 0; Int_t indx, locMin, locMax; if (TMath::Nint(fXyq[3][minDx]*1000) != TMath::Nint(fXyq[3][maxDx]*1000)) { // different segmentation along x indx = 0; locMin = minDx; locMax = maxDx; } else { // different segmentation along y indx = 1; locMin = minDy; locMax = maxDy; } Int_t loc = locMin; for (Int_t i=0; i<2; i++) { // loop over different pad sizes if (i>0) loc = locMax; padSize = TMath::Nint(fXyq[indx+3][loc]*1000); xmin = 9999; xmax = -9999; ymin = 9999; ymax = -9999; for (Int_t j=0; jFill(fXyq[0][j],fXyq[1][j],fXyq[2][j]); } } // for (Int_t i=0; if (nOK != fnPads[cath]) cout << " *** Too many segmentations: nPads, nOK " << fnPads[cath] << " " << nOK << endl; } // if (TMath::Nint(fXyq[3][minDx]*1000) } // for (Int_t cath = 0; // Draw histograms and coordinates for (Int_t cath=0; cath<2; cath++) { if (cath == 0) ModifyHistos(); if (fnPads[cath] == 0) continue; // cluster on one cathode only if (fDraw) { c1->cd(cath+1); gPad->SetTheta(55); gPad->SetPhi(30); Double_t x, y, x0, y0, r1=999, r2=0; if (fHist[cath*2+1]) { // x0 = fHist[cath*2]->GetXaxis()->GetXmin() - 1000*TMath::Cos(30*TMath::Pi()/180); y0 = fHist[cath*2]->GetYaxis()->GetXmin() - 1000*TMath::Sin(30*TMath::Pi()/180); r1 = 0; Int_t ihist=cath*2; for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) { y = fHist[ihist]->GetYaxis()->GetBinCenter(iy) + fHist[ihist]->GetYaxis()->GetBinWidth(iy); for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) { if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) { x = fHist[ihist]->GetXaxis()->GetBinCenter(ix) + fHist[ihist]->GetXaxis()->GetBinWidth(ix); r1 = TMath::Max (r1,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0))); } } } ihist = cath*2 + 1 ; for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) { y = fHist[ihist]->GetYaxis()->GetBinCenter(iy) + fHist[ihist]->GetYaxis()->GetBinWidth(iy); for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) { if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) { x = fHist[ihist]->GetXaxis()->GetBinCenter(ix) + fHist[ihist]->GetXaxis()->GetBinWidth(ix); r2 = TMath::Max (r2,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0))); } } } cout << r1 << " " << r2 << endl; } // if (fHist[cath*2+1]) if (r1 > r2) { //fHist[cath*2]->Draw("lego1"); fHist[cath*2]->Draw("lego1Fb"); //if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBb"); if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBbFb"); } else { //fHist[cath*2+1]->Draw("lego1"); fHist[cath*2+1]->Draw("lego1Fb"); //fHist[cath*2]->Draw("lego1SameAxisBb"); fHist[cath*2]->Draw("lego1SameAxisFbBb"); } c1->Update(); } // if (fDraw) } // for (Int_t cath = 0; // Draw generated hits Double_t xNDC[6]; hist = fHist[0] ? fHist[0] : fHist[2]; p2[2] = hist->GetMaximum(); view = 0; if (c1) view = c1->Pad()->GetView(); cout << " *** GEANT hits *** " << endl; fnMu = 0; Int_t ix, iy, iok; for (Int_t i=0; iGetEvent(i); for (AliMUONHit* mHit=(AliMUONHit*)MUON->FirstHit(-1); mHit; mHit=(AliMUONHit*)MUON->NextHit()) { if (mHit->Chamber() != ch+1) continue; // chamber number if (TMath::Abs(mHit->Z()-zpad0) > 1) continue; // different slat p2[0] = p1[0] = mHit->X(); // x-pos of hit p2[1] = p1[1] = mHit->Y(); // y-pos if (p1[0] < hist->GetXaxis()->GetXmin() || p1[0] > hist->GetXaxis()->GetXmax()) continue; if (p1[1] < hist->GetYaxis()->GetXmin() || p1[1] > hist->GetYaxis()->GetXmax()) continue; // Check if track comes thru pads with signal iok = 0; for (Int_t ihist=0; ihist<4; ihist++) { if (!fHist[ihist]) continue; ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]); iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]); if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;} } if (!iok) continue; gStyle->SetLineColor(1); if (TMath::Abs((Int_t)mHit->Particle()) == 13) { gStyle->SetLineColor(4); fnMu++; if (fnMu <= 2) { fxyMu[fnMu-1][0] = p1[0]; fxyMu[fnMu-1][1] = p1[1]; } } printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mHit->Z()); if (view) { view->WCtoNDC(p1, &xNDC[0]); view->WCtoNDC(p2, &xNDC[3]); for (Int_t ipad=1; ipad<3; ipad++) { c1->cd(ipad); //c1->DrawLine(xpad[0],xpad[1],xpad[3],xpad[4]); line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]); line[nLine++]->Draw(); } } } // for (AliMUONHit* mHit= } // for (Int_t i=0; iRawClustAddress(ch); TR->GetEvent(ch); //cout << MUONrawclust << " " << MUONrawclust->GetEntries() << endl; AliMUONRawCluster *mRaw; gStyle->SetLineColor(3); cout << " *** Reconstructed hits *** " << endl; for (Int_t i=0; iGetEntries(); i++) { mRaw = (AliMUONRawCluster*)MUONrawclust->UncheckedAt(i); if (TMath::Abs(mRaw->fZ[0]-zpad0) > 1) continue; // different slat p2[0] = p1[0] = mRaw->fX[0]; // x-pos of hit p2[1] = p1[1] = mRaw->fY[0]; // y-pos if (p1[0] < hist->GetXaxis()->GetXmin() || p1[0] > hist->GetXaxis()->GetXmax()) continue; if (p1[1] < hist->GetYaxis()->GetXmin() || p1[1] > hist->GetYaxis()->GetXmax()) continue; /* TD->GetEvent(cath); cout << mRaw->fMultiplicity[0] << mRaw->fMultiplicity[1] << endl; for (Int_t j=0; jfMultiplicity[cath]; j++) { Int_t digit = mRaw->fIndexMap[j][cath]; cout << ((AliMUONDigit*)fMuonDigits->UncheckedAt(digit))->Signal() << endl; } */ // Check if track comes thru pads with signal iok = 0; for (Int_t ihist=0; ihist<4; ihist++) { if (!fHist[ihist]) continue; ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]); iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]); if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;} } if (!iok) continue; printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mRaw->fZ[0]); if (view) { view->WCtoNDC(p1, &xNDC[0]); view->WCtoNDC(p2, &xNDC[3]); for (Int_t ipad=1; ipad<3; ipad++) { c1->cd(ipad); line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]); line[nLine++]->Draw(); } } } // for (Int_t i=0; iGetEntries(); if (fDraw) c1->Update(); skip: // Use MLEM for cluster finder fZpad = zpad0; Int_t nMax = 1, localMax[100], maxPos[100]; Double_t maxVal[100]; if (CheckPrecluster(nShown)) { BuildPixArray(); if (fnPads[0]+fnPads[1] > 50) nMax = FindLocalMaxima(localMax, maxVal); if (nMax > 1) TMath::Sort(nMax, maxVal, maxPos, kTRUE); // in decreasing order for (Int_t i=0; i 1) FindCluster(localMax, maxPos[i]); if (!MainLoop()) cout << " MainLoop failed " << endl; if (i < nMax-1) { for (Int_t j=0; jGetXaxis()->GetXmin(); // xmin hlim[1][nhist] = fHist[i]->GetXaxis()->GetXmax(); // xmax hlim[2][nhist] = fHist[i]->GetYaxis()->GetXmin(); // ymin hlim[3][nhist] = fHist[i]->GetYaxis()->GetXmax(); // ymax hbin[0][nhist] = hbin[1][nhist] = fHist[i]->GetXaxis()->GetBinWidth(1); hbin[2][nhist] = hbin[3][nhist] = fHist[i]->GetYaxis()->GetBinWidth(1); binMin[0] = TMath::Min(binMin[0],hbin[0][nhist]); binMin[2] = TMath::Min(binMin[2],hbin[2][nhist]); nhist++; } binMin[1] = binMin[0]; binMin[3] = binMin[2]; cout << " Nhist: " << nhist << endl; Int_t imin, imax; for (Int_t lim=0; lim<4; lim++) { while (1) { imin = TMath::LocMin(nhist,hlim[lim]); imax = TMath::LocMax(nhist,hlim[lim]); if (TMath::Abs(hlim[lim][imin]-hlim[lim][imax])<0.01*binMin[lim]) break; if (lim == 0 || lim == 2) { // find lower limit hlim[lim][imax] -= hbin[lim][imax]; } else { // find upper limit hlim[lim][imin] += hbin[lim][imin]; } } // while (1) } // Rebuild histograms nhist = 0; TH2F *hist = 0; Int_t nx, ny; Double_t x, y, cont, cmax=0; char hName[4]; for (Int_t ihist=0; ihist<4; ihist++) { if (!fHist[ihist]) continue; nx = TMath::Nint((hlim[1][nhist]-hlim[0][nhist])/hbin[0][nhist]); ny = TMath::Nint((hlim[3][nhist]-hlim[2][nhist])/hbin[2][nhist]); //hist = new TH2F("h","hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]); sprintf(hName,"hh%d",ihist); hist = new TH2F(hName,"hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]); for (Int_t i=1; i<=fHist[ihist]->GetNbinsX(); i++) { x = fHist[ihist]->GetXaxis()->GetBinCenter(i); for (Int_t j=1; j<=fHist[ihist]->GetNbinsY(); j++) { y = fHist[ihist]->GetYaxis()->GetBinCenter(j); cont = fHist[ihist]->GetCellContent(i,j); hist->Fill(x,y,cont); } } cmax = TMath::Max (cmax,hist->GetMaximum()); fHist[ihist]->Delete(); fHist[ihist] = new TH2F(*hist); hist->Delete(); nhist++; } printf("%f \n",cmax); for (Int_t ihist=0; ihist<4; ihist++) { if (!fHist[ihist]) continue; fHist[ihist]->SetMaximum(cmax); } } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::AddPad(Int_t cath, Int_t digit) { // Add pad to the cluster AliMUONDigit *mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit); Int_t charge = mdig->Signal(); // get the center of the pad Float_t xpad, ypad, zpad; fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad); Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY()); Int_t nPads = fnPads[0] + fnPads[1]; fXyq[0][nPads] = xpad; fXyq[1][nPads] = ypad; fXyq[2][nPads] = charge; fXyq[3][nPads] = fSegmentation[cath]->Dpx(isec)/2; fXyq[4][nPads] = fSegmentation[cath]->Dpy(isec)/2; fXyq[5][nPads] = digit; fPadIJ[0][nPads] = cath; fPadIJ[1][nPads] = 0; fUsed[cath][digit] = kTRUE; //cout << " bbb " << fXyq[cath][2][nPads] << " " << fXyq[cath][0][nPads] << " " << fXyq[cath][1][nPads] << " " << fXyq[cath][3][nPads] << " " << fXyq[cath][4][nPads] << " " << zpad << " " << nPads << endl; fnPads[cath]++; // Check neighbours Int_t nn, ix, iy, xList[10], yList[10]; AliMUONDigit *mdig1; Int_t ndigits = fMuonDigits->GetEntriesFast(); fSegmentation[cath]->Neighbours(mdig->PadX(),mdig->PadY(),&nn,xList,yList); for (Int_t in=0; inUncheckedAt(digit1); if (mdig1->Cathode() != cath) continue; if (!fUsed[cath][digit1] && mdig1->PadX() == ix && mdig1->PadY() == iy) { fUsed[cath][digit1] = kTRUE; // Add pad - recursive call AddPad(cath,digit1); } } //for (Int_t digit1 = 0; } // for (Int_t in=0; } //_____________________________________________________________________________ Bool_t AliMUONClusterFinderAZ::Overlap(Int_t cath, TObject *dig) { // Check if the pad from one cathode overlaps with a pad // in the precluster on the other cathode AliMUONDigit *mdig = (AliMUONDigit*) dig; Float_t xpad, ypad, zpad; fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad); Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY()); Float_t xy1[4], xy12[4]; xy1[0] = xpad - fSegmentation[cath]->Dpx(isec)/2; xy1[1] = xy1[0] + fSegmentation[cath]->Dpx(isec); xy1[2] = ypad - fSegmentation[cath]->Dpy(isec)/2; xy1[3] = xy1[2] + fSegmentation[cath]->Dpy(isec); //cout << " ok " << fnPads[0]+fnPads[1] << xy1[0] << xy1[1] << xy1[2] << xy1[3] << endl; Int_t cath1 = TMath::Even(cath); for (Int_t i=0; i xy2[1]-1.e-4 || xy1[1] < xy2[0]+1.e-4) return kFALSE; xy2[2] = fXyq[1][iPad] - fXyq[4][iPad]; xy2[3] = fXyq[1][iPad] + fXyq[4][iPad]; if (xy1[2] > xy2[3]-1.e-4 || xy1[3] < xy2[2]+1.e-4) return kFALSE; if (!iSkip) return kTRUE; // just check overlap (w/out computing the area) xy12[0] = TMath::Max (xy1[0],xy2[0]); xy12[1] = TMath::Min (xy1[1],xy2[1]); xy12[2] = TMath::Max (xy1[2],xy2[2]); xy12[3] = TMath::Min (xy1[3],xy2[3]); return kTRUE; } //_____________________________________________________________________________ /* Bool_t AliMUONClusterFinderAZ::Overlap(Int_t i, Int_t j, Float_t *xy12, Int_t iSkip) { // Check if the pads i and j overlap and return overlap area Float_t xy1[4], xy2[4]; return Overlap(xy1, xy2, xy12, iSkip); } */ //_____________________________________________________________________________ Bool_t AliMUONClusterFinderAZ::CheckPrecluster(Int_t *nShown) { // Check precluster in order to attempt to simplify it (mostly for // two-cathode preclusters) Int_t i1, i2; Float_t xy1[4], xy12[4]; Int_t npad = fnPads[0] + fnPads[1]; // If pads have the same size take average of pads on both cathodes Int_t sameSize = (fnPads[0] && fnPads[1]) ? 1 : 0; if (sameSize) { Double_t xSize = -1, ySize = 0; for (Int_t i=0; i 1.e-4 || TMath::Abs(ySize-fXyq[4][i]) > 1.e-4) { sameSize = 0; break; } } } // if (sameSize) if (sameSize && (fnPads[0] > 2 || fnPads[1] > 2)) { nShown[0] += fnPads[0]; nShown[1] += fnPads[1]; fnPads[0] = fnPads[1] = 0; Int_t div; for (Int_t i=0; i 1.e-4) continue; if (TMath::Abs(fXyq[1][j]-fXyq[1][i]) > 1.e-4) continue; fXyq[2][fnPads[0]] += fXyq[2][j]; div = 2; fXyq[2][j] = -2; break; } fXyq[2][fnPads[0]] /= div; fXyq[0][fnPads[0]] = fXyq[0][i]; fXyq[1][fnPads[0]] = fXyq[1][i]; fPadIJ[0][fnPads[0]++] = 0; } } // if (sameSize) // Check if one-cathode precluster i1 = fnPads[0]!=0 ? 0 : 1; i2 = fnPads[1]!=0 ? 1 : 0; if (i1 != i2) { // two-cathode Int_t *flags = new Int_t[npad]; for (Int_t i=0; i 1) { // 3 times difference cout << " Release " << endl; // Big difference cath = sum[0]>sum[1] ? 0 : 1; Int_t imax = 0; Double_t cmax=-1; Double_t *dist = new Double_t[npad]; for (Int_t i=0; i 0) { beg++; continue; } for (Int_t j=end; j>beg; j--) { if (fXyq[2][j] < 0) continue; end = j - 1; for (Int_t j1=0; j1<2; j1++) { padij = fPadIJ[j1][beg]; fPadIJ[j1][beg] = fPadIJ[j1][j]; fPadIJ[j1][j] = padij; } for (Int_t j1=0; j1<6; j1++) { xyq = fXyq[j1][beg]; fXyq[j1][beg] = fXyq[j1][j]; fXyq[j1][j] = xyq; } break; } // for (Int_t j=end; beg++; } // while npad = fnPads[0] + fnPads[1]; if (npad > 500) { cout << " ***** Too large cluster. Give up. " << npad << endl; return kFALSE; } // Back up charge value for (Int_t j=0; jSetCoord(i, fXyq[i][j]); // pixel coordinates pixPtr->SetSize(i, fXyq[i+3][j]); // pixel size } pixPtr->SetCharge(fXyq[2][j]); // charge fPixArray->Add((TObject*)pixPtr); nPix++; } } else { // two-cathode precluster for (Int_t i=0; iSetCoord(k, (xy12[2*k]+xy12[2*k+1])/2); // pixel coordinates pixPtr->SetSize(k, xy12[2*k+1]-pixPtr->Coord(k)); // size } pixPtr->SetCharge(TMath::Min (fXyq[2][i],fXyq[2][j])); //charge fPixArray->Add((TObject*)pixPtr); nPix++; } // for (Int_t j=0; } // for (Int_t i=0; } // else Float_t wxmin=999, wymin=999; for (Int_t i=0; iUncheckedAt(i); //pixPtr->Print(); if (pixPtr->Charge() < 1) { fPixArray->RemoveAt(i); delete pixPtr; }// discarded pixel } fPixArray->Compress(); nPix = fPixArray->GetEntriesFast(); if (nPix > npad) { cout << nPix << endl; // Too many pixels - sort and remove pixels with the lowest signal fPixArray->Sort(); for (Int_t i=npad; iUncheckedAt(i); //pixPtr->Print(); fPixArray->RemoveAt(i); delete pixPtr; } nPix = npad; } // if (nPix > npad) // Set pixel charges to the same value (for MLEM) for (Int_t i=0; iUncheckedAt(i); //pixPtr->SetCharge(10); cout << i+1 << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << " " << pixPtr->Size(0) << " " << pixPtr->Size(1) << endl; } } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::AjustPixel(Float_t width, Int_t ixy) { // Check if some pixels have small size (ajust if necessary) AliMUONPixel *pixPtr, *pixPtr1 = 0; Int_t ixy1 = TMath::Even(ixy); Int_t nPix = fPixArray->GetEntriesFast(); for (Int_t i=0; iUncheckedAt(i); if (pixPtr->Charge() < 1) continue; // discarded pixel if (pixPtr->Size(ixy)-width < -1.e-4) { // try to merge cout << " Small X or Y: " << ixy << " " << pixPtr->Size(ixy) << " " << width << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << endl; for (Int_t j=i+1; jUncheckedAt(j); if (pixPtr1->Charge() < 1) continue; // discarded pixel if (TMath::Abs(pixPtr1->Size(ixy)-width) < 1.e-4) continue; // right size if (TMath::Abs(pixPtr1->Coord(ixy1)-pixPtr->Coord(ixy1)) > 1.e-4) continue; // different rows/columns if (TMath::Abs(pixPtr1->Coord(ixy)-pixPtr->Coord(ixy)) < 2*width) { // merge pixPtr->SetSize(ixy, width); pixPtr->SetCoord(ixy, (pixPtr->Coord(ixy)+pixPtr1->Coord(ixy))/2); pixPtr->SetCharge(TMath::Min (pixPtr->Charge(),pixPtr1->Charge())); pixPtr1->SetCharge(0); pixPtr1 = 0; break; } } // for (Int_t j=i+1; //if (!pixPtr1) { cout << " I am here!" << endl; pixPtr->SetSize(ixy, width); } // ??? //else if (pixPtr1->Charge() > 0.5 || i == nPix-1) { if (pixPtr1 || i == nPix-1) { // edge pixel - just increase its size cout << " Edge ..." << endl; for (Int_t j=0; jCoord(ixy1)-fXyq[ixy1][j]) > 1.e-4) continue; if (pixPtr->Coord(ixy) < fXyq[ixy][j]) pixPtr->Shift(ixy, -pixPtr->Size(ixy)); else pixPtr->Shift(ixy, pixPtr->Size(ixy)); pixPtr->SetSize(ixy, width); break; } } } // if (pixPtr->Size(ixy)-width < -1.e-4) } // for (Int_t i=0; iGetEntriesFast(); AliMUONPixel *pixPtr, *pixPtr1, pix; // Check if large pixel size for (Int_t i=0; iUncheckedAt(i); if (pixPtr->Charge() < 1) continue; // discarded pixel if (pixPtr->Size(0)-wxmin > 1.e-4 || pixPtr->Size(1)-wymin > 1.e-4) { cout << " Different " << pixPtr->Size(0) << " " << wxmin << " " << pixPtr->Size(1) << " " << wymin << endl; pix = *pixPtr; nx = TMath::Nint (pix.Size(0)/wxmin); ny = TMath::Nint (pix.Size(1)/wymin); pix.Shift(0, -pix.Size(0)-wxmin); pix.Shift(1, -pix.Size(1)-wymin); pix.SetSize(0, wxmin); pix.SetSize(1, wymin); for (Int_t ii=0; iiAdd((TObject*)pixPtr1); } } pixPtr->SetCharge(0); } } // for (Int_t i=0; iGetEntriesFast(); Int_t npadTot = fnPads[0] + fnPads[1], npadOK = 0; AliMUONPixel *pixPtr = 0; Double_t *coef = 0, *probi = 0; for (Int_t i=0; iFindObject("mlem"); if (mlem) mlem->Delete(); // Calculate coefficients cout << " nPix, npadTot, npadOK " << nPix << " " << npadTot << " " << npadOK << endl; // Calculate coefficients and pixel visibilities coef = new Double_t [npadTot*nPix]; probi = new Double_t [nPix]; Int_t indx = 0, cath; for (Int_t ipix=0; ipixUncheckedAt(ipix); probi[ipix] = 0; for (Int_t j=0; jGetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy); fSegmentation[cath]->SetPad(ix,iy); /* fSegmentation[cath]->Neighbours(ix,iy,&nn,xList,yList); if (nn != 4) { cout << nn << ": "; for (Int_t i=0; iSetHit(pixPtr->Coord(0),pixPtr->Coord(1),fZpad); sum += fResponse->IntXY(fSegmentation[cath]); indx = j*nPix + ipix; coef[indx] = sum; probi[ipix] += coef[indx]; //cout << j << " " << ipix << " " << coef[indx] << endl; } // for (Int_t j=0; //cout << " prob: " << probi[ipix] << endl; if (probi[ipix] < 0.01) pixPtr->SetCharge(0); // "invisible" pixel } // for (Int_t ipix=0; // MLEM algorithm Mlem(coef, probi); Double_t xylim[4] = {999, 999, 999, 999}; for (Int_t ipix=0; ipixUncheckedAt(ipix); for (Int_t i=0; i<4; i++) xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2)); //cout << ipix+1; pixPtr->Print(); } for (Int_t i=0; i<4; i++) { xylim[i] -= pixPtr->Size(i/2); cout << (i%2 ? -1 : 1)*xylim[i] << " "; } cout << endl; // Ajust histogram to approximately the same limits as for the pads // (for good presentation) //* Float_t xypads[4]; if (fHist[0]) { xypads[0] = fHist[0]->GetXaxis()->GetXmin(); xypads[1] = -fHist[0]->GetXaxis()->GetXmax(); xypads[2] = fHist[0]->GetYaxis()->GetXmin(); xypads[3] = -fHist[0]->GetYaxis()->GetXmax(); for (Int_t i=0; i<4; i++) { while(1) { if (xylim[i] < xypads[i]) break; xylim[i] -= 2*pixPtr->Size(i/2); } } } // if (fHist[0]) //*/ Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2); Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2); mlem = new TH2D("mlem","mlem",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]); for (Int_t ipix=0; ipixUncheckedAt(ipix); mlem->Fill(pixPtr->Coord(0),pixPtr->Coord(1),pixPtr->Charge()); } //gPad->GetCanvas()->cd(3); if (fDraw) { ((TCanvas*)gROOT->FindObject("c2"))->cd(); gPad->SetTheta(55); gPad->SetPhi(30); mlem->Draw("lego1Fb"); gPad->Update(); gets((char*)&ix); } // Check if the total charge of pixels is too low Double_t qTot = 0; for (Int_t i=0; iUncheckedAt(i); qTot += pixPtr->Charge(); } if (qTot < 1.e-4 || npadOK < 3 && qTot < 50) { delete [] coef; delete [] probi; coef = 0; probi = 0; fPixArray->Delete(); return kFALSE; } // Plot data - expectation /* Double_t x, y, cont; for (Int_t j=0; jUncheckedAt(i); sum1 += pixPtr->Charge()*coef[j*nPix+i]; } sum1 = TMath::Min (sum1,(Double_t)fResponse->MaxAdc()); x = fXyq[0][j]; y = fXyq[1][j]; cath = fPadIJ[0][j]; Int_t ihist = cath*2; ix = fHist[ihist]->GetXaxis()->FindBin(x); iy = fHist[ihist]->GetYaxis()->FindBin(y); cont = fHist[ihist]->GetCellContent(ix,iy); if (cont == 0 && fHist[ihist+1]) { ihist += 1; ix = fHist[ihist]->GetXaxis()->FindBin(x); iy = fHist[ihist]->GetYaxis()->FindBin(y); } fHist[ihist]->SetBinContent(ix,iy,fXyq[2][j]-sum1); } ((TCanvas*)gROOT->FindObject("c1"))->cd(1); //gPad->SetTheta(55); //gPad->SetPhi(30); //mlem->Draw("lego1"); gPad->Modified(); ((TCanvas*)gROOT->FindObject("c1"))->cd(2); gPad->Modified(); */ // Calculate position of the center-of-gravity around the maximum pixel Double_t xyCOG[2]; FindCOG(mlem, xyCOG); if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) < 0.07 && pixPtr->Size(0) > pixPtr->Size(1)) break; //if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) >= 0.07 || pixPtr->Size(0) < pixPtr->Size(1)) { // Sort pixels according to the charge fPixArray->Sort(); /* for (Int_t i=0; iUncheckedAt(i); cout << i+1; pixPtr->Print(); } */ Double_t pixMin = 0.01*((AliMUONPixel*)fPixArray->UncheckedAt(0))->Charge(); pixMin = TMath::Min (pixMin,50.); // Decrease pixel size and shift pixels to make them centered at // the maximum one indx = (pixPtr->Size(0)>pixPtr->Size(1)) ? 0 : 1; Double_t width = 0, shift[2]={0}; ix = 1; for (Int_t i=0; i<4; i++) xylim[i] = 999; Int_t nPix1 = nPix; nPix = 0; for (Int_t ipix=0; ipixUncheckedAt(ipix); if (nPix >= npadOK) { // too many pixels already fPixArray->RemoveAt(ipix); delete pixPtr; continue; } if (pixPtr->Charge() < pixMin) { // low charge fPixArray->RemoveAt(ipix); delete pixPtr; continue; } for (Int_t i=0; i<2; i++) { if (!i) { pixPtr->SetCharge(10); pixPtr->SetSize(indx, pixPtr->Size(indx)/2); width = -pixPtr->Size(indx); pixPtr->Shift(indx, width); // Shift pixel position if (ix) { ix = 0; for (Int_t j=0; j<2; j++) { shift[j] = pixPtr->Coord(j) - xyCOG[j]; shift[j] -= ((Int_t)(shift[j]/pixPtr->Size(j)/2))*pixPtr->Size(j)*2; } //cout << ipix << " " << i << " " << shift[0] << " " << shift[1] << endl; } // if (ix) pixPtr->Shift(0, -shift[0]); pixPtr->Shift(1, -shift[1]); } else { pixPtr = new AliMUONPixel(*pixPtr); pixPtr->Shift(indx, -2*width); fPixArray->Add((TObject*)pixPtr); } // else //pixPtr->Print(); for (Int_t i=0; i<4; i++) xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2)); } // for (Int_t i=0; i<2; nPix += 2; } // for (Int_t ipix=0; fPixArray->Compress(); nPix = fPixArray->GetEntriesFast(); // Remove excessive pixels if (nPix > npadOK) { for (Int_t ipix=npadOK; ipixUncheckedAt(ipix); fPixArray->RemoveAt(ipix); delete pixPtr; } } else { pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(0); // add pixels if the maximum is at the limit of pixel area // start from Y-direction Int_t j = 0; for (Int_t i=3; i>-1; i--) { if (nPix < npadOK && TMath::Abs((i%2 ? -1 : 1)*xylim[i]-xyCOG[i/2]) < pixPtr->Size(i/2)) { pixPtr = new AliMUONPixel(*pixPtr); pixPtr->SetCoord(i/2, xyCOG[i/2]+(i%2 ? 2:-2)*pixPtr->Size(i/2)); j = TMath::Even (i/2); pixPtr->SetCoord(j, xyCOG[j]); fPixArray->Add((TObject*)pixPtr); nPix++; } } } // else fPixArray->Compress(); nPix = fPixArray->GetEntriesFast(); delete [] coef; delete [] probi; coef = 0; probi = 0; } // while (1) // remove pixels with low signal or low visibility // Cuts are empirical !!! Double_t thresh = TMath::Max (mlem->GetMaximum()/100.,1.); thresh = TMath::Min (thresh,50.); Double_t cmax = -1, charge = 0; for (Int_t i=0; iUncheckedAt(i); charge = pixPtr->Charge(); if (charge < thresh) pixPtr->SetCharge(-charge); else if (cmax > 1.91) { if (probi[i] < 1.9) pixPtr->SetCharge(-charge); } else if (probi[i] < cmax*0.9) pixPtr->SetCharge(-charge); } // Move charge of removed pixels to their nearest neighbour (to keep total charge the same) Int_t near = 0; for (Int_t i=0; iUncheckedAt(i); charge = pixPtr->Charge(); if (charge > 0) continue; near = FindNearest(pixPtr); pixPtr->SetCharge(0); pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(near); pixPtr->SetCharge(pixPtr->Charge() - charge); } // Update histogram for (Int_t i=0; iUncheckedAt(i); ix = mlem->GetXaxis()->FindBin(pixPtr->Coord(0)); iy = mlem->GetYaxis()->FindBin(pixPtr->Coord(1)); mlem->SetBinContent(ix, iy, pixPtr->Charge()); } if (fDraw) { ((TCanvas*)gROOT->FindObject("c2"))->cd(); gPad->SetTheta(55); gPad->SetPhi(30); mlem->Draw("lego1Fb"); gPad->Update(); } fxyMu[0][6] = fxyMu[1][6] = 9999; // Try to split into clusters Bool_t ok = kTRUE; if (mlem->GetSum() < 1) ok = kFALSE; else Split(mlem, coef); delete [] coef; delete [] probi; coef = 0; probi = 0; fPixArray->Delete(); return ok; } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::Mlem(Double_t *coef, Double_t *probi) { // Use MLEM to find pixel charges Int_t nPix = fPixArray->GetEntriesFast(); Int_t npad = fnPads[0] + fnPads[1]; Double_t *probi1 = new Double_t [nPix]; Int_t indx, indx1; AliMUONPixel *pixPtr; for (Int_t iter=0; iter<15; iter++) { // Do iterations for (Int_t ipix=0; ipixUncheckedAt(i); sum1 += pixPtr->Charge()*coef[indx1+i]; } // for (Int_t i=0; if (fXyq[2][j] > fResponse->MaxAdc()-1 && sum1 > fResponse->MaxAdc()) { probi1[ipix] -= coef[indx]; continue; } // correct for pad charge overflows //cout << sum1 << " " << fXyq[2][j] << " " << coef[j*nPix+ipix] << endl; if (coef[indx] > 1.e-6) sum += fXyq[2][j]*coef[indx]/sum1; } // for (Int_t j=0; pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix); if (probi1[ipix] > 1.e-6) pixPtr->SetCharge(pixPtr->Charge()*sum/probi1[ipix]); } // for (Int_t ipix=0; } // for (Int_t iter=0; delete [] probi1; return; } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::FindCOG(TH2D *mlem, Double_t *xyc) { // Calculate position of the center-of-gravity around the maximum pixel Int_t ixmax, iymax, ix, nsumx=0, nsumy=0, nsum=0; Int_t i1 = -9, j1 = -9; mlem->GetMaximumBin(ixmax,iymax,ix); Int_t nx = mlem->GetNbinsX(); Int_t ny = mlem->GetNbinsY(); Double_t thresh = mlem->GetMaximum()/10; Double_t x, y, cont, xq=0, yq=0, qq=0; for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) { y = mlem->GetYaxis()->GetBinCenter(i); for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) { cont = mlem->GetCellContent(j,i); if (cont < thresh) continue; if (i != i1) {i1 = i; nsumy++;} if (j != j1) {j1 = j; nsumx++;} x = mlem->GetXaxis()->GetBinCenter(j); xq += x*cont; yq += y*cont; qq += cont; nsum++; } } Double_t cmax = 0; Int_t i2 = 0, j2 = 0; x = y = 0; if (nsumy == 1) { // one bin in Y - add one more (with the largest signal) for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) { if (i == iymax) continue; for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) { cont = mlem->GetCellContent(j,i); if (cont > cmax) { cmax = cont; x = mlem->GetXaxis()->GetBinCenter(j); y = mlem->GetYaxis()->GetBinCenter(i); i2 = i; j2 = j; } } } xq += x*cmax; yq += y*cmax; qq += cmax; if (i2 != i1) nsumy++; if (j2 != j1) nsumx++; nsum++; } // if (nsumy == 1) if (nsumx == 1) { // one bin in X - add one more (with the largest signal) cmax = x = y = 0; for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) { if (j == ixmax) continue; for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) { cont = mlem->GetCellContent(j,i); if (cont > cmax) { cmax = cont; x = mlem->GetXaxis()->GetBinCenter(j); y = mlem->GetYaxis()->GetBinCenter(i); i2 = i; j2 = j; } } } xq += x*cmax; yq += y*cmax; qq += cmax; if (i2 != i1) nsumy++; if (j2 != j1) nsumx++; nsum++; } // if (nsumx == 1) xyc[0] = xq/qq; xyc[1] = yq/qq; cout << xyc[0] << " " << xyc[1] << " " << qq << " " << nsum << " " << nsumx << " " << nsumy << endl; return; } //_____________________________________________________________________________ Int_t AliMUONClusterFinderAZ::FindNearest(AliMUONPixel *pixPtr0) { // Find the pixel nearest to the given one // (algorithm may be not very efficient) Int_t nPix = fPixArray->GetEntriesFast(), imin = 0; Double_t rmin = 99999, dx = 0, dy = 0, r = 0; Double_t xc = pixPtr0->Coord(0), yc = pixPtr0->Coord(1); AliMUONPixel *pixPtr; for (Int_t i=0; iUncheckedAt(i); if (pixPtr->Charge() < 0.5) continue; dx = (xc - pixPtr->Coord(0)) / pixPtr->Size(0); dy = (yc - pixPtr->Coord(1)) / pixPtr->Size(1); r = dx *dx + dy * dy; if (r < rmin) { rmin = r; imin = i; } } return imin; } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::Split(TH2D *mlem, Double_t *coef) { // The main steering function to work with clusters of pixels in anode // plane (find clusters, decouple them from each other, merge them (if // necessary), pick up coupled pads, call the fitting function) Int_t nx = mlem->GetNbinsX(); Int_t ny = mlem->GetNbinsY(); Int_t nPix = fPixArray->GetEntriesFast(); Bool_t *used = new Bool_t[ny*nx]; Double_t cont; Int_t nclust = 0, indx, indx1; for (Int_t i=0; iGetCellContent(j,i); if (cont < 0.5) continue; pix = new TObjArray(20); used[indx] = 1; pix->Add(BinToPix(mlem,j,i)); AddBin(mlem, i, j, 0, used, pix); // recursive call clusters[nclust++] = pix; if (nclust > 200) { cout << " Too many clusters " << endl; ::exit(0); } } // for (Int_t j=1; j<=nx; j++) { } // for (Int_t i=1; i<=ny; cout << nclust << endl; delete [] used; used = 0; // Compute couplings between clusters and clusters to pads Int_t npad = fnPads[0] + fnPads[1]; // Exclude pads with overflows for (Int_t j=0; j fResponse->MaxAdc()-1) fPadIJ[1][j] = -9; else fPadIJ[1][j] = 0; } // Compute couplings of clusters to pads TMatrixD *aij_clu_pad = new TMatrixD(nclust,npad); *aij_clu_pad = 0; Int_t npxclu; for (Int_t iclust=0; iclustGetEntriesFast(); for (Int_t i=0; iIndexOf(pix->UncheckedAt(i)); for (Int_t j=0; j 1) aij_clu_clu->Print(); // Find groups of coupled clusters used = new Bool_t[nclust]; for (Int_t i=0; i 0) { if (nCoupled < 4) { nForFit = nCoupled; for (Int_t i=0; i= 0 && nForFit < 3) { cout << clustNumb[minGroup[nForFit]] << " "; clustFit[nForFit] = clustNumb[minGroup[nForFit]]; clustNumb[minGroup[nForFit]] -= 999; nForFit++; } cout << nForFit << " " << coupl << endl; } // else // Select pads for fit. if (SelectPad(nCoupled, nForFit, clustNumb, clustFit, aij_clu_pad) < 3 && nCoupled > 1) { // Deselect pads for (Int_t j=0; j= 0) { beg++; continue; } for (Int_t j=end; j>beg; j--) { if (clustNumb[j] < 0) continue; end = j - 1; indx = clustNumb[beg]; clustNumb[beg] = clustNumb[j]; clustNumb[j] = indx; break; } beg++; } nCoupled -= nForFit; if (nCoupled > 3) { // Remove couplings of used clusters for (Int_t iclust=nCoupled; iclust 3) } // while (nCoupled > 0) } // for (Int_t igroup=0; igroupDelete(); aij_clu_pad->Delete(); for (Int_t iclust=0; iclustClear(); delete pix; pix = 0; } delete [] clustNumb; clustNumb = 0; delete [] used; used = 0; } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::AddBin(TH2D *mlem, Int_t ic, Int_t jc, Int_t mode, Bool_t *used, TObjArray *pix) { // Add a bin to the cluster Int_t nx = mlem->GetNbinsX(); Int_t ny = mlem->GetNbinsY(); Double_t cont1, cont = mlem->GetCellContent(jc,ic); AliMUONPixel *pixPtr = 0; for (Int_t i=TMath::Max(ic-1,1); i<=TMath::Min(ic+1,ny); i++) { for (Int_t j=TMath::Max(jc-1,1); j<=TMath::Min(jc+1,nx); j++) { if (i != ic && j != jc) continue; if (used[(i-1)*nx+j-1]) continue; cont1 = mlem->GetCellContent(j,i); if (mode && cont1 > cont) continue; used[(i-1)*nx+j-1] = kTRUE; if (cont1 < 0.5) continue; if (pix) pix->Add(BinToPix(mlem,j,i)); else { pixPtr = new AliMUONPixel (mlem->GetXaxis()->GetBinCenter(j), mlem->GetYaxis()->GetBinCenter(i), 0, 0, cont1); fPixArray->Add((TObject*)pixPtr); } AddBin(mlem, i, j, mode, used, pix); // recursive call } } } //_____________________________________________________________________________ TObject* AliMUONClusterFinderAZ::BinToPix(TH2D *mlem, Int_t jc, Int_t ic) { // Translate histogram bin to pixel Double_t yc = mlem->GetYaxis()->GetBinCenter(ic); Double_t xc = mlem->GetXaxis()->GetBinCenter(jc); Int_t nPix = fPixArray->GetEntriesFast(); AliMUONPixel *pixPtr; // Compare pixel and bin positions for (Int_t i=0; iUncheckedAt(i); if (pixPtr->Charge() < 0.5) continue; if (TMath::Abs(pixPtr->Coord(0)-xc)<1.e-4 && TMath::Abs(pixPtr->Coord(1)-yc)<1.e-4) return (TObject*) pixPtr; } cout << " Something wrong ??? " << endl; return NULL; } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::AddCluster(Int_t ic, Int_t nclust, TMatrixD *aij_clu_clu, Bool_t *used, Int_t *clustNumb, Int_t &nCoupled) { // Add a cluster to the group of coupled clusters for (Int_t i=0; i 3) { pad_pix = new Double_t[npad]; for (Int_t i=0; i 3) { // Check other clusters for (Int_t iclust1=0; iclust1 3) } // for (Int_t j=0; jGetEntriesFast(); couplMax = -1; for (Int_t icl1=0; icl1 couplMax) { couplMax = (*aij_clu_clu)(indx,indx1); imax = indx1; } } // for (Int_t icl1=0; /*if (couplMax < kCouplMin) { cout << " Oops " << couplMax << endl; aij_clu_clu->Print(); cout << icl << " " << indx << " " << npxclu << " " << nLinks << endl; ::exit(0); }*/ // Add to it pix1 = clusters[imax]; npxclu1 = pix1->GetEntriesFast(); // Add pixels for (Int_t i=0; iAdd(pix->UncheckedAt(i)); pix->RemoveAt(i); } cout << " New number of pixels: " << npxclu1 << " " << pix1->GetEntriesFast() << endl; //Add cluster-to-cluster couplings //aij_clu_clu->Print(); for (Int_t icl1=0; icl1Print(); //Add cluster-to-pad couplings for (Int_t j=0; jFindObject("mlem"); //Int_t nx = mlem->GetNbinsX(); //Int_t ny = mlem->GetNbinsY(); Double_t xmin = mlem->GetXaxis()->GetXmin() - mlem->GetXaxis()->GetBinWidth(1); Double_t xmax = mlem->GetXaxis()->GetXmax() + mlem->GetXaxis()->GetBinWidth(1); Double_t ymin = mlem->GetYaxis()->GetXmin() - mlem->GetYaxis()->GetBinWidth(1); Double_t ymax = mlem->GetYaxis()->GetXmax() + mlem->GetYaxis()->GetBinWidth(1); //Double_t qmin = 0, qmax = 1; Double_t step[3]={0.01,0.002,0.02}; Double_t cont, cmax = 0, xseed = 0, yseed = 0, errOk[8]; TObjArray *pix; Int_t npxclu; // Number of pads to use Int_t npads = 0; for (Int_t i=0; iGetEntriesFast(); for (Int_t clu=0; cluUncheckedAt(clu); cont = pixPtr->Charge(); fQtot += cont; if (cont > cmax) { cmax = cont; xseed = pixPtr->Coord(0); yseed = pixPtr->Coord(1); } } xyseed[ifit-1][0] = xseed; xyseed[ifit-1][1] = yseed; qseed[ifit-1] = cmax; } // for (Int_t ifit=1; Int_t nDof, maxSeed[3]; Double_t fmin, chi2o = 9999, chi2n; // Try to fit with one-track hypothesis, then 2-track. If chi2/dof is // lower, try 3-track (if number of pads is sufficient). TMath::Sort(nfit, qseed, maxSeed, kTRUE); // in decreasing order nfit = TMath::Min (nfit, (npads + 1) / 3); Double_t *gin = 0, func0, func1, param[8], param0[2][8], deriv[2][8], step0[8]; Double_t shift[8], stepMax, derMax, parmin[8], parmax[8], func2[2], shift0; Double_t delta[8], scMax, dder[8], estim, shiftSave = 0; Int_t min, max, nCall = 0, memory[8] = {0}, nLoop, idMax = 0, iestMax = 0, nFail; for (Int_t iseed=0; iseed 2) { param[fNpar] = fNpar == 4 ? 0.5 : 0.3; parmin[fNpar] = 0; parmax[fNpar++] = 1; } // Try new algorithm min = nLoop = 1; stepMax = func2[1] = derMax = 999999; nFail = 0; while (1) { max = !min; fcn1(fNpar, gin, func0, param, 1); nCall++; //cout << " Func: " << func0 << endl; func2[max] = func0; for (Int_t j=0; j 0) param[j-1] -= delta[j-1] / 10; fcn1(fNpar, gin, func1, param, 1); nCall++; deriv[max][j] = (func1 - func0) / delta[j] * 10; // first derivative //cout << j << " " << deriv[max][j] << endl; dder[j] = param0[0][j] != param0[1][j] ? (deriv[0][j] - deriv[1][j]) / (param0[0][j] - param0[1][j]) : 0; // second derivative } param[fNpar-1] -= delta[fNpar-1] / 10; if (nCall > 2000) ::exit(0); min = func2[0] < func2[1] ? 0 : 1; nFail = min == max ? 0 : nFail + 1; stepMax = derMax = estim = 0; for (Int_t j=0; j 0 && TMath::Abs(deriv[min][j]) > TMath::Abs(deriv[!min][j]) || TMath::Abs(deriv[0][j]-deriv[1][j]) < 1.e-3) { shift[j] = -TMath::Sign (shift[j], (func2[0]-func2[1]) * (param0[0][j]-param0[1][j])); if (min == max) { if (memory[j] > 1) { shift[j] *= 2; } //cout << " Memory " << memory[j] << " " << shift[j] << endl; } memory[j]++; } } else { shift[j] = -deriv[min][j] / dder[j]; memory[j] = 0; } if (TMath::Abs(shift[j])/step0[j] > estim) { estim = TMath::Abs(shift[j])/step0[j]; iestMax = j; } // Too big step if (TMath::Abs(shift[j])/step0[j] > 10) shift[j] = TMath::Sign(10.,shift[j]) * step0[j]; // // Failed to improve minimum if (min != max) { memory[j] = 0; param[j] = param0[min][j]; if (TMath::Abs(shift[j]+shift0) > 0.1*step0[j]) shift[j] = (shift[j] + shift0) / 2; else shift[j] /= -2; } // Too big step if (TMath::Abs(shift[j]*deriv[min][j]) > func2[min]) shift[j] = TMath::Sign (func2[min]/deriv[min][j], shift[j]); // Introduce step relaxation factor if (memory[j] < 3) { scMax = 1 + 4 / TMath::Max(nLoop/2.,1.); if (TMath::Abs(shift0) > 0 && TMath::Abs(shift[j]/shift0) > scMax) shift[j] = TMath::Sign (shift0*scMax, shift[j]); } param[j] += shift[j]; //cout << " xxx " << j << " " << shift[j] << " " << param[j] << endl; stepMax = TMath::Max (stepMax, TMath::Abs(shift[j]/step0[j])); if (TMath::Abs(deriv[min][j]) > derMax) { idMax = j; derMax = TMath::Abs (deriv[min][j]); } } // for (Int_t j=0; j 100) break; // minimum was found nLoop++; // Check for small step if (shift[idMax] == 0) { shift[idMax] = step0[idMax]/10; param[idMax] += shift[idMax]; continue; } if (!memory[idMax] && derMax > 0.5 && nLoop > 10) { //cout << " ok " << deriv[min][idMax] << " " << deriv[!min][idMax] << " " << dder[idMax]*shift[idMax] << " " << shift[idMax] << endl; if (dder[idMax] != 0 && TMath::Abs(deriv[min][idMax]/dder[idMax]/shift[idMax]) > 10) { if (min == max) dder[idMax] = -dder[idMax]; shift[idMax] = -deriv[min][idMax] / dder[idMax] / 10; param[idMax] += shift[idMax]; stepMax = TMath::Max (stepMax, TMath::Abs(shift[idMax])/step0[idMax]); //cout << shift[idMax] << " " << param[idMax] << endl; if (min == max) shiftSave = shift[idMax]; } if (nFail > 10) { param[idMax] -= shift[idMax]; shift[idMax] = 4 * shiftSave * (gRandom->Rndm(0) - 0.5); param[idMax] += shift[idMax]; //cout << shift[idMax] << endl; } } } // while (1) fmin = func2[min]; nDof = npads - fNpar; chi2n = nDof ? fmin/nDof : 0; if (chi2n*1.2+1.e-6 > chi2o ) { fNpar -= 3; break; } // Save parameters and errors for (Int_t i=0; iGetPadI(c.fXyq[0][j],c.fXyq[1][j],c.fZpad,ix,iy); c.fSegmentation[cath]->SetPad(ix,iy); charge = 0; for (Int_t i=c.fNpar/3; i>=0; i--) { // sum over tracks indx = i<2 ? 2*i : 2*i+1; c.fSegmentation[cath]->SetHit(par[indx],par[indx+1],c.fZpad); //charge += c.fResponse->IntXY(c.fSegmentation[cath])*par[icl*3+2]; if (c.fNpar == 2) coef = 1; else coef = i==c.fNpar/3 ? par[indx+2] : 1-coef; //coef = TMath::Max (coef, 0.); if (c.fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7]; //coef = TMath::Max (coef, 0.); charge += c.fResponse->IntXY(c.fSegmentation[cath])*coef; } charge *= c.fQtot; //if (c.fXyq[2][j] > c.fResponse->MaxAdc()-1 && charge > // c.fResponse->MaxAdc()) charge = c.fResponse->MaxAdc(); delta = charge - c.fXyq[2][j]; delta /= TMath::Sqrt ((Double_t)c.fXyq[2][j]); //chi2 += TMath::Abs(delta); chi2 += delta*delta; } // for (Int_t j=0; f = chi2; Double_t qAver = c.fQtot/npads; //(c.fnPads[0]+c.fnPads[1]); f = chi2/qAver; } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::UpdatePads(Int_t nfit, Double_t *par) { // Subtract the fitted charges from pads with strong coupling Int_t cath, ix, iy, indx; Double_t charge, coef=0; for (Int_t j=0; jGetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy); fSegmentation[cath]->SetPad(ix,iy); charge = 0; for (Int_t i=fNpar/3; i>=0; i--) { // sum over tracks indx = i<2 ? 2*i : 2*i+1; fSegmentation[cath]->SetHit(par[indx],par[indx+1],fZpad); if (fNpar == 2) coef = 1; else coef = i==fNpar/3 ? par[indx+2] : 1-coef; if (fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7]; charge += fResponse->IntXY(fSegmentation[cath])*coef; } charge *= fQtot; fXyq[2][j] -= charge; } // if (fNpar != 0) if (fXyq[2][j] > fResponse->ZeroSuppression()) fPadIJ[1][j] = 0; // return pad for further using } // for (Int_t j=0; } //_____________________________________________________________________________ Bool_t AliMUONClusterFinderAZ::TestTrack(Int_t t) { // Test if track was user selected return kTRUE; /* if (fTrack[0]==-1 || fTrack[1]==-1) { return kTRUE; } else if (t==fTrack[0] || t==fTrack[1]) { return kTRUE; } else { return kFALSE; } */ } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::AddRawCluster(Double_t x, Double_t y, Double_t fmin) { // // Add a raw cluster copy to the list // AliMUONRawCluster cnew; AliMUON *pMUON=(AliMUON*)gAlice->GetModule("MUON"); //pMUON->AddRawCluster(fInput->Chamber(),c); Int_t cath; for (cath=0; cath<2; cath++) { cnew.fX[cath] = x; cnew.fY[cath] = y; cnew.fZ[cath] = fZpad; cnew.fQ[cath] = 100; cnew.fPeakSignal[cath] = 20; cnew.fMultiplicity[cath] = 5; cnew.fNcluster[cath] = 1; cnew.fChi2[cath] = fmin; //0.1; /* cnew.fMultiplicity[cath]=c->fMultiplicity[cath]; for (i=0; ifIndexMap[i][cath]; fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]); } fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath); fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]); FillCluster(&cnew,cath); */ } //cnew.fClusterType=cnew.PhysicsContribution(); pMUON->AddRawCluster(AliMUONClusterInput::Instance()->Chamber(),cnew); //fNPeaks++; } //_____________________________________________________________________________ Int_t AliMUONClusterFinderAZ::FindLocalMaxima(Int_t *localMax, Double_t *maxVal) { // Find local maxima in pixel space for large preclusters in order to // try to split them into smaller pieces (to speed up the MLEM procedure) TH2D *hist = (TH2D*) gROOT->FindObject("anode"); if (hist) hist->Delete(); Double_t xylim[4] = {999, 999, 999, 999}; Int_t nPix = fPixArray->GetEntriesFast(); AliMUONPixel *pixPtr = 0; for (Int_t ipix=0; ipixUncheckedAt(ipix); for (Int_t i=0; i<4; i++) xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2)); } for (Int_t i=0; i<4; i++) xylim[i] -= pixPtr->Size(i/2); Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2); Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2); hist = new TH2D("anode","anode",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]); for (Int_t ipix=0; ipixUncheckedAt(ipix); hist->Fill(pixPtr->Coord(0), pixPtr->Coord(1), pixPtr->Charge()); } if (fDraw) { ((TCanvas*)gROOT->FindObject("c2"))->cd(); gPad->SetTheta(55); gPad->SetPhi(30); hist->Draw("lego1Fb"); gPad->Update(); int ia; cin >> ia; } Int_t nMax = 0, indx; Int_t *isLocalMax = new Int_t[ny*nx]; for (Int_t i=0; iGetCellContent(j,i) < 0.5) continue; //if (isLocalMax[indx+j-1] < 0) continue; if (isLocalMax[indx+j-1] != 0) continue; FlagLocalMax(hist, i, j, isLocalMax); } } for (Int_t i=1; i<=ny; i++) { indx = (i-1) * nx; for (Int_t j=1; j<=nx; j++) { if (isLocalMax[indx+j-1] > 0) { localMax[nMax] = indx + j - 1; maxVal[nMax++] = hist->GetCellContent(j,i); } if (nMax > 99) { cout << " Too many local maxima !!!" << endl; ::exit(0); } } } cout << " Local max: " << nMax << endl; delete [] isLocalMax; isLocalMax = 0; return nMax; } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::FlagLocalMax(TH2D *hist, Int_t i, Int_t j, Int_t *isLocalMax) { // Flag pixels (whether or not local maxima) Int_t nx = hist->GetNbinsX(); Int_t ny = hist->GetNbinsY(); Int_t cont = TMath::Nint (hist->GetCellContent(j,i)); Int_t cont1 = 0; for (Int_t i1=i-1; i1 ny) continue; for (Int_t j1=j-1; j1 nx) continue; if (i == i1 && j == j1) continue; cont1 = TMath::Nint (hist->GetCellContent(j1,i1)); if (cont < cont1) { isLocalMax[(i-1)*nx+j-1] = -1; return; } else if (cont > cont1) isLocalMax[(i1-1)*nx+j1-1] = -1; else { // the same charge isLocalMax[(i-1)*nx+j-1] = 1; if (isLocalMax[(i1-1)*nx+j1-1] == 0) { FlagLocalMax(hist, i1, j1, isLocalMax); if (isLocalMax[(i1-1)*nx+j1-1] < 0) { isLocalMax[(i-1)*nx+j-1] = -1; return; } else isLocalMax[(i1-1)*nx+j1-1] = -1; } } } } isLocalMax[(i-1)*nx+j-1] = 1; // local maximum } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::FindCluster(Int_t *localMax, Int_t iMax) { // Find pixel cluster around local maximum #iMax and pick up pads // overlapping with it TH2D *hist = (TH2D*) gROOT->FindObject("anode"); Int_t nx = hist->GetNbinsX(); Int_t ny = hist->GetNbinsY(); Int_t ic = localMax[iMax] / nx + 1; Int_t jc = localMax[iMax] % nx + 1; Bool_t *used = new Bool_t[ny*nx]; for (Int_t i=0; iDelete(); Double_t wx = hist->GetXaxis()->GetBinWidth(1)/2; Double_t wy = hist->GetYaxis()->GetBinWidth(1)/2; Double_t yc = hist->GetYaxis()->GetBinCenter(ic); Double_t xc = hist->GetXaxis()->GetBinCenter(jc); Double_t cont = hist->GetCellContent(jc,ic); AliMUONPixel *pixPtr = new AliMUONPixel (xc, yc, wx, wy, cont); fPixArray->Add((TObject*)pixPtr); used[(ic-1)*nx+jc-1] = kTRUE; AddBin(hist, ic, jc, 1, used, (TObjArray*)0); // recursive call Int_t nPix = fPixArray->GetEntriesFast(), npad = fnPads[0] + fnPads[1]; for (Int_t i=0; iUncheckedAt(i))->SetSize(0,wx); ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(1,wy); } cout << iMax << " " << nPix << endl; Float_t xy[4], xy12[4]; // Pick up pads which overlap with found pixels for (Int_t i=0; iUncheckedAt(i); for (Int_t j=0; j<4; j++) xy[j] = pixPtr->Coord(j/2) + (j%2 ? 1 : -1)*pixPtr->Size(j/2); for (Int_t j=0; j