#ifndef ALIMUONRECOPARAM_H #define ALIMUONRECOPARAM_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ // $Id$ /// \ingroup rec /// \class AliMUONRecoParam /// \brief Class with MUON reconstruction parameters /// // Author: Philippe Pillot #include "AliDetectorRecoParam.h" #include "TString.h" #include class AliMUONRecoParam : public AliDetectorRecoParam { public: AliMUONRecoParam(); virtual ~AliMUONRecoParam(); static AliMUONRecoParam *GetLowFluxParam(); static AliMUONRecoParam *GetHighFluxParam(); static AliMUONRecoParam *GetCosmicParam(); static AliMUONRecoParam *GetCalibrationParam(); /// set the calibration mode (see GetCalibrationMode() for possible modes) void SetCalibrationMode(Option_t* mode) { fCalibrationMode = mode; fCalibrationMode.ToUpper();} Option_t* GetCalibrationMode() const; /// set the clustering (pre-clustering) mode void SetClusteringMode(Option_t* mode) {fClusteringMode = mode; fClusteringMode.ToUpper();} /// get the clustering (pre-clustering) mode Option_t* GetClusteringMode() const {return fClusteringMode.Data();} /// Get the (truncated) average of sigmas of pedestal measurements, i.e. noise, of pads Double_t AverageNoisePadCharge() const { return fAverageNoisePadCharge; } /// Set the average of sigmas of pedestal measurements, i.e. noise, of pads void AverageNoisePadCharge(Double_t noise) { fAverageNoisePadCharge = noise; } /// Get the lowest charge we allow for pads Double_t LowestPadCharge() const { return fChargeSigmaCut*fAverageNoisePadCharge; } /// Get the cut applied to cut on cluster charge (the charge is cut if below fClusterChargeCut*LowestPadCharge()) Double_t ClusterChargeCut() const { return fClusterChargeCut; } /// Set the cut applied to cut on cluster charge (the charge is cut if below fClusterChargeCut*LowestPadCharge()) void ClusterChargeCut(Double_t n) { fClusterChargeCut=n; } /// Get the lowest possible cluster charge Double_t LowestClusterCharge() const { return ClusterChargeCut()*LowestPadCharge(); } /// set the tracking mode void SetTrackingMode(Option_t* mode) {fTrackingMode = mode; fTrackingMode.ToUpper();} /// get the tracking mode Option_t* GetTrackingMode() const {return fTrackingMode.Data();} /// switch on/off the combined cluster/track reconstruction void CombineClusterTrackReco(Bool_t flag) {fCombinedClusterTrackReco = flag;} /// return kTRUE/kFALSE if the combined cluster/track reconstruction is on/off Bool_t CombineClusterTrackReco() const {return fCombinedClusterTrackReco;} /// save all cluster info (including pads) in ESD, for the given percentage of events void SaveFullClusterInESD(Bool_t flag, Double_t percentOfEvent = 100.) {fSaveFullClusterInESD = flag; fPercentOfFullClusterInESD = (fSaveFullClusterInESD) ? percentOfEvent : 0.;} /// return kTRUE/kFALSE depending on whether we save all cluster info in ESD or not Bool_t SaveFullClusterInESD() const {return fSaveFullClusterInESD;} /// return the percentage of events for which all cluster info are stored in ESD Double_t GetPercentOfFullClusterInESD() const {return fPercentOfFullClusterInESD;} /// set the minimum value (GeV/c) of momentum in bending plane void SetMinBendingMomentum(Double_t val) {fMinBendingMomentum = val;} /// return the minimum value (GeV/c) of momentum in bending plane Double_t GetMinBendingMomentum() const {return fMinBendingMomentum;} /// set the maximum value (GeV/c) of momentum in bending plane void SetMaxBendingMomentum(Double_t val) {fMaxBendingMomentum = val;} /// return the maximum value (GeV/c) of momentum in bending plane Double_t GetMaxBendingMomentum() const {return fMaxBendingMomentum;} /// set the maximum value of the non bending slope void SetMaxNonBendingSlope(Double_t val) {fMaxNonBendingSlope = val;} /// return the maximum value of the non bending slope Double_t GetMaxNonBendingSlope() const {return fMaxNonBendingSlope;} /// set the maximum value of the bending slope void SetMaxBendingSlope(Double_t val) {fMaxBendingSlope = val;} /// return the maximum value of the bending slope Double_t GetMaxBendingSlope() const {return fMaxBendingSlope;} /// switch on/off the track selection according to their slope (instead of their impact parameter) void SelectOnTrackSlope(Bool_t flag) {fSelectTrackOnSlope = flag;} /// return kTRUE/kFALSE if tracks are selected according to their slope/impact parameter Bool_t SelectOnTrackSlope() const {return fSelectTrackOnSlope;} /// set the vertex dispersion (cm) in non bending plane void SetNonBendingVertexDispersion(Double_t val) {fNonBendingVertexDispersion = val;} /// return the vertex dispersion (cm) in non bending plane Double_t GetNonBendingVertexDispersion() const {return fNonBendingVertexDispersion;} /// set the vertex dispersion (cm) in bending plane void SetBendingVertexDispersion(Double_t val) {fBendingVertexDispersion = val;} /// return the vertex dispersion (cm) in bending plane Double_t GetBendingVertexDispersion() const {return fBendingVertexDispersion;} /// set the maximum distance to the track to search for compatible cluster(s) in non bending direction void SetMaxNonBendingDistanceToTrack(Double_t val) {fMaxNonBendingDistanceToTrack = val;} /// return the maximum distance to the track to search for compatible cluster(s) in non bending direction Double_t GetMaxNonBendingDistanceToTrack() const {return fMaxNonBendingDistanceToTrack;} /// set the maximum distance to the track to search for compatible cluster(s) in bending direction void SetMaxBendingDistanceToTrack(Double_t val) {fMaxBendingDistanceToTrack = val;} /// return the maximum distance to the track to search for compatible cluster(s) in bending direction Double_t GetMaxBendingDistanceToTrack() const {return fMaxBendingDistanceToTrack;} /// set the cut in sigma to apply on cluster (local chi2) and track (global chi2) during tracking void SetSigmaCutForTracking(Double_t val) {fSigmaCutForTracking = val;} /// return the cut in sigma to apply on cluster (local chi2) and track (global chi2) during tracking Double_t GetSigmaCutForTracking() const {return fSigmaCutForTracking;} /// switch on/off the track improvement and keep the default cut in sigma to apply on cluster (local chi2) void ImproveTracks(Bool_t flag) {fImproveTracks = flag;} /// switch on/off the track improvement and set the cut in sigma to apply on cluster (local chi2) void ImproveTracks(Bool_t flag, Double_t sigmaCut) {fImproveTracks = flag; fSigmaCutForImprovement = sigmaCut;} /// return kTRUE/kFALSE if the track improvement is switch on/off Bool_t ImproveTracks() const {return fImproveTracks;} /// return the cut in sigma to apply on cluster (local chi2) during track improvement Double_t GetSigmaCutForImprovement() const {return fSigmaCutForImprovement;} /// set the cut in sigma to apply on track during trigger hit pattern search void SetSigmaCutForTrigger(Double_t val) {fSigmaCutForTrigger = val; fMaxNormChi2MatchTrigger = val*val;} /// return the cut in sigma to apply on track during trigger hit pattern search Double_t GetSigmaCutForTrigger() const {return fSigmaCutForTrigger;} /// set the cut in strips to apply on trigger track during trigger chamber efficiency void SetStripCutForTrigger(Double_t val) {fStripCutForTrigger = val;} /// return the cut in strips to apply on trigger track during trigger chamber efficiency Double_t GetStripCutForTrigger() const {return fStripCutForTrigger;} /// set the maximum search area in strips to apply on trigger track during trigger chamber efficiency void SetMaxStripAreaForTrigger(Double_t val) {fMaxStripAreaForTrigger = val;} /// return the maximum search area in strips to apply on trigger track during trigger chamber efficiency Double_t GetMaxStripAreaForTrigger() const {return fMaxStripAreaForTrigger;} /// return the maximum normalized chi2 of tracking/trigger track matching Double_t GetMaxNormChi2MatchTrigger() const {return fMaxNormChi2MatchTrigger;} /// switch on/off the tracking of all the possible candidates (track only the best one if switched off) void TrackAllTracks(Bool_t flag) {fTrackAllTracks = flag;} /// return kTRUE/kFALSE if the tracking of all the possible candidates is switched on/off Bool_t TrackAllTracks() const {return fTrackAllTracks;} /// switch on/off the recovering of tracks being lost during reconstruction void RecoverTracks(Bool_t flag) {fRecoverTracks = flag;} /// return kTRUE/kFALSE if the recovering of tracks being lost during reconstruction is switched on/off Bool_t RecoverTracks() const {return fRecoverTracks;} /// switch on/off the fast building of track candidates (assuming linear propagation between stations 4 and 5) void MakeTrackCandidatesFast(Bool_t flag) {fMakeTrackCandidatesFast = flag;} /// return kTRUE/kFALSE if the fast building of track candidates is switched on/off Bool_t MakeTrackCandidatesFast() const {return fMakeTrackCandidatesFast;} /// switch on/off the building of track candidates starting from 1 cluster in each of the stations 4 and 5 void MakeMoreTrackCandidates(Bool_t flag) {fMakeMoreTrackCandidates = flag;} /// return kTRUE/kFALSE if the building of extra track candidates is switched on/off Bool_t MakeMoreTrackCandidates() const {return fMakeMoreTrackCandidates;} /// switch on/off the completion of reconstructed track void ComplementTracks(Bool_t flag) {fComplementTracks = flag;} /// return kTRUE/kFALSE if completion of the reconstructed track is switched on/off Bool_t ComplementTracks() const {return fComplementTracks;} /// remove tracks sharing cluster in stations 1 or 2 void RemoveConnectedTracksInSt12(Bool_t flag) {fRemoveConnectedTracksInSt12 = flag;} /// return kTRUE/kFALSE whether tracks sharing cluster in station 1 and 2 must be removed or not Bool_t RemoveConnectedTracksInSt12() const {return fRemoveConnectedTracksInSt12;} /// switch on/off the use of the smoother void UseSmoother(Bool_t flag) {fUseSmoother = flag;} /// return kTRUE/kFALSE if the use of the smoother is switched on/off Bool_t UseSmoother() const {return fUseSmoother;} /// switch on/off a chamber in the reconstruction void UseChamber(Int_t iCh, Bool_t flag) {if (iCh >= 0 && iCh < 10) fUseChamber[iCh] = flag;} /// return kTRUE/kFALSE whether the chamber must be used or not Bool_t UseChamber(Int_t iCh) const {return (iCh >= 0 && iCh < 10) ? fUseChamber[iCh] : kFALSE;} /// request or not at least one cluster in the station to validate the track void RequestStation(Int_t iSt, Bool_t flag) {if (iSt >= 0 && iSt < 5) fRequestStation[iSt] = flag;} /// return kTRUE/kFALSE whether at least one cluster is requested in the station to validate the track Bool_t RequestStation(Int_t iSt) const {return (iSt >= 0 && iSt < 5) ? fRequestStation[iSt] : kFALSE;} /// return an integer where first 5 bits are set to 1 if the corresponding station is requested UInt_t RequestedStationMask() const; /// set the bypassSt45 value void BypassSt45(Bool_t st4, Bool_t st5); /// return kTRUE if we should replace clusters in St 4 and 5 by generated clusters from trigger tracks Bool_t BypassSt45() const { return fBypassSt45==45; } /// return kTRUE if we should replace clusters in St 4 by generated clusters from trigger tracks Bool_t BypassSt4() const { return BypassSt45() || fBypassSt45==4 ; } /// return kTRUE if we should replace clusters in St 5 by generated clusters from trigger tracks Bool_t BypassSt5() const { return BypassSt45() || fBypassSt45==5 ; } /// Set HV threshold for chambers (chamberId=0..9, use -1 to set all chambers equal) void SetHVLimit(Int_t chamberId, Double_t ichamber); /// Retrieve HV limit for chamber (chamberId=0..9) Double_t HVLimit(Int_t chamberId) const; /// Set Low and High threshold for pedestal mean void SetPedMeanLimits(float low, float high) { fPedMeanLimits[0]=low; fPedMeanLimits[1]=high; } /// Retrieve low limit of ped mean Float_t PedMeanLowLimit() const { return fPedMeanLimits[0]; } /// Retrieve high limit of ped mean Float_t PedMeanHighLimit() const { return fPedMeanLimits[1]; } /// Set Low and High threshold for pedestal sigma void SetPedSigmaLimits(float low, float high) { fPedSigmaLimits[0]=low; fPedSigmaLimits[1]=high; } /// Retrieve low limit of ped sigma Float_t PedSigmaLowLimit() const { return fPedSigmaLimits[0]; } /// Retrieve high limit of ped sigma Float_t PedSigmaHighLimit() const { return fPedSigmaLimits[1]; } /// Set Low and High threshold for gain a0 term void SetGainA1Limits(float low, float high) { fGainA1Limits[0]=low; fGainA1Limits[1]=high; } /// Retrieve low limit of a1 (linear term) gain parameter Float_t GainA1LowLimit() const { return fGainA1Limits[0]; } /// Retrieve high limit of a1 (linear term) gain parameter Float_t GainA1HighLimit() const { return fGainA1Limits[1]; } /// Set Low and High threshold for gain a1 term void SetGainA2Limits(float low, float high) { fGainA2Limits[0]=low; fGainA2Limits[1]=high; } /// Retrieve low limit of a2 (quadratic term) gain parameter Float_t GainA2LowLimit() const { return fGainA2Limits[0]; } /// Retrieve high limit of a2 (quadratic term) gain parameter Float_t GainA2HighLimit() const { return fGainA2Limits[1]; } /// Set Low and High threshold for gain threshold term void SetGainThresLimits(float low, float high) { fGainThresLimits[0]=low; fGainThresLimits[1]=high; } /// Retrieve low limit on threshold gain parameter Float_t GainThresLowLimit() const { return fGainThresLimits[0]; } /// Retrieve high limit on threshold gain parameter Float_t GainThresHighLimit() const { return fGainThresLimits[1]; } /// Set the goodness mask (see AliMUONPadStatusMapMaker) void SetPadGoodnessMask(UInt_t mask) { fPadGoodnessMask=mask; } /// Get the goodness mask UInt_t PadGoodnessMask() const { return fPadGoodnessMask; } /// Number of sigma cut we must apply when cutting on adc-ped Double_t ChargeSigmaCut() const { return fChargeSigmaCut; } /// Number of sigma cut we must apply when cutting on adc-ped void ChargeSigmaCut(Double_t value) { fChargeSigmaCut=value; } /// Set the default non bending resolution of chamber iCh void SetDefaultNonBendingReso(Int_t iCh, Double_t val) {if (iCh >= 0 && iCh < 10) fDefaultNonBendingReso[iCh] = val;} /// Get the default non bending resolution of chamber iCh Double_t GetDefaultNonBendingReso(Int_t iCh) const {return (iCh >= 0 && iCh < 10) ? fDefaultNonBendingReso[iCh] : FLT_MAX;} /// Set the default bending resolution of chamber iCh void SetDefaultBendingReso(Int_t iCh, Double_t val) {if (iCh >= 0 && iCh < 10) fDefaultBendingReso[iCh] = val;} /// Get the default bending resolution of chamber iCh Double_t GetDefaultBendingReso(Int_t iCh) const {return (iCh >= 0 && iCh < 10) ? fDefaultBendingReso[iCh] : FLT_MAX;} /// Set the maximum number of trigger tracks above which the tracking is cancelled void SetMaxTriggerTracks(Int_t maxTriggerTracks) {fMaxTriggerTracks = maxTriggerTracks;} /// Get the maximum number of trigger tracks above which the tracking is cancelled Int_t GetMaxTriggerTracks() const {return fMaxTriggerTracks;} /// Set the maximum number of track candidates above which the tracking abort void SetMaxTrackCandidates(Int_t maxTrackCandidates) {fMaxTrackCandidates = maxTrackCandidates;} /// Get the maximum number of track candidates above which the tracking abort Int_t GetMaxTrackCandidates() const {return fMaxTrackCandidates;} /// Set the limits for the acceptable manu occupancy void SetManuOccupancyLimits(float low, float high) { fManuOccupancyLimits[0]=low; fManuOccupancyLimits[1]=high; } /// Retrieve low value of manu occupancy limit Float_t ManuOccupancyLowLimit() const { return fManuOccupancyLimits[0]; } /// Retrieve high value of manu occupancy limit Float_t ManuOccupancyHighLimit() const { return fManuOccupancyLimits[1]; } /// Set the limits for the acceptable bp occupancy void SetBuspatchOccupancyLimits(float low, float high) { fBuspatchOccupancyLimits[0]=low; fBuspatchOccupancyLimits[1]=high; } /// Retrieve low value of bp occupancy limit Float_t BuspatchOccupancyLowLimit() const { return fBuspatchOccupancyLimits[0]; } /// Retrieve high value of bp occupancy limit Float_t BuspatchOccupancyHighLimit() const { return fBuspatchOccupancyLimits[1]; } /// Set the limits for the acceptable DE occupancy void SetDEOccupancyLimits(float low, float high) { fDEOccupancyLimits[0]=low; fDEOccupancyLimits[1]=high; } /// Retrieve low value of DE occupancy limit Float_t DEOccupancyLowLimit() const { return fDEOccupancyLimits[0]; } /// Retrieve high value of DE occupancy limit Float_t DEOccupancyHighLimit() const { return fDEOccupancyLimits[1]; } /// Set the fraction of buspatches outside the occupancy limits void SetFractionOfBuspatchOutsideOccupancyLimit(float v) { fFractionOfBuspatchOutsideOccupancyLimit = v; } /// Get the fraction of buspatches outside the occupancy limits Float_t FractionOfBuspatchOutsideOccupancyLimit() const { return fFractionOfBuspatchOutsideOccupancyLimit; } virtual void Print(Option_t *option = "") const; /// Get the max event size (soft limit) virtual Double_t EventSizeSoftLimit() const { return fEventSizeSoftLimit; } /// Get the max event size (hard limit) virtual Double_t EventSizeHardLimit() const { return fEventSizeHardLimit; } /// Set the max event size limits virtual void SetEventSizeLimits(Double_t soft, Double_t hard) { fEventSizeSoftLimit=soft; fEventSizeHardLimit=hard; } /// Get the percentage of token lost error we allow virtual Double_t TokenLostLimit() const { return fTokenLostLimit; } /// Set the percentage of token lost error we allow virtual void SetTokenLostLimit(Double_t limit) { fTokenLostLimit = limit; } /// Whether or not we try to recover corrupted raw data virtual Bool_t TryRecover() const { return fTryRecover; } /// Set the try recover corrupted raw data (use kTRUE only if you know what you are doing. Should be left to kFALSE by default) virtual void TryRecover(Bool_t flag) { fTryRecover = flag; } /// Discard or not the mono-cathod clusters by assigning to them different resolutions (use default values) void DiscardMonoCathodClusters(Bool_t flag) { fDiscardMonoCathodClusters = flag; } /// Discard or not the mono-cathod clusters by assigning to them different resolutions (use given values) void DiscardMonoCathodClusters(Bool_t flag, Double_t resNB, Double_t resB) { fDiscardMonoCathodClusters = flag; fMonoCathodClNonBendingRes = resNB; fMonoCathodClBendingRes = resB; } /// Check whether to discard or not the mono-cathod clusters Bool_t DiscardMonoCathodClusters() const { return fDiscardMonoCathodClusters; } /// Get the non-bending resolution of mono-cathod clusters when the non-bending plane is missing Double_t GetMonoCathodClNonBendingRes() const { return fMonoCathodClNonBendingRes; } /// Get the bending resolution of mono-cathod clusters when the bending plane is missing Double_t GetMonoCathodClBendingRes() const { return fMonoCathodClBendingRes; } /// Create object ready to be put in OCDB static TObjArray* Create(const char* settings); /// Show what is the OCDB for that run static void Show(Int_t runNumber, const char* ocdbPath="raw://"); private: void SetDefaultLimits(); private: /// clustering mode: NOCLUSTERING, PRECLUSTER, PRECLUSTERV2, PRECLUSTERV3, COG,
  ///                   SIMPLEFIT, SIMPLEFITV3, MLEM:DRAW, MLEM, MLEMV2, MLEMV3   
TString fClusteringMode; ///< \brief name of the clustering (+ pre-clustering) mode /// tracking mode: ORIGINAL, KALMAN TString fTrackingMode; ///< \brief name of the tracking mode Double32_t fMinBendingMomentum; ///< minimum value (GeV/c) of momentum in bending plane Double32_t fMaxBendingMomentum; ///< maximum value (GeV/c) of momentum in bending plane Double32_t fMaxNonBendingSlope; ///< maximum value of the non bending slope Double32_t fMaxBendingSlope; ///< maximum value of the bending slope (used only if B = 0) Double32_t fNonBendingVertexDispersion; ///< vertex dispersion (cm) in non bending plane (used for original tracking only) Double32_t fBendingVertexDispersion; ///< vertex dispersion (cm) in bending plane (used for original tracking only) Double32_t fMaxNonBendingDistanceToTrack; ///< maximum distance to the track to search for compatible cluster(s) in non bending direction Double32_t fMaxBendingDistanceToTrack; ///< maximum distance to the track to search for compatible cluster(s) in bending direction Double32_t fSigmaCutForTracking; ///< cut in sigma to apply on cluster (local chi2) and track (global chi2) during tracking Double32_t fSigmaCutForImprovement; ///< cut in sigma to apply on cluster (local chi2) during track improvement Double32_t fSigmaCutForTrigger; ///< cut in sigma to apply on track during trigger hit pattern search Double32_t fStripCutForTrigger; ///< cut in strips to apply on trigger track during trigger chamber efficiency Double32_t fMaxStripAreaForTrigger; ///< max. search area in strips to apply on trigger track during trigger chamber efficiency Double32_t fMaxNormChi2MatchTrigger; ///< maximum normalized chi2 of tracking/trigger track matching Double32_t fPercentOfFullClusterInESD; ///< percentage of events for which all cluster info are stored in ESD Bool_t fCombinedClusterTrackReco; ///< switch on/off the combined cluster/track reconstruction Bool_t fTrackAllTracks; ///< kTRUE to track all the possible candidates; kFALSE to track only the best ones Bool_t fRecoverTracks; ///< kTRUE to try to recover the tracks getting lost during reconstruction Bool_t fMakeTrackCandidatesFast; ///< kTRUE to make candidate tracks assuming linear propagation between stations 4 and 5 Bool_t fMakeMoreTrackCandidates; ///< kTRUE to make candidate tracks starting from 1 cluster in each of the stations 4 and 5 Bool_t fComplementTracks; ///< kTRUE to try to complete the reconstructed tracks by adding missing clusters Bool_t fImproveTracks; ///< kTRUE to try to improve the reconstructed tracks by removing bad clusters Bool_t fUseSmoother; ///< kTRUE to use the smoother to compute track parameters/covariances and local chi2 at each cluster (used for Kalman tracking only) Bool_t fSaveFullClusterInESD; ///< kTRUE to save all cluster info (including pads) in ESD /// calibration mode: GAIN, NOGAIN, GAINCONSTANTCAPA, INJECTIONGAIN TString fCalibrationMode; ///<\brief calibration mode Int_t fBypassSt45; ///< non-zero to use trigger tracks to generate "fake" clusters in St 4 and 5. Can be 0, 4, 5 or 45 only Bool_t fUseChamber[10]; ///< kTRUE to use the chamber i in the tracking algorithm Bool_t fRequestStation[5]; ///< kTRUE to request at least one cluster in station i to validate the track Double32_t fGainA1Limits[2]; ///< Low and High threshold for gain a0 parameter Double32_t fGainA2Limits[2]; ///< Low and High threshold for gain a1 parameter Double32_t fGainThresLimits[2]; ///< Low and High threshold for gain threshold parameter Double32_t fHVSt12Limits[2]; ///< DEPRECATED. See fHVLimits Double32_t fHVSt345Limits[2]; ///< DEPRECATED. See fHVLimits Double32_t fPedMeanLimits[2]; ///< Low and High threshold for pedestal mean Double32_t fPedSigmaLimits[2]; ///< Low and High threshold for pedestal sigma UInt_t fPadGoodnessMask; ///< goodness mask (see AliMUONPadStatusMaker) Double32_t fChargeSigmaCut; ///< number of sigma to cut on adc-ped Double32_t fDefaultNonBendingReso[10]; ///< default chamber resolution in the non-bending direction Double32_t fDefaultBendingReso[10]; ///< default chamber resolution in the bending direction Bool_t fRemoveConnectedTracksInSt12; ///< kTRUE to remove tracks sharing cluster in station 1 and 2 Int_t fMaxTriggerTracks; ///< maximum number of trigger tracks above which the tracking is cancelled Int_t fMaxTrackCandidates; ///< maximum number of track candidates above which the tracking abort Bool_t fSelectTrackOnSlope; ///< select track candidates according to their slope (instead of their impact parameter) Double32_t fManuOccupancyLimits[2]; ///< low and high thresholds for manu occupancy cut Double32_t fBuspatchOccupancyLimits[2]; ///< low and high thresholds for bus patch occupancy cut Double32_t fDEOccupancyLimits[2]; ///< low and high thresholds for DE occupancy cut Double32_t fMissingPadFractionLimit; ///< DEPRECATED Double32_t fFractionOfBuspatchOutsideOccupancyLimit; ///< above this limit, we consider we have too many buspatches out of the allowed occupancy range Double32_t fAverageNoisePadCharge; ///< the (truncated, typically at 10%) mean of the sigma of the pedestals, in femto-coulomb Double32_t fClusterChargeCut; ///< the cluster is cut if its charge is below fClusterChargeCut*LowestPadCharge() Double32_t fEventSizeSoftLimit; ///< (soft) limit on mean event size per event (KB) Double32_t fEventSizeHardLimit; ///< (hard) limit on mean event size per event (KB) Double32_t fTokenLostLimit; ///< limit on the fraction of token lost error per event we allow Bool_t fTryRecover; ///< try to recover corrupted raw data Double32_t fHVLimit[10]; // HV limit (below which we consider that chamber efficiency is to be considered zero) Double32_t fDiscardMonoCathodClusters; // assign a different resolution to mono-cathod clusters in the direction of the missing plane Double32_t fMonoCathodClNonBendingRes; // resolution of mono-cathod clusters in the non-bending direction when the non-bending plane is missing Double32_t fMonoCathodClBendingRes; // resolution of mono-cathod clusters in the bending direction when the bending plane is missing // functions void SetLowFluxParam(); void SetHighFluxParam(); void SetCosmicParam(); void SetCalibrationParam(); ClassDef(AliMUONRecoParam,170) // MUON reco parameters // we're at 167 not because we had that many versions, but because at some point (version 15->16) // 166 was committed by error, and we did not to go reverse afterwards... }; #endif