/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ // ------------------------------- // Class AliMUONClusterFinderAZ // ------------------------------- // Clusterizer class based on the Expectation-Maximization algorithm // Author: Alexander Zinchenko, JINR Dubna #include #include #include #include #include #include "AliMUONClusterFinderAZ.h" #include "AliMUONClusterDrawAZ.h" #include "AliMUONVGeometryDESegmentation.h" #include "AliMUONGeometryModuleTransformer.h" #include "AliRun.h" #include "AliMUON.h" #include "AliMUONDigit.h" #include "AliMUONRawCluster.h" #include "AliMUONClusterInput.h" #include "AliMUONPixel.h" #include "AliMUONMathieson.h" #include "AliLog.h" /// \cond CLASSIMP ClassImp(AliMUONClusterFinderAZ) /// \endcond const Double_t AliMUONClusterFinderAZ::fgkCouplMin = 1.e-3; // threshold on coupling const Double_t AliMUONClusterFinderAZ::fgkZeroSuppression = 6; // average zero suppression value const Double_t AliMUONClusterFinderAZ::fgkSaturation = 3000; // average saturation level AliMUONClusterFinderAZ* AliMUONClusterFinderAZ::fgClusterFinder = 0x0; TMinuit* AliMUONClusterFinderAZ::fgMinuit = 0x0; //FILE *lun1 = fopen("nxny.dat","w"); //_____________________________________________________________________________ AliMUONClusterFinderAZ::AliMUONClusterFinderAZ(Bool_t draw) : AliMUONClusterFinderVS() { /// Constructor fnPads[0]=fnPads[1]=0; for (Int_t i=0; i<7; i++) for (Int_t j=0; jGetEvNumber(), fInput->Chamber()); } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::EventLoop(Int_t nev, Int_t ch) { /// Loop over digits if (fDraw && !fDraw->FindEvCh(nev, ch)) return; fSegmentation[0] = (AliMUONVGeometryDESegmentation*) fInput-> Segmentation2(0)->GetDESegmentation(fInput->DetElemId()); fSegmentation[1] = (AliMUONVGeometryDESegmentation*) fInput-> Segmentation2(1)->GetDESegmentation(fInput->DetElemId()); Int_t ndigits[2] = {9,9}, nShown[2] = {0}; if (fReco != 2) { // skip initialization for the combined cluster / track fCathBeg = fPadBeg[0] = fPadBeg[1] = 0; for (Int_t i = 0; i < 2; i++) { for (Int_t j = 0; j < fgkDim; j++) { fUsed[i][j] = kFALSE; } } } next: if (fReco == 2 && (nShown[0] || nShown[1])) return; // only one precluster for the combined finder if (ndigits[0] == nShown[0] && ndigits[1] == nShown[1]) return; Float_t xpad, ypad, zpad, zpad0; Bool_t first = kTRUE; if (fDebug) cout << " *** Event # " << nev << " chamber: " << ch << endl; fnPads[0] = fnPads[1] = 0; for (Int_t i = 0; i < fgkDim; i++) fPadIJ[1][i] = 0; for (Int_t iii = fCathBeg; iii < 2; iii++) { Int_t cath = TMath::Odd(iii); ndigits[cath] = fInput->NDigits(cath); if (!ndigits[0] && !ndigits[1]) return; if (ndigits[cath] == 0) continue; if (fDebug) cout << " ndigits: " << ndigits[cath] << " " << cath << endl; AliMUONDigit *mdig; Int_t digit; Bool_t eEOC = kTRUE; // end-of-cluster for (digit = fPadBeg[cath]; digit < ndigits[cath]; digit++) { mdig = AliMUONClusterInput::Instance()->Digit(cath,digit); if (first) { // Find first unused pad if (fUsed[cath][digit]) continue; //if (!fSegmentation[cath]->GetPadC(fInput->DetElemId(),mdig->PadX(),mdig->PadY(),xpad,ypad,zpad0)) { if (!fSegmentation[cath]->HasPad(mdig->PadX(), mdig->PadY())) { // Handle "non-existing" pads fUsed[cath][digit] = kTRUE; continue; } fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad0); } else { if (fUsed[cath][digit]) continue; //if (!fSegmentation[cath]->GetPadC(fInput->DetElemId(),mdig->PadX(),mdig->PadY(),xpad,ypad,zpad)) { if (!fSegmentation[cath]->HasPad(mdig->PadX(), mdig->PadY())) { // Handle "non-existing" pads fUsed[cath][digit] = kTRUE; continue; } fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad); //if (TMath::Abs(zpad-zpad0) > 0.1) continue; // different slats // Find a pad overlapping with the cluster if (!Overlap(cath,mdig)) continue; } // Add pad - recursive call AddPad(cath,digit); //AZ !!!!!! Temporary fix of St1 overlap regions !!!!!!!! /* if (cath && ch < 2) { Int_t npads = fnPads[0] + fnPads[1] - 1; Int_t cath1 = fPadIJ[0][npads]; Int_t idig = TMath::Nint (fXyq[5][npads]); mdig = AliMUONClusterInput::Instance()->Digit(cath1,idig); //fSegmentation[cath1]->GetPadC(fInput->DetElemId(),mdig->PadX(),mdig->PadY(),xpad,ypad,zpad); fSegmentation[cath1]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad); if (TMath::Abs(zpad-zpad0) > 0.1) zpad0 = zpad; } */ eEOC = kFALSE; if (digit >= 0) break; } if (first && eEOC) { // No more unused pads if (cath == 0) continue; // on cathode #0 - check #1 else return; // No more clusters } if (eEOC) break; // cluster found first = kFALSE; if (fDebug) cout << " nPads: " << fnPads[cath] << " " << nShown[cath]+fnPads[cath] << " " << cath << endl; } // for (Int_t iii = 0; fZpad = zpad0; if (fDraw) fDraw->DrawCluster(); // Use MLEM for cluster finder Int_t nMax = 1, localMax[100], maxPos[100]; Double_t maxVal[100]; if (CheckPrecluster(nShown)) { BuildPixArray(); //* if (fnPads[0]+fnPads[1] > 50) nMax = FindLocalMaxima(fPixArray, localMax, maxVal); if (nMax > 1) TMath::Sort(nMax, maxVal, maxPos, kTRUE); // in decreasing order Int_t iSimple = 0, nInX = -1, nInY; PadsInXandY(nInX, nInY); if (fDebug) cout << "Pads in X and Y: " << nInX << " " << nInY << endl; if (nMax == 1 && nInX < 4 && nInY < 4) iSimple = 1; //1; // simple cluster //*/ /* For test Int_t iSimple = 0, nInX = -1, nInY; PadsInXandY(nInX, nInY); if (fDebug) cout << "Pads in X and Y: " << nInX << " " << nInY << endl; if (nMax == 1 && nInX < 4 && nInY < 4) iSimple = 1; //1; // simple cluster if (!iSimple) nMax = FindLocalMaxima(fPixArray, localMax, maxVal); nMax = 1; if (nMax > 1) TMath::Sort(nMax, maxVal, maxPos, kTRUE); // in decreasing order */ for (Int_t i=0; i 1) FindCluster(localMax, maxPos[i]); MainLoop(iSimple); if (i < nMax-1) { for (Int_t j=0; j 1) ((TH2D*) gROOT->FindObject("anode"))->Delete(); TH2D *mlem = (TH2D*) gROOT->FindObject("mlem"); if (mlem) mlem->Delete(); } if (!fDraw || fDraw->Next()) goto next; } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::AddPad(Int_t cath, Int_t digit) { /// Add pad to the cluster AliMUONDigit *mdig = fInput->Digit(cath,digit); Int_t charge = mdig->Signal(); // get the center of the pad Float_t xpad, ypad, zpad0; //if (!fSegmentation[cath]->GetPadC(fInput->DetElemId(),mdig->PadX(),mdig->PadY(),xpad,ypad,zpad0)) { // Handle "non-existing" pads if (!fSegmentation[cath]->HasPad(mdig->PadX(), mdig->PadY())) { fUsed[cath][digit] = kTRUE; return; } fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad0); Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY()); Int_t nPads = fnPads[0] + fnPads[1]; fXyq[0][nPads] = xpad; fXyq[1][nPads] = ypad; fXyq[2][nPads] = charge; fXyq[3][nPads] = fSegmentation[cath]->Dpx(isec)/2; fXyq[4][nPads] = fSegmentation[cath]->Dpy(isec)/2; fXyq[5][nPads] = digit; fXyq[6][nPads] = 0; fPadIJ[0][nPads] = cath; fPadIJ[1][nPads] = 0; fPadIJ[2][nPads] = mdig->PadX(); fPadIJ[3][nPads] = mdig->PadY(); fUsed[cath][digit] = kTRUE; if (fDebug) printf(" bbb %d %d %f %f %f %f %f %4d %3d %3d \n", nPads, cath, xpad, ypad, zpad0, fXyq[3][nPads]*2, fXyq[4][nPads]*2, charge, mdig->PadX(), mdig->PadY()); fnPads[cath]++; // Check neighbours Int_t nn, ix, iy, xList[10], yList[10]; AliMUONDigit *mdig1; Int_t ndigits = fInput->NDigits(cath); fSegmentation[cath]->Neighbours(mdig->PadX(), mdig->PadY(), &nn, xList, yList); for (Int_t in = 0; in < nn; in++) { ix = xList[in]; iy = yList[in]; for (Int_t digit1 = 0; digit1 < ndigits; digit1++) { if (digit1 == digit) continue; mdig1 = fInput->Digit(cath,digit1); if (!fUsed[cath][digit1] && mdig1->PadX() == ix && mdig1->PadY() == iy) { fUsed[cath][digit1] = kTRUE; // Add pad - recursive call AddPad(cath,digit1); } } //for (Int_t digit1 = 0; } // for (Int_t in = 0; } //_____________________________________________________________________________ Bool_t AliMUONClusterFinderAZ::Overlap(Int_t cath, AliMUONDigit *mdig) { /// Check if the pad from one cathode overlaps with a pad /// in the precluster on the other cathode Float_t xpad, ypad, zpad; fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad); Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY()); Float_t xy1[4], xy12[4]; xy1[0] = xpad - fSegmentation[cath]->Dpx(isec)/2; xy1[1] = xy1[0] + fSegmentation[cath]->Dpx(isec); xy1[2] = ypad - fSegmentation[cath]->Dpy(isec)/2; xy1[3] = xy1[2] + fSegmentation[cath]->Dpy(isec); //cout << " ok " << fnPads[0]+fnPads[1] << xy1[0] << xy1[1] << xy1[2] << xy1[3] << endl; Int_t cath1 = TMath::Even(cath); for (Int_t i=0; i xy2[1]-1.e-4 || xy1[1] < xy2[0]+1.e-4) return kFALSE; xy2[2] = fXyq[1][iPad] - fXyq[4][iPad]; xy2[3] = fXyq[1][iPad] + fXyq[4][iPad]; if (xy1[2] > xy2[3]-1.e-4 || xy1[3] < xy2[2]+1.e-4) return kFALSE; if (!iSkip) return kTRUE; // just check overlap (w/out computing the area) xy12[0] = TMath::Max (xy1[0],xy2[0]); xy12[1] = TMath::Min (xy1[1],xy2[1]); xy12[2] = TMath::Max (xy1[2],xy2[2]); xy12[3] = TMath::Min (xy1[3],xy2[3]); return kTRUE; } //_____________________________________________________________________________ Bool_t AliMUONClusterFinderAZ::CheckPrecluster(Int_t *nShown) { /// Check precluster in order to attempt to simplify it (mostly for /// two-cathode preclusters) Int_t i1, i2, cath=0, digit=0; Float_t xy1[4], xy12[4]; Int_t npad = fnPads[0] + fnPads[1]; if (npad == 1) { // Disregard one-pad clusters (leftovers from splitting) nShown[0] += fnPads[0]; nShown[1] += fnPads[1]; return kFALSE; } // If pads have the same size take average of pads on both cathodes //Int_t sameSize = (fnPads[0] && fnPads[1]) ? 1 : 0; Int_t sameSize = 0; //AZ - 17-01-06 if (sameSize) { Double_t xSize = -1, ySize = 0; for (Int_t i=0; i 1.e-4 || TMath::Abs(ySize-fXyq[4][i]) > 1.e-4) { sameSize = 0; break; } } } // if (sameSize) if (sameSize && fnPads[0] == 1 && fnPads[1] == 1) sameSize = 0; //AZ // Handle shift by half a pad in Station 1 if (sameSize) { Int_t cath0 = fPadIJ[0][0]; for (Int_t i = 1; i < npad; i++) { if (fPadIJ[0][i] == cath0) continue; Double_t dx = TMath::Abs ((fXyq[0][i] - fXyq[0][0]) / fXyq[3][i] / 2); Int_t idx = (Int_t) TMath::Abs ((fXyq[0][i] - fXyq[0][0]) / fXyq[3][i] / 2); if (TMath::Abs (dx - idx) > 0.001) sameSize = 0; break; } } // if (sameSize) if (sameSize && (fnPads[0] >= 2 || fnPads[1] >= 2)) { nShown[0] += fnPads[0]; nShown[1] += fnPads[1]; fnPads[0] = fnPads[1] = 0; Int_t div; for (Int_t i=0; i 1.e-4) continue; if (TMath::Abs(fXyq[1][j]-fXyq[1][i]) > 1.e-4) continue; fXyq[2][fnPads[0]] += fXyq[2][j]; div = 2; fXyq[2][j] = -2; if (cath) fXyq[5][fnPads[0]] = fXyq[5][j]; // save digit number for cath 0 break; } // Flag that the digit from the other cathode if (cath && div == 1) fXyq[5][fnPads[0]] = -fXyq[5][i] - 1; // If low pad charge take the other equal to 0 //if (div == 1 && fXyq[2][fnPads[0]] < fgkZeroSuppression + 1.5*3) div = 2; fXyq[2][fnPads[0]] /= div; fXyq[0][fnPads[0]] = fXyq[0][i]; fXyq[1][fnPads[0]] = fXyq[1][i]; fPadIJ[2][fnPads[0]] = fPadIJ[2][i]; fPadIJ[3][fnPads[0]] = fPadIJ[3][i]; fPadIJ[0][fnPads[0]++] = 0; } } // if (sameSize) // Check if one-cathode precluster i1 = fnPads[0]!=0 ? 0 : 1; i2 = fnPads[1]!=0 ? 1 : 0; if (i1 != i2) { // two-cathode Int_t *flags = new Int_t[npad]; for (Int_t i=0; i 1) { // 3 times difference if (fDebug) cout << " Release " << endl; // Big difference cath = sum[0] > sum[1] ? 0 : 1; Int_t imax = 0, imin = 0; Double_t cmax = -1, cmin = 9999, dxMin = 0, dyMin = 0; Double_t *dist = new Double_t[npad]; for (Int_t i = 0; i < npad; i++) { if (fPadIJ[0][i] != cath || fXyq[2][i] < 0) continue; if (fXyq[2][i] < cmin) { cmin = fXyq[2][i]; imin = i; } if (fXyq[2][i] < cmax) continue; cmax = fXyq[2][i]; imax = i; } // Arrange pads according to their distance to the max, // normalized to the pad size for (Int_t i = 0; i < npad; i++) { dist[i] = 0; if (fPadIJ[0][i] != cath || fXyq[2][i] < 0) continue; if (i == imax) continue; Double_t dx = (fXyq[0][i] - fXyq[0][imax]) / fXyq[3][imax] / 2; Double_t dy = (fXyq[1][i] - fXyq[1][imax]) / fXyq[4][imax] / 2; dist[i] = TMath::Sqrt (dx * dx + dy * dy); if (i == imin) { cmin = dist[i] + 0.001; // distance to the pad with minimum charge dxMin = dx; dyMin = dy; } } TMath::Sort(npad, dist, flags, kFALSE); // in increasing order Int_t indx; Double_t xmax = -1; for (Int_t i = 0; i < npad; i++) { indx = flags[i]; if (fPadIJ[0][indx] != cath || fXyq[2][indx] < 0) continue; if (dist[indx] > cmin) { // Farther than the minimum pad Double_t dx = (fXyq[0][indx] - fXyq[0][imax]) / fXyq[3][imax] / 2; Double_t dy = (fXyq[1][indx] - fXyq[1][imax]) / fXyq[4][imax] / 2; dx *= dxMin; dy *= dyMin; if (dx >= 0 && dy >= 0) continue; if (TMath::Abs(dx) > TMath::Abs(dy) && dx >= 0) continue; if (TMath::Abs(dy) > TMath::Abs(dx) && dy >= 0) continue; } if (fXyq[2][indx] <= cmax || TMath::Abs(dist[indx]-xmax) < 1.e-3) { // Release pads if (TMath::Abs(dist[indx]-xmax) < 1.e-3) cmax = TMath::Max((Double_t)(fXyq[2][indx]),cmax); else cmax = fXyq[2][indx]; xmax = dist[indx]; digit = TMath::Nint (fXyq[5][indx]); fUsed[cath][digit] = kFALSE; fXyq[2][indx] = -2; fnPads[cath]--; } } // for (Int_t i = 0; i < npad; // Check pad overlaps once more for (Int_t j = 0; j < npad; j++) flags[j] = 0; for (Int_t k = 0; k < npad; k++) { if (fXyq[2][k] < 0 || fPadIJ[0][k] != i1) continue; xy1[0] = fXyq[0][k] - fXyq[3][k]; xy1[1] = fXyq[0][k] + fXyq[3][k]; xy1[2] = fXyq[1][k] - fXyq[4][k]; xy1[3] = fXyq[1][k] + fXyq[4][k]; for (Int_t j = 0; j < npad; j++) { if (fXyq[2][j] < 0) continue; if (fPadIJ[0][j] != i2) continue; if (!Overlap(xy1, j, xy12, 0)) continue; flags[k] = flags[j] = 1; // mark overlapped pads } // for (Int_t j = 0; } // for (Int_t k = 0; nFlags = 0; for (Int_t j = 0; j < npad; j++) { if (fXyq[2][j] < 0 || flags[j]) continue; nFlags ++; } if (nFlags == fnPads[0] + fnPads[1]) { // No overlap for (Int_t j = 0; j < npad; j++) { if (fXyq[2][j] < 0 || fPadIJ[0][j] != cath) continue; fXyq[2][j] = -2; fnPads[cath]--; } } delete [] dist; dist = 0; if (fDraw) fDraw->UpdateCluster(npad); } // TMath::Abs(sum[0]-sum[1])... } // if (fnPads[0] && fnPads[1]) delete [] flags; flags = 0; } // if (i1 != i2) if (!sameSize) { nShown[0] += fnPads[0]; nShown[1] += fnPads[1]; } // Move released pads to the right Int_t beg = 0, end = npad-1, padij; Double_t xyq; while (beg < end) { if (fXyq[2][beg] > 0) { beg++; continue; } for (Int_t j=end; j>beg; j--) { if (fXyq[2][j] < 0) continue; end = j - 1; for (Int_t j1=0; j1<4; j1++) { padij = fPadIJ[j1][beg]; fPadIJ[j1][beg] = fPadIJ[j1][j]; fPadIJ[j1][j] = padij; } for (Int_t j1=0; j1<6; j1++) { xyq = fXyq[j1][beg]; fXyq[j1][beg] = fXyq[j1][j]; fXyq[j1][j] = xyq; } break; } // for (Int_t j=end; beg++; } // while npad = fnPads[0] + fnPads[1]; if (npad > 500) { AliWarning(Form(" *** Too large cluster. Give up. %d ", npad)); return kFALSE; } // Back up charge value for (Int_t j = 0; j < npad; j++) fXyq[6][j] = fXyq[2][j]; return kTRUE; } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::BuildPixArray() { /// Build pixel array for MLEM method Int_t nPix=0, i1, i2; Float_t xy1[4], xy12[4]; AliMUONPixel *pixPtr=0; Int_t npad = fnPads[0] + fnPads[1]; // One cathode is empty i1 = fnPads[0]!=0 ? 0 : 1; i2 = fnPads[1]!=0 ? 1 : 0; // Build array of pixels on anode plane if (i1 == i2) { // one-cathode precluster for (Int_t j=0; jSetCoord(i, fXyq[i][j]); // pixel coordinates pixPtr->SetSize(i, fXyq[i+3][j]); // pixel size } pixPtr->SetCharge(fXyq[2][j]); // charge fPixArray->Add((TObject*)pixPtr); nPix++; } } else { // two-cathode precluster i1 = fPadIJ[0][0]; i2 = TMath::Even (i1); for (Int_t i = 0; i < npad; i++) { if (fPadIJ[0][i] != i1) continue; xy1[0] = fXyq[0][i] - fXyq[3][i]; xy1[1] = fXyq[0][i] + fXyq[3][i]; xy1[2] = fXyq[1][i] - fXyq[4][i]; xy1[3] = fXyq[1][i] + fXyq[4][i]; for (Int_t j = 1; j < npad; j++) { if (fPadIJ[0][j] != i2) continue; if (!Overlap(xy1, j, xy12, 1)) continue; pixPtr = new AliMUONPixel(); for (Int_t k=0; k<2; k++) { pixPtr->SetCoord(k, (xy12[2*k]+xy12[2*k+1])/2); // pixel coordinates pixPtr->SetSize(k, xy12[2*k+1]-pixPtr->Coord(k)); // size } pixPtr->SetCharge(TMath::Min (fXyq[2][i],fXyq[2][j])); //charge fPixArray->Add((TObject*)pixPtr); //cout << nPix << " " << pixPtr->Coord(0) << " " << pixPtr->Size(0) << " " << pixPtr->Coord(1) << " " << pixPtr->Size(1) << " " << pixPtr->Charge() << endl; nPix++; } // for (Int_t j=0; } // for (Int_t i=0; } // else Float_t xPadMin = 999, yPadMin = 999; for (Int_t i = 0; i < npad; i++) { xPadMin = TMath::Min (xPadMin, fXyq[3][i]); yPadMin = TMath::Min (yPadMin, fXyq[4][i]); } if (fDebug) cout << xPadMin << " " << yPadMin << endl; Float_t wxmin = 999, wymin = 999; for (Int_t i = 0; i < nPix; i++) { pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i); wxmin = TMath::Min ((Double_t)wxmin, pixPtr->Size(0)); wymin = TMath::Min ((Double_t)wymin, pixPtr->Size(1)); } if (fDebug) cout << wxmin << " " << wymin << endl; wxmin = TMath::Abs (wxmin - xPadMin/2) > 0.001 ? xPadMin : xPadMin / 2; wymin = TMath::Abs (wymin - yPadMin/2) > 0.001 ? yPadMin : yPadMin / 2; //wxmin = xPadMin; wymin = yPadMin; // Check if small pixel X-size AdjustPixel(wxmin, 0); // Check if small pixel Y-size AdjustPixel(wymin, 1); // Check if large pixel size AdjustPixel(wxmin, wymin); // Remove discarded pixels for (Int_t i=0; iUncheckedAt(i); //pixPtr->Print(); if (pixPtr->Charge() < 1) { fPixArray->RemoveAt(i); delete pixPtr; }// discarded pixel } fPixArray->Compress(); nPix = fPixArray->GetEntriesFast(); if (nPix > npad) { if (fDebug) cout << nPix << endl; // Too many pixels - sort and remove pixels with the lowest signal fPixArray->Sort(); for (Int_t i=npad; iUncheckedAt(i); //pixPtr->Print(); fPixArray->RemoveAt(i); delete pixPtr; } nPix = npad; } // if (nPix > npad) // Set pixel charges to the same value (for MLEM) for (Int_t i=0; iUncheckedAt(i); //pixPtr->SetCharge(10); if (fDebug) cout << i+1 << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << " " << pixPtr->Size(0) << " " << pixPtr->Size(1) << endl; } } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::AdjustPixel(Float_t width, Int_t ixy) { /// Check if some pixels have small size (adjust if necessary) AliMUONPixel *pixPtr, *pixPtr1 = 0; Int_t ixy1 = TMath::Even(ixy); Int_t nPix = fPixArray->GetEntriesFast(); for (Int_t i=0; iUncheckedAt(i); if (pixPtr->Charge() < 1) continue; // discarded pixel if (pixPtr->Size(ixy)-width < -1.e-4) { // try to merge if (fDebug) cout << i << " Small X or Y: " << ixy << " " << pixPtr->Size(ixy) << " " << width << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << endl; for (Int_t j=i+1; jUncheckedAt(j); if (pixPtr1->Charge() < 1) continue; // discarded pixel if (TMath::Abs(pixPtr1->Size(ixy)-width) < 1.e-4) continue; // right size if (TMath::Abs(pixPtr1->Coord(ixy1)-pixPtr->Coord(ixy1)) > 1.e-4) continue; // different rows/columns if (TMath::Abs(pixPtr1->Coord(ixy)-pixPtr->Coord(ixy)) < 2*width) { // merge Double_t tmp = pixPtr->Coord(ixy) + pixPtr1->Size(ixy) * TMath::Sign (1., pixPtr1->Coord(ixy) - pixPtr->Coord(ixy)); pixPtr->SetCoord(ixy, tmp); pixPtr->SetSize(ixy, width); pixPtr->SetCharge(TMath::Min (pixPtr->Charge(),pixPtr1->Charge())); pixPtr1->SetCharge(0); pixPtr1 = 0; break; } } // for (Int_t j=i+1; //if (!pixPtr1) { cout << " I am here!" << endl; pixPtr->SetSize(ixy, width); } // ??? //else if (pixPtr1->Charge() > 0.5 || i == nPix-1) { if (pixPtr1 || i == nPix-1) { // edge pixel - just increase its size if (fDebug) cout << " Edge ..." << endl; for (Int_t j=0; jCoord(ixy1)-fXyq[ixy1][j]) > 1.e-4) continue; if (pixPtr->Coord(ixy) < fXyq[ixy][j]) //pixPtr->Shift(ixy, -pixPtr->Size(ixy)); pixPtr->Shift(ixy, pixPtr->Size(ixy)-width); //else pixPtr->Shift(ixy, pixPtr->Size(ixy)); else pixPtr->Shift(ixy, -pixPtr->Size(ixy)+width); pixPtr->SetSize(ixy, width); break; } } } // if (pixPtr->Size(ixy)-width < -1.e-4) } // for (Int_t i=0; iGetEntriesFast(); AliMUONPixel *pixPtr, pix; Double_t xy0[2] = {9999, 9999}, wxy[2], dist[2] = {0}; // Check if large pixel size for (Int_t i = 0; i < nPix; i++) { pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i); if (pixPtr->Charge() < 1) continue; // discarded pixel if (pixPtr->Size(0) - wxmin < 1.e-4) { if (xy0[0] > 9998) xy0[0] = pixPtr->Coord(0); // position of a "normal" pixel if (pixPtr->Size(1) - wymin < 1.e-4) { if (xy0[1] > 9998) xy0[1] = pixPtr->Coord(1); // position of a "normal" pixel continue; } else iOK = 0; // large pixel } else { iOK = 0; // large pixel if (xy0[1] > 9998 && pixPtr->Size(1) - wymin < 1.e-4) xy0[1] = pixPtr->Coord(1); // "normal" pixel } if (xy0[0] < 9998 && xy0[1] < 9998) break; } if (iOK) return; wxy[0] = wxmin; wxy[1] = wymin; //cout << xy0[0] << " " << xy0[1] << endl; for (Int_t i = 0; i < nPix; i++) { pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i); if (pixPtr->Charge() < 1) continue; // discarded pixel n1[0] = n1[1] = 999; n2[0] = n2[1] = 1; for (Int_t j = 0; j < 2; j++) { if (pixPtr->Size(j) - wxy[j] < 1.e-4) continue; dist[j] = (pixPtr->Coord(j) - xy0[j]) / wxy[j] / 2; // normalized distance to "normal" pixel n2[j] = TMath::Nint (pixPtr->Size(j) / wxy[j]); n1[j] = n2[j] == 1 ? TMath::Nint(dist[j]) : (Int_t)dist[j]; } if (n1[0] > 998 && n1[1] > 998) continue; if (fDebug) cout << " Different " << pixPtr->Size(0) << " " << wxy[0] << " " << pixPtr->Size(1) << " " << wxy[1] < 2 || n2[1] > 2) { //cout << n2[0] << " " << n2[1] << endl; if (n2[0] > 2 && n1[0] < 999) n1[0]--; if (n2[1] > 2 && n1[1] < 999) n1[1]--; } //cout << n1[0] << " " << n2[0] << " " << n1[1] << " " << n2[1] << endl; pix = *pixPtr; pix.SetSize(0, wxy[0]); pix.SetSize(1, wxy[1]); //pixPtr->Print(); for (Int_t ii = 0; ii < n2[0]; ii++) { if (n1[0] < 999) pix.SetCoord(0, xy0[0] + (n1[0] + TMath::Sign(1.,dist[0]) * ii) * 2 * wxy[0]); for (Int_t jj = 0; jj < n2[1]; jj++) { if (n1[1] < 999) pix.SetCoord(1, xy0[1] + (n1[1] + TMath::Sign(1.,dist[1]) * jj) * 2 * wxy[1]); fPixArray->Add(new AliMUONPixel(pix)); //pix.Print(); } } pixPtr->SetCharge(0); } // for (Int_t i = 0; i < nPix; } //_____________________________________________________________________________ Bool_t AliMUONClusterFinderAZ::MainLoop(Int_t iSimple) { /// Repeat MLEM algorithm until pixel size becomes sufficiently small TH2D *mlem; Int_t ix, iy; //Int_t nn, xList[10], yList[10]; Int_t nPix = fPixArray->GetEntriesFast(); AliMUONPixel *pixPtr = 0; Double_t *coef = 0, *probi = 0; AddVirtualPad(); // add virtual pads if necessary Int_t npadTot = fnPads[0] + fnPads[1], npadOK = 0; for (Int_t i = 0; i < npadTot; i++) if (fPadIJ[1][i] == 0) npadOK++; if (fDraw) fDraw->ResetMuon(); while (1) { mlem = (TH2D*) gROOT->FindObject("mlem"); if (mlem) mlem->Delete(); // Calculate coefficients if (fDebug) cout << " nPix, npadTot, npadOK " << nPix << " " << npadTot << " " << npadOK << endl; // Calculate coefficients and pixel visibilities coef = new Double_t [npadTot*nPix]; probi = new Double_t [nPix]; for (Int_t ipix=0; ipixSetPad(ix, iy); /* fSegmentation[cath]->Neighbours(fInput->DetElemId(),ix,iy,&nn,xList,yList); if (nn != 4) { cout << nn << ": "; for (Int_t i=0; iUncheckedAt(ipix); fSegmentation[cath]->SetHit(pixPtr->Coord(0), pixPtr->Coord(1), fZpad); coef[indx1] = fInput->Mathieson()->IntXY(fInput->DetElemId(),fInput->Segmentation2(cath)); probi[ipix] += coef[indx1]; } // for (Int_t ipix=0; } // for (Int_t j=0; for (Int_t ipix=0; ipixSetCharge(0); // "invisible" pixel // MLEM algorithm Mlem(coef, probi, 15); Double_t xylim[4] = {999, 999, 999, 999}; for (Int_t ipix=0; ipixUncheckedAt(ipix); //cout << ipix+1; pixPtr->Print(); for (Int_t i=0; i<4; i++) xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2)); } for (Int_t i=0; i<4; i++) { xylim[i] -= pixPtr->Size(i/2); if (fDebug) cout << (i%2 ? -1 : 1)*xylim[i] << " "; } if (fDebug) cout << endl; // Adjust histogram to approximately the same limits as for the pads // (for good presentation) if (fDraw) fDraw->AdjustHist(xylim, pixPtr); Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2); Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2); mlem = new TH2D("mlem","mlem",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]); for (Int_t ipix=0; ipixUncheckedAt(ipix); mlem->Fill(pixPtr->Coord(0),pixPtr->Coord(1),pixPtr->Charge()); } if (fDraw) fDraw->DrawHist("c2", mlem); // Check if the total charge of pixels is too low Double_t qTot = 0; for (Int_t i=0; iUncheckedAt(i); qTot += pixPtr->Charge(); } if (qTot < 1.e-4 || npadOK < 3 && qTot < 7) { delete [] coef; delete [] probi; coef = 0; probi = 0; fPixArray->Delete(); for (Int_t i=0; iUncheckedAt(i); sum1 += pixPtr->Charge()*coef[j*nPix+i]; } sum1 = TMath::Min (sum1,fgkSaturation); x = fXyq[0][j]; y = fXyq[1][j]; cath = fPadIJ[0][j]; Int_t ihist = cath*2; ix = fHist[ihist]->GetXaxis()->FindBin(x); iy = fHist[ihist]->GetYaxis()->FindBin(y); cont = fHist[ihist]->GetCellContent(ix,iy); if (cont == 0 && fHist[ihist+1]) { ihist += 1; ix = fHist[ihist]->GetXaxis()->FindBin(x); iy = fHist[ihist]->GetYaxis()->FindBin(y); } fHist[ihist]->SetBinContent(ix,iy,fXyq[2][j]-sum1); } ((TCanvas*)gROOT->FindObject("c1"))->cd(1); //gPad->SetTheta(55); //gPad->SetPhi(30); //mlem->Draw("lego1"); gPad->Modified(); ((TCanvas*)gROOT->FindObject("c1"))->cd(2); gPad->Modified(); */ if (iSimple) { // Simple cluster - skip further passes thru EM-procedure Simple(); delete [] coef; delete [] probi; coef = 0; probi = 0; fPixArray->Delete(); return kTRUE; } // Calculate position of the center-of-gravity around the maximum pixel Double_t xyCOG[2]; FindCOG(mlem, xyCOG); if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) < 0.07 && pixPtr->Size(0) > pixPtr->Size(1)) break; //if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) < 0.007 && pixPtr->Size(0) > pixPtr->Size(1)) break; //if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) >= 0.07 || pixPtr->Size(0) < pixPtr->Size(1)) { // Sort pixels according to the charge fPixArray->Sort(); /* for (Int_t i=0; iUncheckedAt(i); cout << i+1; pixPtr->Print(); } */ Double_t pixMin = 0.01*((AliMUONPixel*)fPixArray->UncheckedAt(0))->Charge(); pixMin = TMath::Min (pixMin,50.); // Decrease pixel size and shift pixels to make them centered at // the maximum one indx = (pixPtr->Size(0)>pixPtr->Size(1)) ? 0 : 1; Double_t width = 0, shift[2]={0}; ix = 1; for (Int_t i=0; i<4; i++) xylim[i] = 999; Int_t nPix1 = nPix; nPix = 0; for (Int_t ipix=0; ipixUncheckedAt(ipix); if (nPix >= npadOK) { // too many pixels already fPixArray->RemoveAt(ipix); delete pixPtr; continue; } if (pixPtr->Charge() < pixMin) { // low charge fPixArray->RemoveAt(ipix); delete pixPtr; continue; } for (Int_t i=0; i<2; i++) { if (!i) { pixPtr->SetCharge(10); pixPtr->SetSize(indx, pixPtr->Size(indx)/2); width = -pixPtr->Size(indx); pixPtr->Shift(indx, width); // Shift pixel position if (ix) { ix = 0; for (Int_t j=0; j<2; j++) { shift[j] = pixPtr->Coord(j) - xyCOG[j]; shift[j] -= ((Int_t)(shift[j]/pixPtr->Size(j)/2))*pixPtr->Size(j)*2; } //cout << ipix << " " << i << " " << shift[0] << " " << shift[1] << endl; } // if (ix) pixPtr->Shift(0, -shift[0]); pixPtr->Shift(1, -shift[1]); } else { pixPtr = new AliMUONPixel(*pixPtr); pixPtr->Shift(indx, -2*width); fPixArray->Add((TObject*)pixPtr); } // else //pixPtr->Print(); for (Int_t i=0; i<4; i++) xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2)); } // for (Int_t i=0; i<2; nPix += 2; } // for (Int_t ipix=0; fPixArray->Compress(); nPix = fPixArray->GetEntriesFast(); // Remove excessive pixels if (nPix > npadOK) { for (Int_t ipix=npadOK; ipixUncheckedAt(ipix); fPixArray->RemoveAt(ipix); delete pixPtr; } } else { pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(0); // add pixels if the maximum is at the limit of pixel area // start from Y-direction Int_t j = 0; for (Int_t i=3; i>-1; i--) { if (nPix < npadOK && TMath::Abs((i%2 ? -1 : 1)*xylim[i]-xyCOG[i/2]) < pixPtr->Size(i/2)) { pixPtr = new AliMUONPixel(*pixPtr); pixPtr->SetCoord(i/2, xyCOG[i/2]+(i%2 ? 2:-2)*pixPtr->Size(i/2)); j = TMath::Even (i/2); pixPtr->SetCoord(j, xyCOG[j]); fPixArray->Add((TObject*)pixPtr); nPix++; } } } // else fPixArray->Compress(); nPix = fPixArray->GetEntriesFast(); delete [] coef; delete [] probi; coef = 0; probi = 0; } // while (1) // remove pixels with low signal or low visibility // Cuts are empirical !!! Double_t thresh = TMath::Max (mlem->GetMaximum()/100.,1.); thresh = TMath::Min (thresh,50.); Double_t cmax = -1, charge = 0; for (Int_t i=0; iUncheckedAt(i); charge = pixPtr->Charge(); if (charge < thresh) pixPtr->SetCharge(-charge); //else if (cmax > 1.91) { // if (probi[i] < 1.9) pixPtr->SetCharge(-charge); //} //AZ else if (probi[i] < cmax*0.9) pixPtr->SetCharge(-charge); //18-01-06 else if (probi[i] < cmax*0.8) pixPtr->SetCharge(-charge); //cout << i << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << " " << charge << " " << probi[i] << endl; } // Move charge of removed pixels to their nearest neighbour (to keep total charge the same) Int_t near = 0; for (Int_t i=0; iUncheckedAt(i); charge = pixPtr->Charge(); if (charge > 0) continue; near = FindNearest(pixPtr); pixPtr->SetCharge(0); probi[i] = 0; // make it "invisible" pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(near); pixPtr->SetCharge(pixPtr->Charge() + (-charge)); } Mlem(coef,probi,2); // Update histogram for (Int_t i=0; iUncheckedAt(i); ix = mlem->GetXaxis()->FindBin(pixPtr->Coord(0)); iy = mlem->GetYaxis()->FindBin(pixPtr->Coord(1)); mlem->SetBinContent(ix, iy, pixPtr->Charge()); } if (fDraw) fDraw->DrawHist("c2", mlem); // Try to split into clusters Bool_t ok = kTRUE; if (mlem->GetSum() < 1) ok = kFALSE; else Split(mlem, coef); delete [] coef; delete [] probi; coef = 0; probi = 0; fPixArray->Delete(); return ok; } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::Mlem(Double_t *coef, Double_t *probi, Int_t nIter) { /// Use MLEM to find pixel charges Int_t nPix = fPixArray->GetEntriesFast(); Int_t npad = fnPads[0] + fnPads[1]; Double_t *probi1 = new Double_t [nPix]; Double_t probMax = 0; Int_t indx, indx1; AliMUONPixel *pixPtr; for (Int_t ipix=0; ipix probMax) probMax = probi[ipix]; for (Int_t iter=0; iterUncheckedAt(i); sum1 += pixPtr->Charge()*coef[indx1+i]; } // for (Int_t i=0; if (fXyq[2][j] > fgkSaturation-1 && sum1 > fXyq[2][j]) { probi1[ipix] -= coef[indx]; continue; } // correct for pad charge overflows //cout << sum1 << " " << fXyq[2][j] << " " << coef[j*nPix+ipix] << endl; if (coef[indx] > 1.e-6) sum += fXyq[2][j]*coef[indx]/sum1; } // for (Int_t j=0; pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix); if (probi1[ipix] > 1.e-6) pixPtr->SetCharge(pixPtr->Charge()*sum/probi1[ipix]); } // for (Int_t ipix=0; } // for (Int_t iter=0; delete [] probi1; return; } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::FindCOG(TH2D *mlem, Double_t *xyc) { /// Calculate position of the center-of-gravity around the maximum pixel Int_t ixmax, iymax, ix, nsumx=0, nsumy=0, nsum=0; Int_t i1 = -9, j1 = -9; mlem->GetMaximumBin(ixmax,iymax,ix); Int_t nx = mlem->GetNbinsX(); Int_t ny = mlem->GetNbinsY(); Double_t thresh = mlem->GetMaximum()/10; Double_t x, y, cont, xq=0, yq=0, qq=0; for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) { y = mlem->GetYaxis()->GetBinCenter(i); for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) { cont = mlem->GetCellContent(j,i); if (cont < thresh) continue; if (i != i1) {i1 = i; nsumy++;} if (j != j1) {j1 = j; nsumx++;} x = mlem->GetXaxis()->GetBinCenter(j); xq += x*cont; yq += y*cont; qq += cont; nsum++; } } Double_t cmax = 0; Int_t i2 = 0, j2 = 0; x = y = 0; if (nsumy == 1) { // one bin in Y - add one more (with the largest signal) for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) { if (i == iymax) continue; for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) { cont = mlem->GetCellContent(j,i); if (cont > cmax) { cmax = cont; x = mlem->GetXaxis()->GetBinCenter(j); y = mlem->GetYaxis()->GetBinCenter(i); i2 = i; j2 = j; } } } xq += x*cmax; yq += y*cmax; qq += cmax; if (i2 != i1) nsumy++; if (j2 != j1) nsumx++; nsum++; } // if (nsumy == 1) if (nsumx == 1) { // one bin in X - add one more (with the largest signal) cmax = x = y = 0; for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) { if (j == ixmax) continue; for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) { cont = mlem->GetCellContent(j,i); if (cont > cmax) { cmax = cont; x = mlem->GetXaxis()->GetBinCenter(j); y = mlem->GetYaxis()->GetBinCenter(i); i2 = i; j2 = j; } } } xq += x*cmax; yq += y*cmax; qq += cmax; if (i2 != i1) nsumy++; if (j2 != j1) nsumx++; nsum++; } // if (nsumx == 1) xyc[0] = xq/qq; xyc[1] = yq/qq; if (fDebug) cout << xyc[0] << " " << xyc[1] << " " << qq << " " << nsum << " " << nsumx << " " << nsumy << endl; return; } //_____________________________________________________________________________ Int_t AliMUONClusterFinderAZ::FindNearest(AliMUONPixel *pixPtr0) { /// Find the pixel nearest to the given one /// (algorithm may be not very efficient) Int_t nPix = fPixArray->GetEntriesFast(), imin = 0; Double_t rmin = 99999, dx = 0, dy = 0, r = 0; Double_t xc = pixPtr0->Coord(0), yc = pixPtr0->Coord(1); AliMUONPixel *pixPtr; for (Int_t i=0; iUncheckedAt(i); if (pixPtr->Charge() < 0.5) continue; dx = (xc - pixPtr->Coord(0)) / pixPtr->Size(0); dy = (yc - pixPtr->Coord(1)) / pixPtr->Size(1); r = dx *dx + dy * dy; if (r < rmin) { rmin = r; imin = i; } } return imin; } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::Split(TH2D *mlem, Double_t *coef) { /// The main steering function to work with clusters of pixels in anode /// plane (find clusters, decouple them from each other, merge them (if /// necessary), pick up coupled pads, call the fitting function) Int_t nx = mlem->GetNbinsX(); Int_t ny = mlem->GetNbinsY(); Int_t nPix = fPixArray->GetEntriesFast(); Bool_t *used = new Bool_t[ny*nx]; Double_t cont; Int_t nclust = 0, indx, indx1; for (Int_t i=0; iGetCellContent(j,i); if (cont < 0.5) continue; pix = new TObjArray(20); used[indx] = 1; pix->Add(BinToPix(mlem,j,i)); AddBin(mlem, i, j, 0, used, pix); // recursive call if (nclust >= 200) AliFatal(" Too many clusters !!!"); clusters[nclust++] = pix; } // for (Int_t j=1; j<=nx; j++) { } // for (Int_t i=1; i<=ny; if (fDebug) cout << nclust << endl; delete [] used; used = 0; // Compute couplings between clusters and clusters to pads Int_t npad = fnPads[0] + fnPads[1]; // Write out some information for algorithm development Int_t cath=0, npadx[2]={0}, npady[2]={0}; Double_t xlow[2]={9999,9999}, xhig[2]={-9999,-9999}; Double_t ylow[2]={9999,9999}, yhig[2]={-9999,-9999}; for (Int_t j=0; j xhig[cath]+0.001) { if (fXyq[0][j]-fXyq[3][j] >= xhig[cath]) npadx[cath]++; xhig[cath] = fXyq[0][j]; } if (fXyq[1][j] < ylow[cath]-0.001) { if (fXyq[1][j]+fXyq[4][j] <= ylow[cath] && npady[cath]) npady[cath]++; ylow[cath] = fXyq[1][j]; } if (fXyq[1][j] > yhig[cath]+0.001) { if (fXyq[1][j]-fXyq[4][j] >= yhig[cath]) npady[cath]++; yhig[cath] = fXyq[1][j]; } } //if (lun1) fprintf(lun1," %4d %2d %3d %3d %3d %3d \n",gAlice->GetHeader()->GetEvent(),AliMUONClusterInput::Instance()->Chamber(), npadx[0], npadx[1], npady[0], npady[1]); // Exclude pads with overflows for (Int_t j=0; j fgkSaturation-1) fPadIJ[1][j] = -5; else fPadIJ[1][j] = 0; } // Compute couplings of clusters to pads TMatrixD *aijclupad = new TMatrixD(nclust,npad); *aijclupad = 0; Int_t npxclu; for (Int_t iclust=0; iclustGetEntriesFast(); for (Int_t i=0; iIndexOf(pix->UncheckedAt(i)); for (Int_t j=0; j 1) aijcluclu->Print(); // Find groups of coupled clusters used = new Bool_t[nclust]; for (Int_t i=0; i 0) { if (nCoupled < 4) { nForFit = nCoupled; for (Int_t i=0; i= 0 && nForFit < 3) { if (fDebug) cout << clustNumb[minGroup[nForFit]] << " "; clustFit[nForFit] = clustNumb[minGroup[nForFit]]; clustNumb[minGroup[nForFit]] -= 999; nForFit++; } if (fDebug) cout << nForFit << " " << coupl << endl; } // else // Select pads for fit. if (SelectPad(nCoupled, nForFit, clustNumb, clustFit, aijclupad) < 3 && nCoupled > 1) { // Deselect pads for (Int_t j=0; j= 0) { beg++; continue; } for (Int_t j=end; j>beg; j--) { if (clustNumb[j] < 0) continue; end = j - 1; indx = clustNumb[beg]; clustNumb[beg] = clustNumb[j]; clustNumb[j] = indx; break; } beg++; } nCoupled -= nForFit; if (nCoupled > 3) { // Remove couplings of used clusters for (Int_t iclust=nCoupled; iclust 3) } // while (nCoupled > 0) } // for (Int_t igroup=0; igroupDelete(); aijclupad->Delete(); for (Int_t iclust=0; iclustClear(); delete pix; pix = 0; } delete [] clustNumb; clustNumb = 0; delete [] used; used = 0; } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::AddBin(TH2D *mlem, Int_t ic, Int_t jc, Int_t mode, Bool_t *used, TObjArray *pix) { /// Add a bin to the cluster Int_t nx = mlem->GetNbinsX(); Int_t ny = mlem->GetNbinsY(); Double_t cont1, cont = mlem->GetCellContent(jc,ic); AliMUONPixel *pixPtr = 0; for (Int_t i=TMath::Max(ic-1,1); i<=TMath::Min(ic+1,ny); i++) { for (Int_t j=TMath::Max(jc-1,1); j<=TMath::Min(jc+1,nx); j++) { if (i != ic && j != jc) continue; if (used[(i-1)*nx+j-1]) continue; cont1 = mlem->GetCellContent(j,i); if (mode && cont1 > cont) continue; used[(i-1)*nx+j-1] = kTRUE; if (cont1 < 0.5) continue; if (pix) pix->Add(BinToPix(mlem,j,i)); else { pixPtr = new AliMUONPixel (mlem->GetXaxis()->GetBinCenter(j), mlem->GetYaxis()->GetBinCenter(i), 0, 0, cont1); fPixArray->Add((TObject*)pixPtr); } AddBin(mlem, i, j, mode, used, pix); // recursive call } } } //_____________________________________________________________________________ TObject* AliMUONClusterFinderAZ::BinToPix(TH2D *mlem, Int_t jc, Int_t ic) { /// Translate histogram bin to pixel Double_t yc = mlem->GetYaxis()->GetBinCenter(ic); Double_t xc = mlem->GetXaxis()->GetBinCenter(jc); Int_t nPix = fPixArray->GetEntriesFast(); AliMUONPixel *pixPtr = NULL; // Compare pixel and bin positions for (Int_t i=0; iUncheckedAt(i); if (pixPtr->Charge() < 0.5) continue; if (TMath::Abs(pixPtr->Coord(0)-xc)<1.e-4 && TMath::Abs(pixPtr->Coord(1)-yc)<1.e-4) return (TObject*) pixPtr; } AliError(Form(" Something wrong ??? %f %f ", xc, yc)); return NULL; } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::AddCluster(Int_t ic, Int_t nclust, TMatrixD *aijcluclu, Bool_t *used, Int_t *clustNumb, Int_t &nCoupled) { /// Add a cluster to the group of coupled clusters for (Int_t i=0; i 3) { padpix = new Double_t[npad]; for (Int_t i=0; i 3) { // Check other clusters for (Int_t iclust1=0; iclust1 3) } // for (Int_t j=0; jGetEntriesFast(); couplMax = -1; for (Int_t icl1=0; icl1 couplMax) { couplMax = (*aijcluclu)(indx,indx1); imax = indx1; } } // for (Int_t icl1=0; /*if (couplMax < fgkCouplMin) { cout << " Oops " << couplMax << endl; aijcluclu->Print(); cout << icl << " " << indx << " " << npxclu << " " << nLinks << endl; ::exit(0); }*/ // Add to it pix1 = clusters[imax]; npxclu1 = pix1->GetEntriesFast(); // Add pixels for (Int_t i=0; iAdd(pix->UncheckedAt(i)); pix->RemoveAt(i); } if (fDebug) cout << " New number of pixels: " << npxclu1 << " " << pix1->GetEntriesFast() << endl; //Add cluster-to-cluster couplings //aijcluclu->Print(); for (Int_t icl1=0; icl1Print(); //Add cluster-to-pad couplings for (Int_t j=0; jFindObject("mlem"); Double_t xmin = mlem->GetXaxis()->GetXmin() - mlem->GetXaxis()->GetBinWidth(1); Double_t xmax = mlem->GetXaxis()->GetXmax() + mlem->GetXaxis()->GetBinWidth(1); Double_t ymin = mlem->GetYaxis()->GetXmin() - mlem->GetYaxis()->GetBinWidth(1); Double_t ymax = mlem->GetYaxis()->GetXmax() + mlem->GetYaxis()->GetBinWidth(1); Double_t step[3]={0.01,0.002,0.02}, xPad = 0, yPad = 99999; // Number of pads to use and number of virtual pads Int_t npads = 0, nVirtual = 0, nfit0 = nfit; for (Int_t i=0; i 0) { npads++; if (yPad > 9999) { xPad = fXyq[0][i]; yPad = fXyq[1][i]; } else { if (fXyq[4][i] < fXyq[3][i]) yPad = fXyq[1][i]; else xPad = fXyq[0][i]; } } } if (fDebug) { for (Int_t i=0; i= 0) mdig = fInput->Digit(cath,digit); else mdig = fInput->Digit(TMath::Even(cath),-digit-1); //if (!mdig) mdig = fInput->Digit(TMath::Even(cath),digit); if (!mdig) continue; // protection for cluster display if (mdig->Hit() >= 0) { if (tracks[0] < 0) { tracks[0] = mdig->Hit(); tracks[1] = mdig->Track(0); } else if (mdig->Track(0) < tracks[1]) { tracks[0] = mdig->Hit(); tracks[1] = mdig->Track(0); } } if (mdig->Track(1) >= 0 && mdig->Track(1) != tracks[1]) { if (tracks[2] < 0) tracks[2] = mdig->Track(1); else tracks[2] = TMath::Min (tracks[2], mdig->Track(1)); } //if (!mdig) break; //cout << mdig->Hit() << " " << mdig->Track(0) << " " << mdig->Track(1) < 1) { if (nInX < 3 && nInY < 3 || nInX == 3 && nInY < 3 || nInX < 3 && nInY == 3) nfitMax = 1; // not enough pads in each direction } if (nfit > nfitMax) nfit = nfitMax; // Take cluster maxima as fitting seeds TObjArray *pix; AliMUONPixel *pixPtr; Int_t npxclu; Double_t cont, cmax = 0, xseed = 0, yseed = 0, errOk[8], qq = 0; Double_t xyseed[3][2], qseed[3], xyCand[3][2] = {{0},{0}}, sigCand[3][2] = {{0},{0}}; for (Int_t ifit=1; ifit<=nfit0; ifit++) { cmax = 0; pix = clusters[clustFit[ifit-1]]; npxclu = pix->GetEntriesFast(); //qq = 0; for (Int_t clu=0; cluUncheckedAt(clu); cont = pixPtr->Charge(); fQtot += cont; if (cont > cmax) { cmax = cont; xseed = pixPtr->Coord(0); yseed = pixPtr->Coord(1); } qq += cont; /* xyCand[ifit-1][0] += pixPtr->Coord(0) * cont; xyCand[ifit-1][1] += pixPtr->Coord(1) * cont; sigCand[ifit-1][0] += pixPtr->Coord(0) * pixPtr->Coord(0) * cont; sigCand[ifit-1][1] += pixPtr->Coord(1) * pixPtr->Coord(1) * cont; */ xyCand[0][0] += pixPtr->Coord(0) * cont; xyCand[0][1] += pixPtr->Coord(1) * cont; sigCand[0][0] += pixPtr->Coord(0) * pixPtr->Coord(0) * cont; sigCand[0][1] += pixPtr->Coord(1) * pixPtr->Coord(1) * cont; } xyseed[ifit-1][0] = xseed; xyseed[ifit-1][1] = yseed; qseed[ifit-1] = cmax; /* xyCand[ifit-1][0] /= qq; // xyCand[ifit-1][1] /= qq; // sigCand[ifit-1][0] = sigCand[ifit-1][0]/qq - xyCand[ifit-1][0]*xyCand[ifit-1][0]; // - ^2 sigCand[ifit-1][0] = sigCand[ifit-1][0] > 0 ? TMath::Sqrt (sigCand[ifit-1][0]) : 0; sigCand[ifit-1][1] = sigCand[ifit-1][1]/qq - xyCand[ifit-1][1]*xyCand[ifit-1][1]; // - ^2 sigCand[ifit-1][1] = sigCand[ifit-1][1] > 0 ? TMath::Sqrt (sigCand[ifit-1][1]) : 0; cout << xyCand[ifit-1][0] << " " << xyCand[ifit-1][1] << " " << sigCand[ifit-1][0] << " " << sigCand[ifit-1][1] << endl; */ } // for (Int_t ifit=1; xyCand[0][0] /= qq; // xyCand[0][1] /= qq; // sigCand[0][0] = sigCand[0][0]/qq - xyCand[0][0]*xyCand[0][0]; // - ^2 sigCand[0][0] = sigCand[0][0] > 0 ? TMath::Sqrt (sigCand[0][0]) : 0; sigCand[0][1] = sigCand[0][1]/qq - xyCand[0][1]*xyCand[0][1]; // - ^2 sigCand[0][1] = sigCand[0][1] > 0 ? TMath::Sqrt (sigCand[0][1]) : 0; if (fDebug) cout << xyCand[0][0] << " " << xyCand[0][1] << " " << sigCand[0][0] << " " << sigCand[0][1] << endl; Int_t nDof, maxSeed[3], nMax = 0; Double_t fmin, chi2o = 9999, chi2n; TMath::Sort(nfit0, qseed, maxSeed, kTRUE); // in decreasing order /* Int_t itmp[100], localMax[100]; Double_t maxVal[100]; if (!iSimple && nfit < nfitMax) { // Try to split pixel cluster according to local maxima Int_t nfit1 = nfit; for (Int_t iclus = 0; iclus < nfit1; iclus++) { nMax = FindLocalMaxima (clusters[clustFit[maxSeed[iclus]]], localMax, maxVal); TH2D *hist = (TH2D*) gROOT->FindObject("anode1"); if (nMax == 1) { hist->Delete(); continue; } // Add extra fitting seeds from local maxima Int_t ixseed = hist->GetXaxis()->FindBin(xyseed[maxSeed[iclus]][0]); Int_t iyseed = hist->GetYaxis()->FindBin(xyseed[maxSeed[iclus]][1]); Int_t nx = hist->GetNbinsX(); TMath::Sort(nMax, maxVal, itmp, kTRUE); // in decreasing order for (Int_t j = 0; j < nMax; j++) { Int_t iyc = localMax[itmp[j]] / nx + 1; Int_t ixc = localMax[itmp[j]] % nx + 1; if (ixc == ixseed && iyc == iyseed) continue; // local max already taken for seeding xyseed[nfit][0] = hist->GetXaxis()->GetBinCenter(ixc); xyseed[nfit][1] = hist->GetYaxis()->GetBinCenter(iyc); qseed[nfit] = maxVal[itmp[j]]; maxSeed[nfit] = nfit++; if (nfit >= nfitMax) break; } hist->Delete(); if (nfit >= nfitMax) break; } // for (Int_t iclus = 0; //nfit0 = nfit; //TMath::Sort(nfit0, qseed, maxSeed, kTRUE); // in decreasing order } //if (!iSimple && nfit < nfitMax) */ Double_t *gin = 0, func0, func1, param[8], step0[8]; Double_t param0[2][8]={{0},{0}}, deriv[2][8]={{0},{0}}; Double_t shift[8], stepMax, derMax, parmin[8], parmax[8], func2[2], shift0; Double_t delta[8], scMax, dder[8], estim, shiftSave = 0; Int_t min, max, nCall = 0, memory[8] = {0}, nLoop, idMax = 0, iestMax = 0, nFail; Double_t rad, dist[3] = {0}; // Try to fit with one-track hypothesis, then 2-track. If chi2/dof is // lower, try 3-track (if number of pads is sufficient). for (Int_t iseed=0; iseed 2) { param[fNpar] = fNpar == 4 ? 0.5 : 0.3; parmin[fNpar] = 0; parmax[fNpar++] = 1; } if (iseed) { for (Int_t j=0; j 0) param[j-1] -= delta[j-1] / 10; Fcn1(fNpar, gin, func1, param, 1); nCall++; deriv[max][j] = (func1 - func0) / delta[j] * 10; // first derivative //cout << j << " " << deriv[max][j] << endl; dder[j] = param0[0][j] != param0[1][j] ? (deriv[0][j] - deriv[1][j]) / (param0[0][j] - param0[1][j]) : 0; // second derivative } param[fNpar-1] -= delta[fNpar-1] / 10; if (nCall > 2000) break; min = func2[0] < func2[1] ? 0 : 1; nFail = min == max ? 0 : nFail + 1; stepMax = derMax = estim = 0; for (Int_t j=0; j 0 && TMath::Abs(deriv[min][j]) > TMath::Abs(deriv[!min][j]) //|| TMath::Abs(deriv[0][j]-deriv[1][j]) < 1.e-3) { || TMath::Abs(deriv[0][j]-deriv[1][j]) < 1.e-3 || TMath::Abs(dder[j]) < 1.e-6) { shift[j] = -TMath::Sign (shift[j], (func2[0]-func2[1]) * (param0[0][j]-param0[1][j])); if (min == max) { if (memory[j] > 1) { shift[j] *= 2; } //cout << " Memory " << memory[j] << " " << shift[j] << endl; } memory[j]++; } } else { shift[j] = dder[j] != 0 ? -deriv[min][j] / dder[j] : 0; memory[j] = 0; } if (TMath::Abs(shift[j])/step0[j] > estim) { estim = TMath::Abs(shift[j])/step0[j]; iestMax = j; } // Too big step if (TMath::Abs(shift[j])/step0[j] > 10) shift[j] = TMath::Sign(10.,shift[j]) * step0[j]; // // Failed to improve minimum if (min != max) { memory[j] = 0; param[j] = param0[min][j]; if (TMath::Abs(shift[j]+shift0) > 0.1*step0[j]) shift[j] = (shift[j] + shift0) / 2; else shift[j] /= -2; } // Too big step if (TMath::Abs(shift[j]*deriv[min][j]) > func2[min]) shift[j] = TMath::Sign (func2[min]/deriv[min][j], shift[j]); // Introduce step relaxation factor if (memory[j] < 3) { scMax = 1 + 4 / TMath::Max(nLoop/2.,1.); if (TMath::Abs(shift0) > 0 && TMath::Abs(shift[j]/shift0) > scMax) shift[j] = TMath::Sign (shift0*scMax, shift[j]); } param[j] += shift[j]; //AZ Check parameter limits 27-12-2004 if (param[j] < parmin[j]) { shift[j] = parmin[j] - param[j]; param[j] = parmin[j]; } else if (param[j] > parmax[j]) { shift[j] = parmax[j] - param[j]; param[j] = parmax[j]; } //cout << " xxx " << j << " " << shift[j] << " " << param[j] << endl; stepMax = TMath::Max (stepMax, TMath::Abs(shift[j]/step0[j])); if (TMath::Abs(deriv[min][j]) > derMax) { idMax = j; derMax = TMath::Abs (deriv[min][j]); } } // for (Int_t j=0; j 150) break; // minimum was found nLoop++; // Check for small step if (shift[idMax] == 0) { shift[idMax] = step0[idMax]/10; param[idMax] += shift[idMax]; continue; } if (!memory[idMax] && derMax > 0.5 && nLoop > 10) { //cout << " ok " << deriv[min][idMax] << " " << deriv[!min][idMax] << " " << dder[idMax]*shift[idMax] << " " << shift[idMax] << endl; if (dder[idMax] != 0 && TMath::Abs(deriv[min][idMax]/dder[idMax]/shift[idMax]) > 10) { if (min == max) dder[idMax] = -dder[idMax]; shift[idMax] = -deriv[min][idMax] / dder[idMax] / 10; param[idMax] += shift[idMax]; stepMax = TMath::Max (stepMax, TMath::Abs(shift[idMax])/step0[idMax]); //cout << shift[idMax] << " " << param[idMax] << endl; if (min == max) shiftSave = shift[idMax]; } if (nFail > 10) { param[idMax] -= shift[idMax]; shift[idMax] = 4 * shiftSave * (gRandom->Rndm(0) - 0.5); param[idMax] += shift[idMax]; //cout << shift[idMax] << endl; } } } // while (1) fmin = func2[min]; nDof = npads - fNpar + nVirtual; if (!nDof) nDof++; chi2n = fmin / nDof; if (fDebug) cout << " Chi2 " << chi2n << " " << fNpar << endl; if (chi2n*1.2+1.e-6 > chi2o ) { fNpar -= 3; break; } // Save parameters and errors if (nInX == 1) { // One pad per direction for (Int_t i=0; i 0) { // Find distance to the nearest neighbour dist[0] = dist[1] = TMath::Sqrt ((param0[min][0]-param0[min][2])* (param0[min][0]-param0[min][2]) +(param0[min][1]-param0[min][3])* (param0[min][1]-param0[min][3])); if (iseed > 1) { dist[2] = TMath::Sqrt ((param0[min][0]-param0[min][5])* (param0[min][0]-param0[min][5]) +(param0[min][1]-param0[min][6])* (param0[min][1]-param0[min][6])); rad = TMath::Sqrt ((param0[min][2]-param0[min][5])* (param0[min][2]-param0[min][5]) +(param0[min][3]-param0[min][6])* (param0[min][3]-param0[min][6])); if (dist[2] < dist[0]) dist[0] = dist[2]; if (rad < dist[1]) dist[1] = rad; if (rad < dist[2]) dist[2] = rad; } cout << dist[0] << " " << dist[1] << " " << dist[2] << endl; if (dist[TMath::LocMin(iseed+1,dist)] < 1.) { fNpar -= 3; break; } } */ for (Int_t i=0; i 1) { // Find distance to the nearest neighbour dist[0] = dist[1] = TMath::Sqrt ((parOk[0]-parOk[2])* (parOk[0]-parOk[2]) +(parOk[1]-parOk[3])* (parOk[1]-parOk[3])); if (nfit > 2) { dist[2] = TMath::Sqrt ((parOk[0]-parOk[5])* (parOk[0]-parOk[5]) +(parOk[1]-parOk[6])* (parOk[1]-parOk[6])); rad = TMath::Sqrt ((parOk[2]-parOk[5])* (parOk[2]-parOk[5]) +(parOk[3]-parOk[6])* (parOk[3]-parOk[6])); if (dist[2] < dist[0]) dist[0] = dist[2]; if (rad < dist[1]) dist[1] = rad; if (rad < dist[2]) dist[2] = rad; } } Int_t indx; fnPads[1] -= nVirtual; if (!fDraw) { Double_t coef = 0; if (iSimple) fnCoupled = 0; //for (Int_t j=0; j=0; j--) { indx = j<2 ? j*2 : j*2+1; if (nfit == 1) coef = 1; else coef = j==nfit-1 ? parOk[indx+2] : 1-coef; coef = TMath::Max (coef, 0.); if (nfit == 3 && j < 2) coef = j==1 ? coef*parOk[indx+2] : coef - parOk[7]; coef = TMath::Max (coef, 0.); AddRawCluster (parOk[indx], parOk[indx+1], coef*fQtot, errOk[indx], nfit0+10*nfit+100*nMax+10000*fnCoupled, tracks, //sigCand[maxSeed[j]][0], sigCand[maxSeed[j]][1]); //sigCand[0][0], sigCand[0][1], dist[j]); sigCand[0][0], sigCand[0][1], dist[TMath::LocMin(nfit,dist)]); } } else fDraw->FillMuon(nfit, parOk, errOk); return nfit; } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::Fcn1(Int_t & /*npar*/, Double_t * /*gin*/, Double_t &f, Double_t *par, Int_t /*iflag*/) { /// Fit for one track /// AZ for Muinuit AliMUONClusterFinderAZ& c = *(AliMUONClusterFinderAZ::fgClusterFinder); AliMUONClusterFinderAZ& c = *this; //AZ Int_t cath, ix, iy, indx, npads=0; Double_t charge, delta, coef=0, chi2=0, qTot = 0; for (Int_t j=0; j 0) npads++; // exclude virtual pads qTot += c.fXyq[2][j]; ix = c.fPadIJ[2][j]; iy = c.fPadIJ[3][j]; c.fSegmentation[cath]->SetPad(ix, iy); charge = 0; for (Int_t i=c.fNpar/3; i>=0; i--) { // sum over tracks indx = i<2 ? 2*i : 2*i+1; c.fSegmentation[cath]->SetHit(par[indx], par[indx+1], c.fZpad); if (c.fNpar == 2) coef = 1; else coef = i==c.fNpar/3 ? par[indx+2] : 1-coef; coef = TMath::Max (coef, 0.); if (c.fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7]; coef = TMath::Max (coef, 0.); charge += c.fInput->Mathieson()->IntXY(fInput->DetElemId(), c.fInput->Segmentation2(cath))*coef; } charge *= c.fQtot; delta = charge - c.fXyq[2][j]; delta *= delta; delta /= c.fXyq[2][j]; //if (cath) delta /= 5; // just for test chi2 += delta; } // for (Int_t j=0; f = chi2; Double_t qAver = qTot/npads; //(c.fnPads[0]+c.fnPads[1]); f = chi2/qAver; } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::UpdatePads(Int_t /*nfit*/, Double_t *par) { /// Subtract the fitted charges from pads with strong coupling Int_t cath, ix, iy, indx; Double_t charge, coef=0; for (Int_t j=0; jSetPad(ix, iy); charge = 0; for (Int_t i=fNpar/3; i>=0; i--) { // sum over tracks indx = i<2 ? 2*i : 2*i+1; fSegmentation[cath]->SetHit(par[indx], par[indx+1], fZpad); if (fNpar == 2) coef = 1; else coef = i==fNpar/3 ? par[indx+2] : 1-coef; coef = TMath::Max (coef, 0.); if (fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7]; coef = TMath::Max (coef, 0.); charge += fInput->Mathieson()->IntXY(fInput->DetElemId(),fInput->Segmentation2(cath))*coef; } charge *= fQtot; fXyq[2][j] -= charge; } // if (fNpar != 0) if (fXyq[2][j] > fgkZeroSuppression) fPadIJ[1][j] = 0; // return pad for further using } // for (Int_t j=0; } //_____________________________________________________________________________ Bool_t AliMUONClusterFinderAZ::TestTrack(Int_t /*t*/) const { /// Test if track was user selected return kTRUE; /* if (fTrack[0]==-1 || fTrack[1]==-1) { return kTRUE; } else if (t==fTrack[0] || t==fTrack[1]) { return kTRUE; } else { return kFALSE; } */ } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::AddRawCluster(Double_t x, Double_t y, Double_t qTot, Double_t fmin, Int_t nfit, Int_t *tracks, Double_t /*sigx*/, Double_t /*sigy*/, Double_t /*dist*/) { /// Add a raw cluster copy to the list if (qTot <= 0.501) return; AliMUONRawCluster cnew; Int_t cath, npads[2] = {0}, nover[2] = {0}; for (Int_t j=0; j cnew.GetPeakSignal(cath)) cnew.SetPeakSignal(cath,TMath::Nint (fXyq[2][j])); //cnew.SetCharge(cath,cnew.GetCharge(cath) + TMath::Nint (fXyq[2][j])); cnew.SetContrib(npads[cath],cath,fXyq[2][j]); cnew.SetIndex(npads[cath],cath,TMath::Nint (fXyq[5][j])); cnew.SetDetElemId(fInput->DetElemId()); npads[cath]++; } cnew.SetClusterType(nover[0] + nover[1] * 100); for (Int_t j=0; j<3; j++) cnew.SetTrack(j,tracks[j]); Double_t xg, yg, zg; for (cath=0; cath<2; cath++) { // Perform local-to-global transformation fInput->Segmentation2(cath)->GetTransformer()->Local2Global(fInput->DetElemId(), x, y, fZpad, xg, yg, zg); cnew.SetX(cath, xg); cnew.SetY(cath, yg); cnew.SetZ(cath, zg); cnew.SetCharge(cath, TMath::Nint(qTot)); //cnew.SetPeakSignal(cath,20); //cnew.SetMultiplicity(cath, 5); cnew.SetNcluster(cath, nfit); cnew.SetChi2(cath, fmin); //0.;1 } // Evaluate measurement errors //AZ Errors(&cnew); cnew.SetGhost(nfit); //cnew.SetX(1,sigx); cnew.SetY(1,sigy); cnew.SetZ(1,dist); //cnew.fClusterType=cnew.PhysicsContribution(); new((*fRawClusters)[fNRawClusters++]) AliMUONRawCluster(cnew); if (fDebug) cout << fNRawClusters << " " << fInput->Chamber() << endl; //fNPeaks++; } //_____________________________________________________________________________ Int_t AliMUONClusterFinderAZ::FindLocalMaxima(TObjArray *pixArray, Int_t *localMax, Double_t *maxVal) { /// Find local maxima in pixel space for large preclusters in order to /// try to split them into smaller pieces (to speed up the MLEM procedure) /// or to find additional fitting seeds if clusters were not completely resolved TH2D *hist = NULL; //if (pixArray == fPixArray) hist = (TH2D*) gROOT->FindObject("anode"); //else { hist = (TH2D*) gROOT->FindObject("anode1"); cout << hist << endl; } //if (hist) hist->Delete(); Double_t xylim[4] = {999, 999, 999, 999}; Int_t nPix = pixArray->GetEntriesFast(); AliMUONPixel *pixPtr = 0; for (Int_t ipix=0; ipixUncheckedAt(ipix); for (Int_t i=0; i<4; i++) xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2)); } for (Int_t i=0; i<4; i++) xylim[i] -= pixPtr->Size(i/2); Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2); Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2); if (pixArray == fPixArray) hist = new TH2D("anode","anode",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]); else hist = new TH2D("anode1","anode1",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]); for (Int_t ipix=0; ipixUncheckedAt(ipix); hist->Fill(pixPtr->Coord(0), pixPtr->Coord(1), pixPtr->Charge()); } if (fDraw && pixArray == fPixArray) fDraw->DrawHist("c2", hist); Int_t nMax = 0, indx; Int_t *isLocalMax = new Int_t[ny*nx]; for (Int_t i=0; iGetCellContent(j,i) < 0.5) continue; //if (isLocalMax[indx+j-1] < 0) continue; if (isLocalMax[indx+j-1] != 0) continue; FlagLocalMax(hist, i, j, isLocalMax); } } for (Int_t i=1; i<=ny; i++) { indx = (i-1) * nx; for (Int_t j=1; j<=nx; j++) { if (isLocalMax[indx+j-1] > 0) { localMax[nMax] = indx + j - 1; maxVal[nMax++] = hist->GetCellContent(j,i); if (nMax > 99) AliFatal(" Too many local maxima !!!"); } } } if (fDebug) cout << " Local max: " << nMax << endl; delete [] isLocalMax; isLocalMax = 0; return nMax; } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::FlagLocalMax(TH2D *hist, Int_t i, Int_t j, Int_t *isLocalMax) { /// Flag pixels (whether or not local maxima) Int_t nx = hist->GetNbinsX(); Int_t ny = hist->GetNbinsY(); Int_t cont = TMath::Nint (hist->GetCellContent(j,i)); Int_t cont1 = 0, indx = (i-1)*nx+j-1, indx1 = 0, indx2 = 0; for (Int_t i1=i-1; i1 ny) continue; indx1 = (i1 - 1) * nx; for (Int_t j1=j-1; j1 nx) continue; if (i == i1 && j == j1) continue; indx2 = indx1 + j1 - 1; cont1 = TMath::Nint (hist->GetCellContent(j1,i1)); if (cont < cont1) { isLocalMax[indx] = -1; return; } else if (cont > cont1) isLocalMax[indx2] = -1; else { // the same charge isLocalMax[indx] = 1; if (isLocalMax[indx2] == 0) { FlagLocalMax(hist, i1, j1, isLocalMax); if (isLocalMax[indx2] < 0) { isLocalMax[indx] = -1; return; } else isLocalMax[indx2] = -1; } } } } isLocalMax[indx] = 1; // local maximum } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::FindCluster(Int_t *localMax, Int_t iMax) { /// Find pixel cluster around local maximum \a iMax and pick up pads /// overlapping with it TH2D *hist = (TH2D*) gROOT->FindObject("anode"); Int_t nx = hist->GetNbinsX(); Int_t ny = hist->GetNbinsY(); Int_t ic = localMax[iMax] / nx + 1; Int_t jc = localMax[iMax] % nx + 1; Bool_t *used = new Bool_t[ny*nx]; for (Int_t i=0; iDelete(); Double_t wx = hist->GetXaxis()->GetBinWidth(1)/2; Double_t wy = hist->GetYaxis()->GetBinWidth(1)/2; Double_t yc = hist->GetYaxis()->GetBinCenter(ic); Double_t xc = hist->GetXaxis()->GetBinCenter(jc); Double_t cont = hist->GetCellContent(jc,ic); AliMUONPixel *pixPtr = new AliMUONPixel (xc, yc, wx, wy, cont); fPixArray->Add((TObject*)pixPtr); used[(ic-1)*nx+jc-1] = kTRUE; AddBin(hist, ic, jc, 1, used, (TObjArray*)0); // recursive call Int_t nPix = fPixArray->GetEntriesFast(), npad = fnPads[0] + fnPads[1]; for (Int_t i=0; iUncheckedAt(i))->SetSize(0,wx); ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(1,wy); } if (fDebug) cout << iMax << " " << nPix << endl; Float_t xy[4], xy12[4]; // Pick up pads which overlap with found pixels for (Int_t i=0; iUncheckedAt(i); for (Int_t j=0; j<4; j++) xy[j] = pixPtr->Coord(j/2) + (j%2 ? 1 : -1)*pixPtr->Size(j/2); for (Int_t j=0; j sigmax[cath]) { maxpad[cath][1] = maxpad[cath][0]; aamax[cath] = sigmax[cath]; sigmax[cath] = fXyq[2][j]; maxpad[cath][0] = j; } } if (maxpad[0][0] >= 0 && maxpad[0][1] < 0 || maxpad[1][0] >= 0 && maxpad[1][1] < 0) { for (Int_t j=0; j aamax[cath]) { aamax[cath] = fXyq[2][j]; maxpad[cath][1] = j; } } } // Check for mirrors (side X on cathode 0) Bool_t mirror = kFALSE; if (maxpad[0][0] >= 0 && maxpad[1][0] >= 0) { mirror = fXyq[3][maxpad[0][0]] < fXyq[4][maxpad[0][0]]; if (!mirror && TMath::Abs(fXyq[3][maxpad[0][0]]-fXyq[3][maxpad[1][0]]) < 0.001) { // Special case when pads on both cathodes have the same size Int_t yud[2] = {0}; for (Int_t j = 0; j < fnPads[0]+fnPads[1]; j++) { cath = fPadIJ[0][j]; if (j == maxpad[cath][0]) continue; if (fPadIJ[2][j] != fPadIJ[2][maxpad[cath][0]]) continue; if (fPadIJ[3][j] + 1 == fPadIJ[3][maxpad[cath][0]] || fPadIJ[3][j] - 1 == fPadIJ[3][maxpad[cath][0]]) yud[cath]++; } if (!yud[0]) mirror = kTRUE; // take the other cathode } // if (!mirror &&... } // if (maxpad[0][0] >= 0 && maxpad[1][0] >= 0) // Find neughbours of pads with max charges Int_t nn, xList[10], yList[10], ix0, iy0, ix, iy, neighb; for (cath=0; cath<2; cath++) { if (!cath && maxpad[0][0] < 0) continue; // one-sided cluster - cathode 1 if (cath && maxpad[1][0] < 0) break; // one-sided cluster - cathode 0 if (maxpad[1][0] >= 0) { if (!mirror) { if (!cath && nInY != 2) continue; if (cath && nInX != 2 && (maxpad[0][0] >= 0 || nInY != 2)) continue; } else { if (!cath && nInX != 2) continue; if (cath && nInY != 2 && (maxpad[0][0] >= 0 || nInX != 2)) continue; } } Int_t iAddX = 0, iAddY = 0, ix1 = 0, iy1 = 0, iPad = 0; if (maxpad[0][0] < 0) iPad = 1; for (iPad=0; iPad<2; iPad++) { if (maxpad[cath][iPad] < 0) continue; if (iPad && !iAddX && !iAddY) break; if (iPad && fXyq[2][maxpad[cath][1]] / sigmax[cath] < 0.5) break; Int_t neighbx = 0, neighby = 0; ix0 = fPadIJ[2][maxpad[cath][iPad]]; iy0 = fPadIJ[3][maxpad[cath][iPad]]; fSegmentation[cath]->Neighbours(ix0, iy0, &nn, xList, yList); Float_t zpad; for (Int_t j=0; j= 0) continue; } else { if (cath && maxpad[0][0] >= 0) continue; } if (iPad && !iAddX) continue; fSegmentation[cath]->GetPadC(ix, iy, fXyq[0][npads], fXyq[1][npads], zpad); if (fXyq[0][npads] > 1.e+5) continue; // temporary fix if (ix == ix1) continue; //19-12-05 if (ix1 == ix0) continue; if (maxpad[1][0] < 0 || mirror && maxpad[0][0] >= 0) { if (!iPad) fXyq[2][npads] = TMath::Min (sigmax[0]/100, 5.); else fXyq[2][npads] = TMath::Min (aamax[0]/100, 5.); } else { if (!iPad) fXyq[2][npads] = TMath::Min (sigmax[1]/100, 5.); else fXyq[2][npads] = TMath::Min (aamax[1]/100, 5.); } fXyq[2][npads] = TMath::Max (fXyq[2][npads], (float)1); fXyq[3][npads] = -2; // flag fPadIJ[2][npads] = ix; fPadIJ[3][npads] = iy; fnPads[1]++; iAddX = npads; if (fDebug) printf(" ***** Add virtual pad in X ***** %f %f %f %3d %3d \n", fXyq[2][npads], fXyq[0][npads], fXyq[1][npads], ix, iy); ix1 = ix0; continue; } if (nInY != 2) continue; if (!mirror && cath && maxpad[0][0] >= 0) continue; if (mirror && !cath && maxpad[1][0] >= 0) continue; if (TMath::Abs(iy-iy0) == 1 || TMath::Abs(iy*iy0) == 1) { if (ix != ix0) continue; // new segmentation - check if (iPad && !iAddY) continue; fSegmentation[cath]->GetPadC(ix, iy, fXyq[0][npads], fXyq[1][npads], zpad); if (iy1 == iy0) continue; //if (iPad && iy1 == iy0) continue; if (maxpad[0][0] < 0 || mirror && maxpad[1][0] >= 0) { if (!iPad) fXyq[2][npads] = TMath::Min (sigmax[1]/15, fgkZeroSuppression); else fXyq[2][npads] = TMath::Min (aamax[1]/15, fgkZeroSuppression); } else { if (!iPad) fXyq[2][npads] = TMath::Min (sigmax[0]/15, fgkZeroSuppression); else fXyq[2][npads] = TMath::Min (aamax[0]/15, fgkZeroSuppression); } fXyq[2][npads] = TMath::Max (fXyq[2][npads], (float)1); fXyq[3][npads] = -2; // flag fPadIJ[2][npads] = ix; fPadIJ[3][npads] = iy; fnPads[1]++; iAddY = npads; if (fDebug) printf(" ***** Add virtual pad in Y ***** %f %f %f %3d %3d \n", fXyq[2][npads], fXyq[0][npads], fXyq[1][npads], ix, iy); iy1 = iy0; } } // for (Int_t j=0; j= 0) {nInX = nXsaved; nInY = nYsaved; return; } Float_t *xPad0 = NULL, *yPad0 = NULL, *xPad1 = NULL, *yPad1 = NULL; Float_t wMinX[2] = {99, 99}, wMinY[2] = {99, 99}; Int_t *nPad0 = NULL, *nPad1 = NULL; Int_t nPads = fnPads[0] + fnPads[1]; if (fnPads[0]) { xPad0 = new Float_t[nPads]; yPad0 = new Float_t[nPads]; nPad0 = new Int_t[nPads]; } if (fnPads[1]) { xPad1 = new Float_t[nPads]; yPad1 = new Float_t[nPads]; nPad1 = new Int_t[nPads]; } Int_t n0 = 0, n1 = 0, cath, npadx[2] = {1, 1}, npady[2] = {1, 1}; for (Int_t j = 0; j < nPads; j++) { if (nInX < 0 && fPadIJ[1][j] != 0) continue; // before fit else if (nInX == 0 && fPadIJ[1][j] != 1) continue; // fit - exclude overflows else if (nInX > 0 && fPadIJ[1][j] != 1 && fPadIJ[1][j] != -9) continue; // exclude non-marked if (nInX <= 0 && fXyq[2][j] > fgkSaturation-1) continue; // skip overflows cath = fPadIJ[0][j]; if (fXyq[3][j] > 0) { // exclude virtual pads wMinX[cath] = TMath::Min (wMinX[cath], fXyq[3][j]); wMinY[cath] = TMath::Min (wMinY[cath], fXyq[4][j]); //20-12-05 } if (cath) { xPad1[n1] = fXyq[0][j]; yPad1[n1++] = fXyq[1][j]; } else { xPad0[n0] = fXyq[0][j]; yPad0[n0++] = fXyq[1][j]; } } } // Sort if (n0) { TMath::Sort (n0, xPad0, nPad0); // in X for (Int_t i = 1; i < n0; i++) if (xPad0[nPad0[i]] - xPad0[nPad0[i-1]] < -0.01) npadx[0]++; TMath::Sort (n0, yPad0, nPad0); // in Y for (Int_t i = 1; i < n0; i++) if (yPad0[nPad0[i]] - yPad0[nPad0[i-1]] < -0.01) npady[0]++; } if (n1) { TMath::Sort (n1, xPad1, nPad1); // in X for (Int_t i = 1; i < n1; i++) if (xPad1[nPad1[i]] - xPad1[nPad1[i-1]] < -0.01) npadx[1]++; TMath::Sort (n1, yPad1, nPad1); // in Y for (Int_t i = 1; i < n1; i++) if (yPad1[nPad1[i]] - yPad1[nPad1[i-1]] < -0.01) npady[1]++; } if (fnPads[0]) { delete [] xPad0; delete [] yPad0; delete [] nPad0; } if (fnPads[1]) { delete [] xPad1; delete [] yPad1; delete [] nPad1; } if (TMath::Abs (wMinY[0] - wMinY[1]) < 1.e-3) nInY = TMath::Max (npady[0], npady[1]); else nInY = wMinY[0] < wMinY[1] ? npady[0] : npady[1]; if (TMath::Abs (wMinX[0] - wMinX[1]) < 1.e-3) nInX = TMath::Max (npadx[0], npadx[1]); else nInX = wMinX[0] < wMinX[1] ? npadx[0] : npadx[1]; } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::Simple() { /// Process simple cluster (small number of pads) without EM-procedure Int_t nForFit = 1, clustFit[1] = {0}, nfit; Double_t parOk[3] = {0.}; TObjArray *clusters[1]; clusters[0] = fPixArray; for (Int_t i = 0; i < fnPads[0]+fnPads[1]; i++) { if (fXyq[2][i] > fgkSaturation-1) fPadIJ[1][i] = -9; else fPadIJ[1][i] = 1; } nfit = Fit(1, nForFit, clustFit, clusters, parOk); } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::Errors(AliMUONRawCluster *clus) { /// Correct reconstructed coordinates for some clusters and evaluate errors Double_t qTot = clus->GetCharge(0), fmin = clus->GetChi2(0); Double_t xreco = clus->GetX(0), yreco = clus->GetY(0), zreco = clus->GetZ(0); Double_t sigmax[2] = {0}; Int_t nInX = 1, nInY, maxdig[2] ={-1, -1}, digit, cath1, isec; PadsInXandY(nInX, nInY); // Find pad with maximum signal for (Int_t cath = 0; cath < 2; cath++) { for (Int_t j = 0; j < clus->GetMultiplicity(cath); j++) { cath1 = cath; digit = clus->GetIndex(j, cath); if (digit < 0) { cath1 = TMath::Even(cath); digit = -digit - 1; } // from the other cathode if (clus->GetContrib(j,cath) > sigmax[cath1]) { sigmax[cath1] = clus->GetContrib(j,cath); maxdig[cath1] = digit; } } } // Size of pad with maximum signal and reco coordinate distance from the pad center AliMUONDigit *mdig = 0; Double_t wx[2], wy[2], dxc[2], dyc[2]; Float_t xpad, ypad, zpad; Int_t ix, iy; for (Int_t cath = 0; cath < 2; cath++) { if (maxdig[cath] < 0) continue; mdig = fInput->Digit(cath,maxdig[cath]); isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY()); wx[cath] = fSegmentation[cath]->Dpx(isec); wy[cath] = fSegmentation[cath]->Dpy(isec); fSegmentation[cath]->GetPadI(xreco, yreco, zreco, ix, iy); isec = fSegmentation[cath]->Sector(ix, iy); if (isec > 0) { fSegmentation[cath]->GetPadC(ix, iy, xpad, ypad, zpad); dxc[cath] = xreco - xpad; dyc[cath] = yreco - ypad; } } // Check if pad with max charge at the edge (number of neughbours) Int_t nn, xList[10], yList[10], neighbx[2][2] = {{0,0}, {0,0}}, neighby[2][2]= {{0,0}, {0,0}}; for (Int_t cath = 0; cath < 2; cath++) { if (maxdig[cath] < 0) continue; mdig = fInput->Digit(cath,maxdig[cath]); fSegmentation[cath]->Neighbours(mdig->PadX(), mdig->PadY(), &nn, xList, yList); isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY()); /*?? Float_t sprX = fResponse->SigmaIntegration() * fResponse->ChargeSpreadX(); Float_t sprY = fResponse->SigmaIntegration() * fResponse->ChargeSpreadY(); //fSegmentation[cath]->FirstPad(fInput->DetElemId(),muons[ihit][1], muons[ihit][2], muons[ihit][3], sprX, sprY); //fSegmentation[cath]->FirstPad(fInput->DetElemId(),xreco, yreco, zreco, sprX, sprY); fSegmentation[cath]->FirstPad(xreco, yreco, zreco, sprX, sprY); Int_t border = 0; //if (fSegmentation[cath]->Sector(fInput->DetElemId(),fSegmentation[cath]->Ix(),fSegmentation[cath]->Iy()) <= 0) { if (fSegmentation[cath]->Sector(fSegmentation[cath]->Ix(), fSegmentation[cath]->Iy()) <= 0) { //fSegmentation[cath]->NextPad(fInput->DetElemId()); fSegmentation[cath]->NextPad(); border = 1; } */ for (Int_t j=0; jIy()) continue; fSegmentation[cath]->GetPadC(xList[j], yList[j], xpad, ypad, zpad); //cout << ch << " " << xList[j] << " " << yList[j] << " " << border << " " << x << " " << y << " " << xpad << " " << ypad << endl; if (TMath::Abs(xpad) < 1 && TMath::Abs(ypad) < 1) continue; if (xList[j] == mdig->PadX()-1 || mdig->PadX() == 1 && xList[j] == -1) neighbx[cath][0] = 1; else if (xList[j] == mdig->PadX()+1 || mdig->PadX() == -1 && xList[j] == 1) neighbx[cath][1] = 1; if (yList[j] == mdig->PadY()-1 || mdig->PadY() == 1 && yList[j] == -1) neighby[cath][0] = 1; else if (yList[j] == mdig->PadY()+1 || mdig->PadY() == -1 && yList[j] == 1) neighby[cath][1] = 1; } // for (Int_t j=0; jGetClusterType(); // One-sided cluster if (!clus->GetMultiplicity(0)) { neighby[0][0] = neighby[1][0]; wy[0] = wy[1]; if (iOver < 99) iOver += 100 * iOver; dyc[0] = dyc[1]; } else if (!clus->GetMultiplicity(1)) { neighbx[1][0] = neighbx[0][0]; wx[1] = wx[0]; if (iOver < 99) iOver += 100 * iOver; dxc[1] = dxc[0]; } // Apply corrections and evaluate errors Double_t errY, errX; Errors(nInY, nInX, neighby[0][0],neighbx[1][0], fmin, wy[0]*10, wx[1]*10, iOver, dyc[0], dxc[1], qTot, yreco, xreco, errY, errX); errY = TMath::Max (errY, 0.01); //errY = 0.01; //errX = TMath::Max (errX, 0.144); clus->SetX(0, xreco); clus->SetY(0, yreco); clus->SetErrX(errX); clus->SetErrY(errY); } //_____________________________________________________________________________ void AliMUONClusterFinderAZ::Errors(Int_t ny, Int_t nx, Int_t iby, Int_t ibx, Double_t fmin, Double_t wy, Double_t wx, Int_t iover, Double_t dyc, Double_t /*dxc*/, Double_t qtot, Double_t &yrec, Double_t &xrec, Double_t &erry, Double_t &errx) { /// Correct reconstructed coordinates for some clusters and evaluate errors erry = 0.01; errx = 0.144; Int_t iovery = iover % 100; Double_t corr = 0; /* ---> Ny = 1 */ if (ny == 1) { if (iby != 0) { // edge effect yrec += iby * (0.1823+0.2008)/2; erry = 0.04587; } else { // Find "effective pad width" Double_t width = 0.218 / (1.31e-4 * TMath::Exp (2.688 * TMath::Log(qtot)) + 1) * 2; width = TMath::Min (width, 0.4); erry = width / TMath::Sqrt(12.); erry = TMath::Max (erry, 0.01293); } goto x; //return; } /* ---> "Bad" fit */ if (fmin > 0.4) { erry = 0.1556; if (ny == 5) erry = 0.06481; goto x; //return; } /* ---> By != 0 */ if (iby != 0) { if (ny > 2) { erry = 0.00417; //0.01010 } else { // ny = 2 if (dyc * iby > -0.05) { Double_t dyc2 = dyc * dyc; if (iby < 0) { corr = 0.019 - 0.602 * dyc + 8.739 * dyc2 - 44.209 * dyc2 * dyc; corr = TMath::Min (corr, TMath::Abs(-0.25-dyc)); yrec -= corr; //dyc -= corr; erry = 0.00814; } else { corr = 0.006 + 0.300 * dyc + 6.147 * dyc2 + 42.039 * dyc2 * dyc; corr = TMath::Min (corr, 0.25-dyc); yrec += corr; //dyc += corr; erry = 0.01582; } } else { erry = (0.00303 + 0.00296) / 2; } } goto x; //return; } /* ---> Overflows */ if (iovery != 0) { if (qtot < 3000) { erry = 0.0671; } else { if (iovery > 1) { erry = 0.09214; } else if (TMath::Abs(wy - 5) < 0.1) { erry = 0.061; //0.06622 } else { erry = 0.00812; // 0.01073 } } goto x; //return; } /* ---> "Good" but very high signal */ if (qtot > 4000) { if (TMath::Abs(wy - 4) < 0.1) { erry = 0.00117; } else if (fmin < 0.03 && qtot < 6000) { erry = 0.01003; } else { erry = 0.1931; } goto x; //return; } /* ---> "Good" clusters */ if (ny > 3) { if (TMath::Abs(wy - 5) < 0.1) { erry = 0.0011; //0.00304 } else if (qtot < 400.) { erry = 0.0165; } else { erry = 0.00135; // 0.00358 } } else if (ny == 3) { if (TMath::Abs(wy - 4) < 0.1) { erry = 35.407 / (1 + TMath::Exp(5.511*TMath::Log(qtot/265.51))) + 11.564; //erry = 83.512 / (1 + TMath::Exp(3.344*TMath::Log(qtot/211.58))) + 12.260; } else { erry = 147.03 / (1 + TMath::Exp(1.713*TMath::Log(qtot/73.151))) + 9.575; //erry = 91.743 / (1 + TMath::Exp(2.332*TMath::Log(qtot/151.67))) + 11.453; } erry *= 1.e-4; } else { // ny = 2 if (TMath::Abs(wy - 4) < 0.1) { erry = 60.800 / (1 + TMath::Exp(3.305*TMath::Log(qtot/104.53))) + 11.702; //erry = 73.128 / (1 + TMath::Exp(5.676*TMath::Log(qtot/120.93))) + 17.839; } else { erry = 117.98 / (1 + TMath::Exp(2.005*TMath::Log(qtot/37.649))) + 21.431; //erry = 99.066 / (1 + TMath::Exp(4.900*TMath::Log(qtot/107.57))) + 25.315; } erry *= 1.e-4; } //return; x: /* ---> X-coordinate */ /* ---> Y-side */ if (wx > 11) { errx = 0.0036; xrec -= 0.1385; return; } /* ---> Nx = 1 */ if (nx == 1) { if (TMath::Abs(wx - 6) < 0.1) { if (qtot < 40) errx = 0.1693; else errx = 0.06241; } else if (TMath::Abs(wx - 7.5) < 0.1) { if (qtot < 40) errx = 0.2173; else errx = 0.07703; } else if (TMath::Abs(wx - 10) < 0.1) { if (ibx == 0) { if (qtot < 40) errx = 0.2316; else errx = 0.1426; } else { xrec += (0.2115 + 0.1942) / 2 * ibx; errx = 0.1921; } } return; } /* ---> "Bad" fit */ if (fmin > 0.5) { errx = 0.1591; return; } /* ---> Bx != 0 */ if (ibx != 0) { if (ibx > 0) { errx = 0.06761; xrec -= 0.03832; } else { errx = 0.06653; xrec += 0.02581; } return; } /* ---> Overflows */ if (iover != 0) { if (TMath::Abs(wx - 6) < 0.1) errx = 0.06979; else if (TMath::Abs(wx - 7.5) < 0.1) errx = 0.1089; else if (TMath::Abs(wx - 10) < 0.1) errx = 0.09847; return; } /* ---> Good */ if (TMath::Abs(wx - 6) < 0.1) errx = 0.06022; else if (TMath::Abs(wx - 7.5) < 0.1) errx = 0.07247; else if (TMath::Abs(wx - 10) < 0.1) errx = 0.07359; }