#ifndef ALIMUONSEGMENTATIONSLAT_H #define ALIMUONSEGMENTATIONSLAT_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ ///////////////////////////////////////////////////// // Segmentation classes for slat modules // // to be used with AluMUONSegmentationSlat // ///////////////////////////////////////////////////// #include "AliSegmentation.h" class TArrayI; class TObjArray; class AliMUONSegmentationSlatModule; class AliMUONChamber; class AliMUONSegmentationSlat : public AliSegmentation { public: AliMUONSegmentationSlat(); AliMUONSegmentationSlat(Int_t nsec); virtual ~AliMUONSegmentationSlat(); // // Set Chamber Segmentation Parameters // // Pad size Dx*Dy virtual void SetPadSize(Float_t p1, Float_t p2); // Anod Pitch virtual void SetDAnod(Float_t D) {fWireD = D;}; // Anod wire coordinate closest to xhit virtual Float_t GetAnod(Float_t xhit) const; void SetPadDivision(Int_t ndiv[4]); // Transform from pad to real coordinates virtual void GetPadI(Float_t x, Float_t y , Float_t z, Int_t &ix, Int_t &iy); // Transform from real to pad coordinates virtual void GetPadC(Int_t ix, Int_t iy, Float_t &x, Float_t &y, Float_t &z); // Initialisation virtual void Init(Int_t chamber); // // Get member data // // // Pad size in x virtual Float_t Dpx() const {return fDpx;} // Pad size in y virtual Float_t Dpy() const {return fDpy;} // Pad size in x by Sector virtual Float_t Dpx(Int_t isec) const; // Pad size in y by Sector virtual Float_t Dpy(Int_t isec) const; // Maximum number of Pads in x virtual Int_t Npx() const {return fNpx;} // Maximum number of Pads in y virtual Int_t Npy() const {return fNpy;} // virtual void SetPad(Int_t ix,Int_t iy); virtual void SetHit(Float_t xhit, Float_t yhit, Float_t zhit); // // Iterate over pads // Initialiser virtual void FirstPad(Float_t xhit, Float_t yhit, Float_t zhit, Float_t dx, Float_t dy); // Stepper virtual void NextPad(); // Condition virtual Int_t MorePads(); // Get next neighbours virtual void Neighbours (Int_t iX, Int_t iY, Int_t* Nlist, Int_t Xlist[10], Int_t Ylist[10]); virtual Float_t Distance2AndOffset(Int_t iX, Int_t iY, Float_t X, Float_t Y, Int_t *dummy); virtual void GetNParallelAndOffset(Int_t iX, Int_t iY, Int_t *Nparallel, Int_t *Offset); // // Current Pad during Integration // x-coordinate virtual Int_t Ix(); // y-coordinate virtual Int_t Iy(); // current sector virtual Int_t ISector(); // calculate sector from pad coordinates virtual Int_t Sector(Int_t ix, Int_t iy); virtual Int_t Sector(Float_t x, Float_t y) { Int_t ix, iy; GetPadI(x,y,0.,ix,iy); return Sector(ix,iy); } // // Signal Generation Condition during Stepping virtual Int_t SigGenCond(Float_t x, Float_t y, Float_t z); // Initialise signal generation at coord (x,y,z) virtual void SigGenInit(Float_t x, Float_t y, Float_t z); // // Integration // Current integration limits virtual void IntegrationLimits (Float_t& x1, Float_t& x2, Float_t& y1, Float_t& y2); // // Class specific methods virtual void SetNSlats(Int_t nslats) {fNSlats = nslats;} virtual void SetShift(Float_t shift) {fShift = shift;} virtual void SetNPCBperSector(Int_t *npcb); virtual void SetSlatXPositions(Float_t *xpos); virtual void SetSlatYPosition(Float_t ypos) {fYPosOrigin = ypos;} virtual AliMUONSegmentationSlatModule* Slat(Int_t index) const; // Not used // Test points for auto calibration virtual void GiveTestPoints(Int_t &n, Float_t *x, Float_t *y) const; // Draw the segmentation zones virtual void Draw(const char *opt = "") const; // Function for systematic corrections // Set the correction function virtual void SetCorrFunc(Int_t, TF1*) {;} // Get the correction Function virtual TF1* CorrFunc(Int_t) const {return NULL;} protected: virtual void GlobalToLocal( Float_t x, Float_t y, Float_t z, Int_t &islat, Float_t &xlocal, Float_t &ylocal); virtual void GlobalToLocal( Int_t ix, Int_t iy, Int_t &islat, Int_t &ixlocal, Int_t &iylocal); virtual void LocalToGlobal( Int_t islat, Float_t xlocal, Float_t ylocal, Float_t &x, Float_t &y, Float_t &z); virtual void LocalToGlobal( Int_t islat, Int_t ixlocal, Int_t iylocal, Int_t &ix, Int_t &iy); virtual void SetSymmetry(Int_t ix); virtual void SetSymmetry(Float_t x); // Factory method for associated slat module class virtual AliMUONSegmentationSlatModule* CreateSlatModule(); protected: AliMUONChamber* fChamber; // Parent Chamber Int_t fId; // Identifier // // Geometry // Float_t fWireD; // Wire Pitch Int_t fNSlats; // Number of slats Int_t fPcb[15][4]; // PcbSegmentation Float_t fXPosition[15]; // x-position of slats Float_t fYPosOrigin; // y-Position of lowest slat Float_t fYPosition[15]; // y-position of slats Float_t fSlatX[15]; // Slat x-dimension Float_t fSlatY; // Slat y-dimension Float_t fDpx; // Pad size x Float_t fDpy; // Pad size y Int_t fNpx; // maximum number of pads in x Int_t fNpy; // maximum number of pads in y Int_t fSym; // signs for symmetry trafo Float_t fShift; // Half overlap of pad planes Float_t fDz; // Half distance between slat planes TArrayI* fNDiv; // Pad size division // Slats TObjArray* fSlats; // Array of Slats // Proxy data AliMUONSegmentationSlatModule* fCurrentSlat; // Pointer to current slat Int_t fSlatIndex; // Current slat index ClassDef(AliMUONSegmentationSlat,1) // Segmentation for Muon Chamber built from Slat Modules }; #endif