#ifndef AliMUONRecoParam_H #define AliMUONRecoParam_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /// \ingroup rec /// \class AliMUONRecoParam /// \brief Class with MUON reconstruction parameters /// // Author: Philippe Pillot #include "AliDetectorRecoParam.h" #include "TString.h" class AliMUONRecoParam : public AliDetectorRecoParam { public: AliMUONRecoParam(); virtual ~AliMUONRecoParam(); static AliMUONRecoParam *GetLowFluxParam(); static AliMUONRecoParam *GetHighFluxParam(); /// set the calibration mode (see GetCalibrationMode() for possible modes) void SetCalibrationMode(Option_t* mode) { fCalibrationMode = mode; fCalibrationMode.ToUpper();} Option_t* GetCalibrationMode() const; /// set the clustering (pre-clustering) mode void SetClusteringMode(Option_t* mode) {fClusteringMode = mode; fClusteringMode.ToUpper();} /// get the clustering (pre-clustering) mode Option_t* GetClusteringMode() const {return fClusteringMode.Data();} /// set the tracking mode void SetTrackingMode(Option_t* mode) {fTrackingMode = mode; fTrackingMode.ToUpper();} /// get the tracking mode Option_t* GetTrackingMode() const {return fTrackingMode.Data();} /// switch on/off the combined cluster/track reconstruction void CombineClusterTrackReco(Bool_t flag) {fCombinedClusterTrackReco = flag;} /// return kTRUE/kFALSE if the combined cluster/track reconstruction is on/off Bool_t CombineClusterTrackReco() const {return fCombinedClusterTrackReco;} /// save all cluster info (including pads) in ESD, for the given percentage of events void SaveFullClusterInESD(Bool_t flag, Double_t percentOfEvent = 100.) {fSaveFullClusterInESD = flag; fPercentOfFullClusterInESD = (fSaveFullClusterInESD) ? percentOfEvent : 0.;} /// return kTRUE/kFALSE depending on whether we save all cluster info in ESD or not Bool_t SaveFullClusterInESD() const {return fSaveFullClusterInESD;} /// return the percentage of events for which all cluster info are stored in ESD Double_t GetPercentOfFullClusterInESD() const {return fPercentOfFullClusterInESD;} /// set the minimum value (GeV/c) of momentum in bending plane void SetMinBendingMomentum(Double_t val) {fMinBendingMomentum = val;} /// return the minimum value (GeV/c) of momentum in bending plane Double_t GetMinBendingMomentum() const {return fMinBendingMomentum;} /// set the maximum value (GeV/c) of momentum in bending plane void SetMaxBendingMomentum(Double_t val) {fMaxBendingMomentum = val;} /// return the maximum value (GeV/c) of momentum in bending plane Double_t GetMaxBendingMomentum() const {return fMaxBendingMomentum;} /// set the maximum value of the non bending slope void SetMaxNonBendingSlope(Double_t val) {fMaxNonBendingSlope = val;} /// return the maximum value of the non bending slope Double_t GetMaxNonBendingSlope() const {return fMaxNonBendingSlope;} /// set the vertex dispersion (cm) in non bending plane (used for original tracking only) void SetNonBendingVertexDispersion(Double_t val) {fNonBendingVertexDispersion = val;} /// return the vertex dispersion (cm) in bending plane (used for original tracking only) Double_t GetNonBendingVertexDispersion() const {return fNonBendingVertexDispersion;} /// set the vertex dispersion (cm) in non bending plane (used for original tracking only) void SetBendingVertexDispersion(Double_t val) {fBendingVertexDispersion = val;} /// return the vertex dispersion (cm) in bending plane (used for original tracking only) Double_t GetBendingVertexDispersion() const {return fBendingVertexDispersion;} /// set the maximum distance to the track to search for compatible cluster(s) in non bending direction void SetMaxNonBendingDistanceToTrack(Double_t val) {fMaxNonBendingDistanceToTrack = val;} /// return the maximum distance to the track to search for compatible cluster(s) in non bending direction Double_t GetMaxNonBendingDistanceToTrack() const {return fMaxNonBendingDistanceToTrack;} /// set the maximum distance to the track to search for compatible cluster(s) in bending direction void SetMaxBendingDistanceToTrack(Double_t val) {fMaxBendingDistanceToTrack = val;} /// return the maximum distance to the track to search for compatible cluster(s) in bending direction Double_t GetMaxBendingDistanceToTrack() const {return fMaxBendingDistanceToTrack;} /// set the cut in sigma to apply on cluster (local chi2) and track (global chi2) during tracking void SetSigmaCutForTracking(Double_t val) {fSigmaCutForTracking = val;} /// return the cut in sigma to apply on cluster (local chi2) and track (global chi2) during tracking Double_t GetSigmaCutForTracking() const {return fSigmaCutForTracking;} /// switch on/off the track improvement and keep the default cut in sigma to apply on cluster (local chi2) void ImproveTracks(Bool_t flag) {fImproveTracks = flag;} /// switch on/off the track improvement and set the cut in sigma to apply on cluster (local chi2) void ImproveTracks(Bool_t flag, Double_t sigmaCut) {fImproveTracks = flag; fSigmaCutForImprovement = sigmaCut;} /// return kTRUE/kFALSE if the track improvement is switch on/off Bool_t ImproveTracks() const {return fImproveTracks;} /// return the cut in sigma to apply on cluster (local chi2) during track improvement Double_t GetSigmaCutForImprovement() const {return fSigmaCutForImprovement;} /// set the cut in sigma to apply on track during trigger hit pattern search void SetSigmaCutForTrigger(Double_t val) {fSigmaCutForTrigger = val;} /// return the cut in sigma to apply on track during trigger hit pattern search Double_t GetSigmaCutForTrigger() const {return fSigmaCutForTrigger;} /// set the maximum normalized chi2 of tracking/trigger track matching void SetMaxNormChi2MatchTrigger(Double_t val) {fMaxNormChi2MatchTrigger = val;} /// return the maximum normalized chi2 of tracking/trigger track matching Double_t GetMaxNormChi2MatchTrigger() const {return fMaxNormChi2MatchTrigger;} /// switch on/off the tracking of all the possible candidates (track only the best one if switched off) void TrackAllTracks(Bool_t flag) {fTrackAllTracks = flag;} /// return kTRUE/kFALSE if the tracking of all the possible candidates is switched on/off Bool_t TrackAllTracks() const {return fTrackAllTracks;} /// switch on/off the recovering of tracks being lost during reconstruction void RecoverTracks(Bool_t flag) {fRecoverTracks = flag;} /// return kTRUE/kFALSE if the recovering of tracks being lost during reconstruction is switched on/off Bool_t RecoverTracks() const {return fRecoverTracks;} /// switch on/off the fast building of track candidates (assuming linear propagation between stations 4 and 5) void MakeTrackCandidatesFast(Bool_t flag) {fMakeTrackCandidatesFast = flag;} /// return kTRUE/kFALSE if the fast building of track candidates is switched on/off Bool_t MakeTrackCandidatesFast() const {return fMakeTrackCandidatesFast;} /// switch on/off the building of track candidates starting from 1 cluster in each of the stations 4 and 5 void MakeMoreTrackCandidates(Bool_t flag) {fMakeMoreTrackCandidates = flag;} /// return kTRUE/kFALSE if the building of extra track candidates is switched on/off Bool_t MakeMoreTrackCandidates() const {return fMakeMoreTrackCandidates;} /// switch on/off the completion of reconstructed track void ComplementTracks(Bool_t flag) {fComplementTracks = flag;} /// return kTRUE/kFALSE if completion of the reconstructed track is switched on/off Bool_t ComplementTracks() const {return fComplementTracks;} /// switch on/off the use of the smoother void UseSmoother(Bool_t flag) {fUseSmoother = flag;} /// return kTRUE/kFALSE if the use of the smoother is switched on/off Bool_t UseSmoother() const {return fUseSmoother;} /// switch on/off a chamber in the reconstruction void UseChamber(Int_t iCh, Bool_t flag) {if (iCh >= 0 && iCh < 10) fUseChamber[iCh] = flag;} /// return kTRUE/kFALSE whether the chamber must be used or not Bool_t UseChamber(Int_t iCh) const {return (iCh >= 0 && iCh < 10) ? fUseChamber[iCh] : kFALSE;} /// request or not at least one cluster in the station to validate the track void RequestStation(Int_t iSt, Bool_t flag) {if (iSt >= 0 && iSt < 5) fRequestStation[iSt] = flag;} /// return kTRUE/kFALSE whether at least one cluster is requested in the station to validate the track Bool_t RequestStation(Int_t iSt) const {return (iSt >= 0 && iSt < 5) ? fRequestStation[iSt] : kFALSE;} /// set the bypassSt45 value void BypassSt45(Bool_t value) { fBypassSt45 = value; } /// return kTRUE if we should replace clusters in St 4 and 5 by generated clusters from trigger tracks Bool_t BypassSt45() const { return fBypassSt45; } virtual void Print(Option_t *option = "") const; private: /// clustering mode: NOCLUSTERING, PRECLUSTER, PRECLUSTERV2, PRECLUSTERV3, COG,
  ///                   SIMPLEFIT, SIMPLEFITV3, MLEM:DRAW, MLEM, MLEMV2, MLEMV3   
TString fClusteringMode; ///< \brief name of the clustering (+ pre-clustering) mode /// tracking mode: ORIGINAL, KALMAN TString fTrackingMode; ///< \brief name of the tracking mode Double32_t fMinBendingMomentum; ///< minimum value (GeV/c) of momentum in bending plane Double32_t fMaxBendingMomentum; ///< maximum value (GeV/c) of momentum in bending plane Double32_t fMaxNonBendingSlope; ///< maximum value of the non bending slope Double32_t fNonBendingVertexDispersion; ///< vertex dispersion (cm) in non bending plane (used for original tracking only) Double32_t fBendingVertexDispersion; ///< vertex dispersion (cm) in bending plane (used for original tracking only) Double32_t fMaxNonBendingDistanceToTrack; ///< maximum distance to the track to search for compatible cluster(s) in non bending direction Double32_t fMaxBendingDistanceToTrack; ///< maximum distance to the track to search for compatible cluster(s) in bending direction Double32_t fSigmaCutForTracking; ///< cut in sigma to apply on cluster (local chi2) and track (global chi2) during tracking Double32_t fSigmaCutForImprovement; ///< cut in sigma to apply on cluster (local chi2) during track improvement Double32_t fSigmaCutForTrigger; ///< cut in sigma to apply on track during trigger hit pattern search Double32_t fMaxNormChi2MatchTrigger; ///< maximum normalized chi2 of tracking/trigger track matching Double32_t fPercentOfFullClusterInESD; ///< percentage of events for which all cluster info are stored in ESD Bool_t fCombinedClusterTrackReco; ///< switch on/off the combined cluster/track reconstruction Bool_t fTrackAllTracks; ///< kTRUE to track all the possible candidates; kFALSE to track only the best ones Bool_t fRecoverTracks; ///< kTRUE to try to recover the tracks getting lost during reconstruction Bool_t fMakeTrackCandidatesFast; ///< kTRUE to make candidate tracks assuming linear propagation between stations 4 and 5 Bool_t fMakeMoreTrackCandidates; ///< kTRUE to make candidate tracks starting from 1 cluster in each of the stations 4 and 5 Bool_t fComplementTracks; ///< kTRUE to try to complete the reconstructed tracks by adding missing clusters Bool_t fImproveTracks; ///< kTRUE to try to improve the reconstructed tracks by removing bad clusters Bool_t fUseSmoother; ///< kTRUE to use the smoother to compute track parameters/covariances and local chi2 at each cluster (used for Kalman tracking only) Bool_t fSaveFullClusterInESD; ///< kTRUE to save all cluster info (including pads) in ESD /// calibration mode: GAIN, NOGAIN, GAINCONSTANTCAPA TString fCalibrationMode; ///<\brief calibration mode Bool_t fBypassSt45; ///< kTRUE to use trigger tracks to generate "fake" clusters in St 4 and 5 Bool_t fUseChamber[10]; ///< kTRUE to use the chamber i in the tracking algorithm Bool_t fRequestStation[5]; ///< kTRUE to request at least one cluster in station i to validate the track // functions void SetLowFluxParam(); void SetHighFluxParam(); ClassDef(AliMUONRecoParam,3) // MUON reco parameters }; #endif