#ifndef ALIMUONRAWCLUSTER_H #define ALIMUONRAWCLUSTER_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ // Revision of includes 07/05/2004 /// \ingroup base /// \class AliMUONRawCluster /// \brief MUON raw cluster /// /// Class for the MUON RecPoint /// It contains the properties of the physics cluters found in the tracking chambers /// RawCluster contains also the information from the both cathode of the chambers. #include "AliMUONVCluster.h" #include // because of inline funtion GetRadius #include class AliMUONRawCluster : public AliMUONVCluster { public: AliMUONRawCluster(); virtual ~AliMUONRawCluster(); /// Clear method (used by TClonesArray) virtual void Clear(Option_t* = "") {} /// Create a copy of the current cluster virtual AliMUONRawCluster* Clone(const char* = "") const {return new AliMUONRawCluster(*this);} /// Set coordinates (cm) virtual void SetXYZ(Double_t x, Double_t y, Double_t z) {fX[0] = x; fY[0] = y; fZ[0] = z;} /// Return coordinate X (cm) virtual Double_t GetX() const {return fX[0];} /// Return coordinate Y (cm) virtual Double_t GetY() const {return fY[0];} /// Return coordinate Z (cm) virtual Double_t GetZ() const {return fZ[0];} /// Set resolution (cm) on coordinates (X,Y) virtual void SetErrXY(Double_t errX, Double_t errY) {fErrXY[0] = errX; fErrXY[1] = errY;} /// Return resolution (cm) on coordinate X virtual Double_t GetErrX() const {return fErrXY[0];} /// Return resolution**2 (cm**2) on coordinate X virtual Double_t GetErrX2() const {return fErrXY[0] * fErrXY[0];} /// Return resolution (cm) on coordinate Y virtual Double_t GetErrY() const {return fErrXY[1];} /// Return resolution**2 (cm**2) on coordinate Y virtual Double_t GetErrY2() const {return fErrXY[1] * fErrXY[1];} /// Set the cluster charge virtual void SetCharge(Double_t q) {fQ[0] = q;} /// Set the cluster charge virtual Double_t GetCharge() const {return fQ[0];} /// Return chamber Id virtual Int_t GetChamberId() const {return fDetElemId/100 - 1;} /// Set detection element Id void SetDetElemId(Int_t id) {fDetElemId = id;} /// Return detection element Id virtual Int_t GetDetElemId() const {return fDetElemId;} virtual void SetDigitsId(Int_t nDigits, const UInt_t *digitsId); /// Add a digit Id to the array of associated digits virtual void AddDigitId(UInt_t id) {fIndexMap[fMultiplicity[0]++][0] = id;} /// Return number of associated digits virtual Int_t GetNDigits() const {return fMultiplicity[0];} /// Return Id of digits i virtual UInt_t GetDigitId(Int_t i) const {return (i < fMultiplicity[0] && i < 50) ? (UInt_t)fIndexMap[i][0] : 0;} /// Set chi2 of cluster virtual void SetChi2( Double_t chi2) {fChi2[0] = chi2;} /// Return chi2 of cluster virtual Double_t GetChi2() const {return fChi2[0];} /// Set the corresponding MC track number virtual void SetMCLabel(Int_t label) {SetTrack(0, label);} /// Return the corresponding MC track number virtual Int_t GetMCLabel() const {return GetTrack(0);} /// Return radius Float_t GetRadius(Int_t i) {return TMath::Sqrt(fX[i]*fX[i]+fY[i]*fY[i]);} /// Return true as the function Compare() is implemented Bool_t IsSortable() const {return kTRUE;} Int_t Compare(const TObject *obj) const; Int_t PhysicsContribution() const; virtual void Print(Option_t* opt="") const; static Int_t BinarySearch(Float_t r, TArrayF ccord, Int_t from, Int_t upto); static void SortMin(Int_t *idx,Float_t *xdarray, Float_t *xarray, Float_t *yarray, Float_t *qarray,Int_t ntr); void DumpIndex(); Int_t AddCharge(Int_t i, Float_t Q); Int_t AddX(Int_t i, Float_t X); Int_t AddY(Int_t i, Float_t Y); Int_t AddZ(Int_t i, Float_t Z); Float_t GetCharge(Int_t i) const; Float_t GetX(Int_t i) const; Float_t GetY(Int_t i) const; Float_t GetZ(Int_t i) const; Int_t GetTrack(Int_t i=0) const; Float_t GetPeakSignal(Int_t i=0) const; Int_t GetMultiplicity(Int_t i=0) const; Int_t GetClusterType() const; Int_t GetGhost() const; Int_t GetNcluster(Int_t i=0) const; Float_t GetChi2(Int_t i) const; Int_t GetIndex(Int_t i, Int_t j) const; Int_t GetOffset(Int_t i, Int_t j) const; Float_t GetContrib(Int_t i, Int_t j) const; Int_t GetPhysics(Int_t i) const; Int_t SetCharge(Int_t i, Float_t Q); Int_t SetX(Int_t i, Float_t X); Int_t SetY(Int_t i, Float_t Y); Int_t SetZ(Int_t i, Float_t Z); Int_t SetTrack(Int_t i, Int_t track); Int_t SetPeakSignal(Int_t i, Float_t peaksignal); Int_t SetMultiplicity(Int_t i, Int_t mul); Int_t SetClusterType(Int_t type); Int_t SetGhost(Int_t ghost); Int_t SetNcluster(Int_t i, Int_t ncluster); Int_t SetChi2(Int_t i, Float_t chi2); void SetIndex(Int_t i, Int_t j, Int_t index); void SetOffset(Int_t i, Int_t j, Int_t offset); void SetContrib(Int_t i, Int_t j, Float_t contrib); void SetPhysics(Int_t i, Int_t physics); private: Int_t fIndexMap[50][2]; ///< Indices of digits Int_t fOffsetMap[50][2]; ///< Emmanuel special Float_t fContMap[50][2]; ///< Contribution from digit Int_t fPhysicsMap[50]; ///< Distinguish signal and background contr. Float_t fQ[2] ; ///< Q of cluster (in ADC counts) Float_t fX[2] ; ///< X of cluster Float_t fY[2] ; ///< Y of cluster Float_t fZ[2] ; ///< Z of cluster Int_t fTracks[3]; ///< Labels of overlapped tracks Float_t fPeakSignal[2]; ///< Peak signal Int_t fMultiplicity[2]; ///< Cluster multiplicity Int_t fClusterType; ///< Cluster type Int_t fGhost; ///< Ghost info // 0 if not a ghost or ghost problem solved // >0 if ghost problem remains because // 1 both (true and ghost) satify // charge chi2 compatibility // 2 none give satisfactory chi2 Int_t fNcluster[2]; ///< Number of clusters Float_t fChi2[2]; ///< Chi**2 of fit Int_t fDetElemId; ///< ID number of the detection element (slat) on which the cluster is found. Float_t fErrXY[2]; ///< coordinate errors ClassDef(AliMUONRawCluster,3) //Cluster class for MUON }; // inline functions /// Return Indices of digits inline Int_t AliMUONRawCluster::GetIndex(Int_t i, Int_t j) const { return fIndexMap[i][j]; } /// Return Emmanuel special offset map inline Int_t AliMUONRawCluster::GetOffset(Int_t i, Int_t j) const { return fOffsetMap[i][j]; } /// Return Contribution from digit inline Float_t AliMUONRawCluster::GetContrib(Int_t i, Int_t j) const { return fContMap[i][j]; } /// Return Distinguish signal and background contr. inline Int_t AliMUONRawCluster::GetPhysics(Int_t i) const { return fPhysicsMap[i]; } /// Set Indices of digits inline void AliMUONRawCluster::SetIndex(Int_t i, Int_t j, Int_t index) { fIndexMap[i][j] = index; } /// Set Emmanuel special offset map inline void AliMUONRawCluster::SetOffset(Int_t i, Int_t j, Int_t offset) { fOffsetMap[i][j] = offset; } /// Set Contribution from digit inline void AliMUONRawCluster::SetContrib(Int_t i, Int_t j, Float_t contrib) { fContMap[i][j] = contrib; } /// Set Distinguish signal and background contr. inline void AliMUONRawCluster::SetPhysics(Int_t i, Int_t physics) { fPhysicsMap[i] = physics; } #endif