/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /////////////////////////////////////////////////// // // Track parameters // in // ALICE // dimuon // spectrometer // /////////////////////////////////////////////////// //#include #include "AliMUON.h" #include "AliMUONTrackParam.h" #include "AliMUONConstants.h" #include "AliRun.h" #include "AliMagF.h" #include "AliLog.h" ClassImp(AliMUONTrackParam) // Class implementation in ROOT context //_________________________________________________________________________ AliMUONTrackParam::AliMUONTrackParam() : TObject() { // Constructor fInverseBendingMomentum = 0; fBendingSlope = 0; fNonBendingSlope = 0; fZ = 0; fBendingCoor = 0; fNonBendingCoor = 0; } //_________________________________________________________________________ AliMUONTrackParam& AliMUONTrackParam::operator=(const AliMUONTrackParam& theMUONTrackParam) { // Asignment operator if (this == &theMUONTrackParam) return *this; // base class assignement TObject::operator=(theMUONTrackParam); fInverseBendingMomentum = theMUONTrackParam.fInverseBendingMomentum; fBendingSlope = theMUONTrackParam.fBendingSlope; fNonBendingSlope = theMUONTrackParam.fNonBendingSlope; fZ = theMUONTrackParam.fZ; fBendingCoor = theMUONTrackParam.fBendingCoor; fNonBendingCoor = theMUONTrackParam.fNonBendingCoor; return *this; } //_________________________________________________________________________ AliMUONTrackParam::AliMUONTrackParam(const AliMUONTrackParam& theMUONTrackParam) : TObject(theMUONTrackParam) { // Copy constructor fInverseBendingMomentum = theMUONTrackParam.fInverseBendingMomentum; fBendingSlope = theMUONTrackParam.fBendingSlope; fNonBendingSlope = theMUONTrackParam.fNonBendingSlope; fZ = theMUONTrackParam.fZ; fBendingCoor = theMUONTrackParam.fBendingCoor; fNonBendingCoor = theMUONTrackParam.fNonBendingCoor; } //__________________________________________________________________________ void AliMUONTrackParam::ExtrapToZ(Double_t Z) { // Track parameter extrapolation to the plane at "Z". // On return, the track parameters resulting from the extrapolation // replace the current track parameters. if (this->fZ == Z) return; // nothing to be done if same Z Double_t forwardBackward; // +1 if forward, -1 if backward if (Z < this->fZ) forwardBackward = 1.0; // spectro. z<0 else forwardBackward = -1.0; Double_t vGeant3[7], vGeant3New[7]; // 7 in parameter ???? Int_t iGeant3, stepNumber; Int_t maxStepNumber = 5000; // in parameter ???? // For safety: return kTRUE or kFALSE ???? // Parameter vector for calling EXTRAP_ONESTEP SetGeant3Parameters(vGeant3, forwardBackward); // sign of charge (sign of fInverseBendingMomentum if forward motion) // must be changed if backward extrapolation Double_t chargeExtrap = forwardBackward * TMath::Sign(Double_t(1.0), this->fInverseBendingMomentum); Double_t stepLength = 6.0; // in parameter ???? // Extrapolation loop stepNumber = 0; while (((-forwardBackward * (vGeant3[2] - Z)) <= 0.0) && // spectro. z<0 (stepNumber < maxStepNumber)) { stepNumber++; // Option for switching between helix and Runge-Kutta ???? //ExtrapOneStepRungekutta(chargeExtrap, stepLength, vGeant3, vGeant3New); ExtrapOneStepHelix(chargeExtrap, stepLength, vGeant3, vGeant3New); if ((-forwardBackward * (vGeant3New[2] - Z)) > 0.0) break; // one is beyond Z spectro. z<0 // better use TArray ???? for (iGeant3 = 0; iGeant3 < 7; iGeant3++) {vGeant3[iGeant3] = vGeant3New[iGeant3];} } // check maxStepNumber ???? // Interpolation back to exact Z (2nd order) // should be in function ???? using TArray ???? Double_t dZ12 = vGeant3New[2] - vGeant3[2]; // 1->2 if (TMath::Abs(dZ12) > 0) { Double_t dZ1i = Z - vGeant3[2]; // 1-i Double_t dZi2 = vGeant3New[2] - Z; // i->2 Double_t xPrime = (vGeant3New[0] - vGeant3[0]) / dZ12; Double_t xSecond = ((vGeant3New[3] / vGeant3New[5]) - (vGeant3[3] / vGeant3[5])) / dZ12; Double_t yPrime = (vGeant3New[1] - vGeant3[1]) / dZ12; Double_t ySecond = ((vGeant3New[4] / vGeant3New[5]) - (vGeant3[4] / vGeant3[5])) / dZ12; vGeant3[0] = vGeant3[0] + xPrime * dZ1i - 0.5 * xSecond * dZ1i * dZi2; // X vGeant3[1] = vGeant3[1] + yPrime * dZ1i - 0.5 * ySecond * dZ1i * dZi2; // Y vGeant3[2] = Z; // Z Double_t xPrimeI = xPrime - 0.5 * xSecond * (dZi2 - dZ1i); Double_t yPrimeI = yPrime - 0.5 * ySecond * (dZi2 - dZ1i); // (PX, PY, PZ)/PTOT assuming forward motion vGeant3[5] = 1.0 / TMath::Sqrt(1.0 + xPrimeI * xPrimeI + yPrimeI * yPrimeI); // PZ/PTOT vGeant3[3] = xPrimeI * vGeant3[5]; // PX/PTOT vGeant3[4] = yPrimeI * vGeant3[5]; // PY/PTOT } else { AliWarning(Form("Extrap. to Z not reached, Z = %f",Z)); } // Track parameters from Geant3 parameters, // with charge back for forward motion GetFromGeant3Parameters(vGeant3, chargeExtrap * forwardBackward); } //__________________________________________________________________________ void AliMUONTrackParam::SetGeant3Parameters(Double_t *VGeant3, Double_t ForwardBackward) { // Set vector of Geant3 parameters pointed to by "VGeant3" // from track parameters in current AliMUONTrackParam. // Since AliMUONTrackParam is only geometry, one uses "ForwardBackward" // to know whether the particle is going forward (+1) or backward (-1). VGeant3[0] = this->fNonBendingCoor; // X VGeant3[1] = this->fBendingCoor; // Y VGeant3[2] = this->fZ; // Z Double_t pYZ = TMath::Abs(1.0 / this->fInverseBendingMomentum); Double_t pZ = pYZ / TMath::Sqrt(1.0 + this->fBendingSlope * this->fBendingSlope); VGeant3[6] = TMath::Sqrt(pYZ * pYZ + pZ * pZ * this->fNonBendingSlope * this->fNonBendingSlope); // PTOT VGeant3[5] = -ForwardBackward * pZ / VGeant3[6]; // PZ/PTOT spectro. z<0 VGeant3[3] = this->fNonBendingSlope * VGeant3[5]; // PX/PTOT VGeant3[4] = this->fBendingSlope * VGeant3[5]; // PY/PTOT } //__________________________________________________________________________ void AliMUONTrackParam::GetFromGeant3Parameters(Double_t *VGeant3, Double_t Charge) { // Get track parameters in current AliMUONTrackParam // from Geant3 parameters pointed to by "VGeant3", // assumed to be calculated for forward motion in Z. // "InverseBendingMomentum" is signed with "Charge". this->fNonBendingCoor = VGeant3[0]; // X this->fBendingCoor = VGeant3[1]; // Y this->fZ = VGeant3[2]; // Z Double_t pYZ = VGeant3[6] * TMath::Sqrt(1.0 - VGeant3[3] * VGeant3[3]); this->fInverseBendingMomentum = Charge / pYZ; this->fBendingSlope = VGeant3[4] / VGeant3[5]; this->fNonBendingSlope = VGeant3[3] / VGeant3[5]; } //__________________________________________________________________________ void AliMUONTrackParam::ExtrapToStation(Int_t Station, AliMUONTrackParam *TrackParam) { // Track parameters extrapolated from current track parameters ("this") // to both chambers of the station(0..) "Station" // are returned in the array (dimension 2) of track parameters // pointed to by "TrackParam" (index 0 and 1 for first and second chambers). Double_t extZ[2], z1, z2; Int_t i1 = -1, i2 = -1; // = -1 to avoid compilation warnings // range of Station to be checked ???? z1 = AliMUONConstants::DefaultChamberZ(2 * Station); z2 = AliMUONConstants::DefaultChamberZ(2 * Station + 1); // First and second Z to extrapolate at if ((z1 > this->fZ) && (z2 > this->fZ)) {i1 = 0; i2 = 1;} else if ((z1 < this->fZ) && (z2 < this->fZ)) {i1 = 1; i2 = 0;} else { AliError(Form("Starting Z (%f) in between z1 (%f) and z2 (%f) of station(0..)%d",this->fZ,z1,z2,Station)); // cout << "ERROR in AliMUONTrackParam::CreateExtrapSegmentInStation" << endl; // cout << "Starting Z (" << this->fZ << ") in between z1 (" << z1 << // ") and z2 (" << z2 << ") of station(0..) " << Station << endl; } extZ[i1] = z1; extZ[i2] = z2; // copy of track parameters TrackParam[i1] = *this; // first extrapolation (&(TrackParam[i1]))->ExtrapToZ(extZ[0]); TrackParam[i2] = TrackParam[i1]; // second extrapolation (&(TrackParam[i2]))->ExtrapToZ(extZ[1]); return; } //__________________________________________________________________________ void AliMUONTrackParam::ExtrapToVertex(Double_t xVtx, Double_t yVtx, Double_t zVtx) { // Extrapolation to the vertex. // Returns the track parameters resulting from the extrapolation, // in the current TrackParam. // Changes parameters according to Branson correction through the absorber Double_t zAbsorber = -503.0; // to be coherent with the Geant absorber geometry !!!! // spectro. (z<0) // Extrapolates track parameters upstream to the "Z" end of the front absorber ExtrapToZ(zAbsorber); // !!! // Makes Branson correction (multiple scattering + energy loss) BransonCorrection(xVtx,yVtx,zVtx); // Makes a simple magnetic field correction through the absorber FieldCorrection(zAbsorber); } // Keep this version for future developments //__________________________________________________________________________ // void AliMUONTrackParam::BransonCorrection() // { // // Branson correction of track parameters // // the entry parameters have to be calculated at the end of the absorber // Double_t zEndAbsorber, zBP, xBP, yBP; // Double_t pYZ, pX, pY, pZ, pTotal, xEndAbsorber, yEndAbsorber, radiusEndAbsorber2, pT, theta; // Int_t sign; // // Would it be possible to calculate all that from Geant configuration ???? // // and to get the Branson parameters from a function in ABSO module ???? // // with an eventual contribution from other detectors like START ???? // // Radiation lengths outer part theta > 3 degres // static Double_t x01[9] = { 18.8, // C (cm) // 10.397, // Concrete (cm) // 0.56, // Plomb (cm) // 47.26, // Polyethylene (cm) // 0.56, // Plomb (cm) // 47.26, // Polyethylene (cm) // 0.56, // Plomb (cm) // 47.26, // Polyethylene (cm) // 0.56 }; // Plomb (cm) // // inner part theta < 3 degres // static Double_t x02[3] = { 18.8, // C (cm) // 10.397, // Concrete (cm) // 0.35 }; // W (cm) // // z positions of the materials inside the absober outer part theta > 3 degres // static Double_t z1[10] = { 90, 315, 467, 472, 477, 482, 487, 492, 497, 502 }; // // inner part theta < 3 degres // static Double_t z2[4] = { 90, 315, 467, 503 }; // static Bool_t first = kTRUE; // static Double_t zBP1, zBP2, rLimit; // // Calculates z positions of the Branson's planes: zBP1 for outer part and zBP2 for inner part (only at the first call) // if (first) { // first = kFALSE; // Double_t aNBP = 0.0; // Double_t aDBP = 0.0; // Int_t iBound; // for (iBound = 0; iBound < 9; iBound++) { // aNBP = aNBP + // (z1[iBound+1] * z1[iBound+1] * z1[iBound+1] - // z1[iBound] * z1[iBound] * z1[iBound] ) / x01[iBound]; // aDBP = aDBP + // (z1[iBound+1] * z1[iBound+1] - z1[iBound] * z1[iBound] ) / x01[iBound]; // } // zBP1 = (2.0 * aNBP) / (3.0 * aDBP); // aNBP = 0.0; // aDBP = 0.0; // for (iBound = 0; iBound < 3; iBound++) { // aNBP = aNBP + // (z2[iBound+1] * z2[iBound+1] * z2[iBound+1] - // z2[iBound] * z2[iBound ] * z2[iBound] ) / x02[iBound]; // aDBP = aDBP + // (z2[iBound+1] * z2[iBound+1] - z2[iBound] * z2[iBound]) / x02[iBound]; // } // zBP2 = (2.0 * aNBP) / (3.0 * aDBP); // rLimit = z2[3] * TMath::Tan(3.0 * (TMath::Pi()) / 180.); // } // pYZ = TMath::Abs(1.0 / fInverseBendingMomentum); // sign = 1; // if (fInverseBendingMomentum < 0) sign = -1; // pZ = pYZ / (TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope)); // pX = pZ * fNonBendingSlope; // pY = pZ * fBendingSlope; // pTotal = TMath::Sqrt(pYZ *pYZ + pX * pX); // xEndAbsorber = fNonBendingCoor; // yEndAbsorber = fBendingCoor; // radiusEndAbsorber2 = xEndAbsorber * xEndAbsorber + yEndAbsorber * yEndAbsorber; // if (radiusEndAbsorber2 > rLimit*rLimit) { // zEndAbsorber = z1[9]; // zBP = zBP1; // } else { // zEndAbsorber = z2[3]; // zBP = zBP2; // } // xBP = xEndAbsorber - (pX / pZ) * (zEndAbsorber - zBP); // yBP = yEndAbsorber - (pY / pZ) * (zEndAbsorber - zBP); // // new parameters after Branson and energy loss corrections // pZ = pTotal * zBP / TMath::Sqrt(xBP * xBP + yBP * yBP + zBP * zBP); // pX = pZ * xBP / zBP; // pY = pZ * yBP / zBP; // fBendingSlope = pY / pZ; // fNonBendingSlope = pX / pZ; // pT = TMath::Sqrt(pX * pX + pY * pY); // theta = TMath::ATan2(pT, pZ); // pTotal = // TotalMomentumEnergyLoss(rLimit, pTotal, theta, xEndAbsorber, yEndAbsorber); // fInverseBendingMomentum = (sign / pTotal) * // TMath::Sqrt(1.0 + // fBendingSlope * fBendingSlope + // fNonBendingSlope * fNonBendingSlope) / // TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope); // // vertex position at (0,0,0) // // should be taken from vertex measurement ??? // fBendingCoor = 0.0; // fNonBendingCoor = 0; // fZ= 0; // } void AliMUONTrackParam::BransonCorrection(Double_t xVtx,Double_t yVtx,Double_t zVtx) { // Branson correction of track parameters // the entry parameters have to be calculated at the end of the absorber // simplified version: the z positions of Branson's planes are no longer calculated // but are given as inputs. One can use the macros MUONTestAbso.C and DrawTestAbso.C // to test this correction. // Would it be possible to calculate all that from Geant configuration ???? // and to get the Branson parameters from a function in ABSO module ???? // with an eventual contribution from other detectors like START ???? //change to take into account the vertex postition (real, reconstruct,....) Double_t zBP, xBP, yBP; Double_t pYZ, pX, pY, pZ, pTotal, xEndAbsorber, yEndAbsorber, radiusEndAbsorber2, pT, theta; Int_t sign; static Bool_t first = kTRUE; static Double_t zBP1, zBP2, rLimit, thetaLimit, zEndAbsorber; // zBP1 for outer part and zBP2 for inner part (only at the first call) if (first) { first = kFALSE; zEndAbsorber = -503; // spectro (z<0) thetaLimit = 3.0 * (TMath::Pi()) / 180.; rLimit = TMath::Abs(zEndAbsorber) * TMath::Tan(thetaLimit); zBP1 = -450; // values close to those calculated with EvalAbso.C zBP2 = -480; } pYZ = TMath::Abs(1.0 / fInverseBendingMomentum); sign = 1; if (fInverseBendingMomentum < 0) sign = -1; pZ = Pz(); pX = Px(); pY = Py(); pTotal = TMath::Sqrt(pYZ *pYZ + pX * pX); xEndAbsorber = fNonBendingCoor; yEndAbsorber = fBendingCoor; radiusEndAbsorber2 = xEndAbsorber * xEndAbsorber + yEndAbsorber * yEndAbsorber; if (radiusEndAbsorber2 > rLimit*rLimit) { zBP = zBP1; } else { zBP = zBP2; } xBP = xEndAbsorber - (pX / pZ) * (zEndAbsorber - zBP); yBP = yEndAbsorber - (pY / pZ) * (zEndAbsorber - zBP); // new parameters after Branson and energy loss corrections // Float_t zSmear = zBP - gRandom->Gaus(0.,2.); // !!! possible smearing of Z vertex position Float_t zSmear = zBP ; pZ = pTotal * (zSmear-zVtx) / TMath::Sqrt((xBP-xVtx) * (xBP-xVtx) + (yBP-yVtx) * (yBP-yVtx) +( zSmear-zVtx) * (zSmear-zVtx) ); pX = pZ * (xBP - xVtx)/ (zSmear-zVtx); pY = pZ * (yBP - yVtx) / (zSmear-zVtx); fBendingSlope = pY / pZ; fNonBendingSlope = pX / pZ; pT = TMath::Sqrt(pX * pX + pY * pY); theta = TMath::ATan2(pT, TMath::Abs(pZ)); pTotal = TotalMomentumEnergyLoss(thetaLimit, pTotal, theta); fInverseBendingMomentum = (sign / pTotal) * TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope + fNonBendingSlope * fNonBendingSlope) / TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope); // vertex position at (0,0,0) // should be taken from vertex measurement ??? fBendingCoor = xVtx; fNonBendingCoor = yVtx; fZ= zVtx; } //__________________________________________________________________________ Double_t AliMUONTrackParam::TotalMomentumEnergyLoss(Double_t thetaLimit, Double_t pTotal, Double_t theta) { // Returns the total momentum corrected from energy loss in the front absorber // One can use the macros MUONTestAbso.C and DrawTestAbso.C // to test this correction. // Momentum energy loss behaviour evaluated with the simulation of single muons (april 2002) Double_t deltaP, pTotalCorrected; // Parametrization to be redone according to change of absorber material ???? // See remark in function BransonCorrection !!!! // The name is not so good, and there are many arguments !!!! if (theta < thetaLimit ) { if (pTotal < 20) { deltaP = 2.5938 + 0.0570 * pTotal - 0.001151 * pTotal * pTotal; } else { deltaP = 3.0714 + 0.011767 *pTotal; } deltaP *= 0.75; // AZ } else { if (pTotal < 20) { deltaP = 2.1207 + 0.05478 * pTotal - 0.00145079 * pTotal * pTotal; } else { deltaP = 2.6069 + 0.0051705 * pTotal; } deltaP *= 0.9; // AZ } pTotalCorrected = pTotal + deltaP / TMath::Cos(theta); return pTotalCorrected; } //__________________________________________________________________________ void AliMUONTrackParam::FieldCorrection(Double_t Z) { // // Correction of the effect of the magnetic field in the absorber // Assume a constant field along Z axis. Float_t b[3],x[3]; Double_t bZ; Double_t pYZ,pX,pY,pZ,pT; Double_t pXNew,pYNew; Double_t c; pYZ = TMath::Abs(1.0 / fInverseBendingMomentum); c = TMath::Sign(1.0,fInverseBendingMomentum); // particle charge pZ = Pz(); pX = Px(); pY = Py(); pT = TMath::Sqrt(pX*pX+pY*pY); if (TMath::Abs(pZ) <= 0) return; x[2] = Z/2; x[0] = x[2]*fNonBendingSlope; x[1] = x[2]*fBendingSlope; // Take magn. field value at position x. gAlice->Field()->Field(x, b); bZ = b[2]; // Transverse momentum rotation // Parameterized with the study of DeltaPhi = phiReco - phiGen as a function of pZ. Double_t phiShift = c*0.436*0.0003*bZ*Z/pZ; // Rotate momentum around Z axis. pXNew = pX*TMath::Cos(phiShift) - pY*TMath::Sin(phiShift); pYNew = pX*TMath::Sin(phiShift) + pY*TMath::Cos(phiShift); fBendingSlope = pYNew / pZ; fNonBendingSlope = pXNew / pZ; fInverseBendingMomentum = c / TMath::Sqrt(pYNew*pYNew+pZ*pZ); } //__________________________________________________________________________ Double_t AliMUONTrackParam::Px() { // return px from track paramaters Double_t pYZ, pZ, pX; pYZ = 0; if ( TMath::Abs(fInverseBendingMomentum) > 0 ) pYZ = TMath::Abs(1.0 / fInverseBendingMomentum); pZ = -pYZ / (TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope)); // spectro. (z<0) pX = pZ * fNonBendingSlope; return pX; } //__________________________________________________________________________ Double_t AliMUONTrackParam::Py() { // return px from track paramaters Double_t pYZ, pZ, pY; pYZ = 0; if ( TMath::Abs(fInverseBendingMomentum) > 0 ) pYZ = TMath::Abs(1.0 / fInverseBendingMomentum); pZ = -pYZ / (TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope)); // spectro. (z<0) pY = pZ * fBendingSlope; return pY; } //__________________________________________________________________________ Double_t AliMUONTrackParam::Pz() { // return px from track paramaters Double_t pYZ, pZ; pYZ = 0; if ( TMath::Abs(fInverseBendingMomentum) > 0 ) pYZ = TMath::Abs(1.0 / fInverseBendingMomentum); pZ = -pYZ / (TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope)); // spectro. (z<0) return pZ; } //__________________________________________________________________________ Double_t AliMUONTrackParam::P() { // return p from track paramaters Double_t pYZ, pZ, p; pYZ = 0; if ( TMath::Abs(fInverseBendingMomentum) > 0 ) pYZ = TMath::Abs(1.0 / fInverseBendingMomentum); pZ = -pYZ / (TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope)); // spectro. (z<0) p = TMath::Abs(pZ) * TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope + fNonBendingSlope * fNonBendingSlope); return p; } //__________________________________________________________________________ void AliMUONTrackParam::ExtrapOneStepHelix(Double_t charge, Double_t step, Double_t *vect, Double_t *vout) const { // ****************************************************************** // * * // * Performs the tracking of one step in a magnetic field * // * The trajectory is assumed to be a helix in a constant field * // * taken at the mid point of the step. * // * Parameters: * // * input * // * STEP =arc length of the step asked * // * VECT =input vector (position,direction cos and momentum) * // * CHARGE= electric charge of the particle * // * output * // * VOUT = same as VECT after completion of the step * // * * // * ==>Called by : , GUSWIM * // * Author m.hansroul ********* * // * modified s.egli, s.v.levonian * // * modified v.perevoztchikov // * * // ****************************************************************** // // modif: everything in double precision Double_t xyz[3], h[4], hxp[3]; Double_t h2xy, hp, rho, tet; Double_t sint, sintt, tsint, cos1t; Double_t f1, f2, f3, f4, f5, f6; const Int_t kix = 0; const Int_t kiy = 1; const Int_t kiz = 2; const Int_t kipx = 3; const Int_t kipy = 4; const Int_t kipz = 5; const Int_t kipp = 6; const Double_t kec = 2.9979251e-4; // // ------------------------------------------------------------------ // // units are kgauss,centimeters,gev/c // vout[kipp] = vect[kipp]; if (TMath::Abs(charge) < 0.00001) { for (Int_t i = 0; i < 3; i++) { vout[i] = vect[i] + step * vect[i+3]; vout[i+3] = vect[i+3]; } return; } xyz[0] = vect[kix] + 0.5 * step * vect[kipx]; xyz[1] = vect[kiy] + 0.5 * step * vect[kipy]; xyz[2] = vect[kiz] + 0.5 * step * vect[kipz]; //cmodif: call gufld (xyz, h) changed into: GetField (xyz, h); h2xy = h[0]*h[0] + h[1]*h[1]; h[3] = h[2]*h[2]+ h2xy; if (h[3] < 1.e-12) { for (Int_t i = 0; i < 3; i++) { vout[i] = vect[i] + step * vect[i+3]; vout[i+3] = vect[i+3]; } return; } if (h2xy < 1.e-12*h[3]) { ExtrapOneStepHelix3(charge*h[2], step, vect, vout); return; } h[3] = TMath::Sqrt(h[3]); h[0] /= h[3]; h[1] /= h[3]; h[2] /= h[3]; h[3] *= kec; hxp[0] = h[1]*vect[kipz] - h[2]*vect[kipy]; hxp[1] = h[2]*vect[kipx] - h[0]*vect[kipz]; hxp[2] = h[0]*vect[kipy] - h[1]*vect[kipx]; hp = h[0]*vect[kipx] + h[1]*vect[kipy] + h[2]*vect[kipz]; rho = -charge*h[3]/vect[kipp]; tet = rho * step; if (TMath::Abs(tet) > 0.15) { sint = TMath::Sin(tet); sintt = (sint/tet); tsint = (tet-sint)/tet; cos1t = 2.*(TMath::Sin(0.5*tet))*(TMath::Sin(0.5*tet))/tet; } else { tsint = tet*tet/36.; sintt = (1. - tsint); sint = tet*sintt; cos1t = 0.5*tet; } f1 = step * sintt; f2 = step * cos1t; f3 = step * tsint * hp; f4 = -tet*cos1t; f5 = sint; f6 = tet * cos1t * hp; vout[kix] = vect[kix] + f1*vect[kipx] + f2*hxp[0] + f3*h[0]; vout[kiy] = vect[kiy] + f1*vect[kipy] + f2*hxp[1] + f3*h[1]; vout[kiz] = vect[kiz] + f1*vect[kipz] + f2*hxp[2] + f3*h[2]; vout[kipx] = vect[kipx] + f4*vect[kipx] + f5*hxp[0] + f6*h[0]; vout[kipy] = vect[kipy] + f4*vect[kipy] + f5*hxp[1] + f6*h[1]; vout[kipz] = vect[kipz] + f4*vect[kipz] + f5*hxp[2] + f6*h[2]; return; } //__________________________________________________________________________ void AliMUONTrackParam::ExtrapOneStepHelix3(Double_t field, Double_t step, Double_t *vect, Double_t *vout) const { // // ****************************************************************** // * * // * Tracking routine in a constant field oriented * // * along axis 3 * // * Tracking is performed with a conventional * // * helix step method * // * * // * ==>Called by : , GUSWIM * // * Authors R.Brun, M.Hansroul ********* * // * Rewritten V.Perevoztchikov // * * // ****************************************************************** // Double_t hxp[3]; Double_t h4, hp, rho, tet; Double_t sint, sintt, tsint, cos1t; Double_t f1, f2, f3, f4, f5, f6; const Int_t kix = 0; const Int_t kiy = 1; const Int_t kiz = 2; const Int_t kipx = 3; const Int_t kipy = 4; const Int_t kipz = 5; const Int_t kipp = 6; const Double_t kec = 2.9979251e-4; // // ------------------------------------------------------------------ // // units are kgauss,centimeters,gev/c // vout[kipp] = vect[kipp]; h4 = field * kec; hxp[0] = - vect[kipy]; hxp[1] = + vect[kipx]; hp = vect[kipz]; rho = -h4/vect[kipp]; tet = rho * step; if (TMath::Abs(tet) > 0.15) { sint = TMath::Sin(tet); sintt = (sint/tet); tsint = (tet-sint)/tet; cos1t = 2.* TMath::Sin(0.5*tet) * TMath::Sin(0.5*tet)/tet; } else { tsint = tet*tet/36.; sintt = (1. - tsint); sint = tet*sintt; cos1t = 0.5*tet; } f1 = step * sintt; f2 = step * cos1t; f3 = step * tsint * hp; f4 = -tet*cos1t; f5 = sint; f6 = tet * cos1t * hp; vout[kix] = vect[kix] + f1*vect[kipx] + f2*hxp[0]; vout[kiy] = vect[kiy] + f1*vect[kipy] + f2*hxp[1]; vout[kiz] = vect[kiz] + f1*vect[kipz] + f3; vout[kipx] = vect[kipx] + f4*vect[kipx] + f5*hxp[0]; vout[kipy] = vect[kipy] + f4*vect[kipy] + f5*hxp[1]; vout[kipz] = vect[kipz] + f4*vect[kipz] + f6; return; } //__________________________________________________________________________ void AliMUONTrackParam::ExtrapOneStepRungekutta(Double_t charge, Double_t step, Double_t* vect, Double_t* vout) const { // // ****************************************************************** // * * // * Runge-Kutta method for tracking a particle through a magnetic * // * field. Uses Nystroem algorithm (See Handbook Nat. Bur. of * // * Standards, procedure 25.5.20) * // * * // * Input parameters * // * CHARGE Particle charge * // * STEP Step size * // * VECT Initial co-ords,direction cosines,momentum * // * Output parameters * // * VOUT Output co-ords,direction cosines,momentum * // * User routine called * // * CALL GUFLD(X,F) * // * * // * ==>Called by : , GUSWIM * // * Authors R.Brun, M.Hansroul ********* * // * V.Perevoztchikov (CUT STEP implementation) * // * * // * * // ****************************************************************** // Double_t h2, h4, f[4]; Double_t xyzt[3], a, b, c, ph,ph2; Double_t secxs[4],secys[4],seczs[4],hxp[3]; Double_t g1, g2, g3, g4, g5, g6, ang2, dxt, dyt, dzt; Double_t est, at, bt, ct, cba; Double_t f1, f2, f3, f4, rho, tet, hnorm, hp, rho1, sint, cost; Double_t x; Double_t y; Double_t z; Double_t xt; Double_t yt; Double_t zt; Double_t maxit = 1992; Double_t maxcut = 11; const Double_t kdlt = 1e-4; const Double_t kdlt32 = kdlt/32.; const Double_t kthird = 1./3.; const Double_t khalf = 0.5; const Double_t kec = 2.9979251e-4; const Double_t kpisqua = 9.86960440109; const Int_t kix = 0; const Int_t kiy = 1; const Int_t kiz = 2; const Int_t kipx = 3; const Int_t kipy = 4; const Int_t kipz = 5; // *. // *. ------------------------------------------------------------------ // *. // * this constant is for units cm,gev/c and kgauss // * Int_t iter = 0; Int_t ncut = 0; for(Int_t j = 0; j < 7; j++) vout[j] = vect[j]; Double_t pinv = kec * charge / vect[6]; Double_t tl = 0.; Double_t h = step; Double_t rest; do { rest = step - tl; if (TMath::Abs(h) > TMath::Abs(rest)) h = rest; //cmodif: call gufld(vout,f) changed into: GetField(vout,f); // * // * start of integration // * x = vout[0]; y = vout[1]; z = vout[2]; a = vout[3]; b = vout[4]; c = vout[5]; h2 = khalf * h; h4 = khalf * h2; ph = pinv * h; ph2 = khalf * ph; secxs[0] = (b * f[2] - c * f[1]) * ph2; secys[0] = (c * f[0] - a * f[2]) * ph2; seczs[0] = (a * f[1] - b * f[0]) * ph2; ang2 = (secxs[0]*secxs[0] + secys[0]*secys[0] + seczs[0]*seczs[0]); if (ang2 > kpisqua) break; dxt = h2 * a + h4 * secxs[0]; dyt = h2 * b + h4 * secys[0]; dzt = h2 * c + h4 * seczs[0]; xt = x + dxt; yt = y + dyt; zt = z + dzt; // * // * second intermediate point // * est = TMath::Abs(dxt) + TMath::Abs(dyt) + TMath::Abs(dzt); if (est > h) { if (ncut++ > maxcut) break; h *= khalf; continue; } xyzt[0] = xt; xyzt[1] = yt; xyzt[2] = zt; //cmodif: call gufld(xyzt,f) changed into: GetField(xyzt,f); at = a + secxs[0]; bt = b + secys[0]; ct = c + seczs[0]; secxs[1] = (bt * f[2] - ct * f[1]) * ph2; secys[1] = (ct * f[0] - at * f[2]) * ph2; seczs[1] = (at * f[1] - bt * f[0]) * ph2; at = a + secxs[1]; bt = b + secys[1]; ct = c + seczs[1]; secxs[2] = (bt * f[2] - ct * f[1]) * ph2; secys[2] = (ct * f[0] - at * f[2]) * ph2; seczs[2] = (at * f[1] - bt * f[0]) * ph2; dxt = h * (a + secxs[2]); dyt = h * (b + secys[2]); dzt = h * (c + seczs[2]); xt = x + dxt; yt = y + dyt; zt = z + dzt; at = a + 2.*secxs[2]; bt = b + 2.*secys[2]; ct = c + 2.*seczs[2]; est = TMath::Abs(dxt)+TMath::Abs(dyt)+TMath::Abs(dzt); if (est > 2.*TMath::Abs(h)) { if (ncut++ > maxcut) break; h *= khalf; continue; } xyzt[0] = xt; xyzt[1] = yt; xyzt[2] = zt; //cmodif: call gufld(xyzt,f) changed into: GetField(xyzt,f); z = z + (c + (seczs[0] + seczs[1] + seczs[2]) * kthird) * h; y = y + (b + (secys[0] + secys[1] + secys[2]) * kthird) * h; x = x + (a + (secxs[0] + secxs[1] + secxs[2]) * kthird) * h; secxs[3] = (bt*f[2] - ct*f[1])* ph2; secys[3] = (ct*f[0] - at*f[2])* ph2; seczs[3] = (at*f[1] - bt*f[0])* ph2; a = a+(secxs[0]+secxs[3]+2. * (secxs[1]+secxs[2])) * kthird; b = b+(secys[0]+secys[3]+2. * (secys[1]+secys[2])) * kthird; c = c+(seczs[0]+seczs[3]+2. * (seczs[1]+seczs[2])) * kthird; est = TMath::Abs(secxs[0]+secxs[3] - (secxs[1]+secxs[2])) + TMath::Abs(secys[0]+secys[3] - (secys[1]+secys[2])) + TMath::Abs(seczs[0]+seczs[3] - (seczs[1]+seczs[2])); if (est > kdlt && TMath::Abs(h) > 1.e-4) { if (ncut++ > maxcut) break; h *= khalf; continue; } ncut = 0; // * if too many iterations, go to helix if (iter++ > maxit) break; tl += h; if (est < kdlt32) h *= 2.; cba = 1./ TMath::Sqrt(a*a + b*b + c*c); vout[0] = x; vout[1] = y; vout[2] = z; vout[3] = cba*a; vout[4] = cba*b; vout[5] = cba*c; rest = step - tl; if (step < 0.) rest = -rest; if (rest < 1.e-5*TMath::Abs(step)) return; } while(1); // angle too big, use helix f1 = f[0]; f2 = f[1]; f3 = f[2]; f4 = TMath::Sqrt(f1*f1+f2*f2+f3*f3); rho = -f4*pinv; tet = rho * step; hnorm = 1./f4; f1 = f1*hnorm; f2 = f2*hnorm; f3 = f3*hnorm; hxp[0] = f2*vect[kipz] - f3*vect[kipy]; hxp[1] = f3*vect[kipx] - f1*vect[kipz]; hxp[2] = f1*vect[kipy] - f2*vect[kipx]; hp = f1*vect[kipx] + f2*vect[kipy] + f3*vect[kipz]; rho1 = 1./rho; sint = TMath::Sin(tet); cost = 2.*TMath::Sin(khalf*tet)*TMath::Sin(khalf*tet); g1 = sint*rho1; g2 = cost*rho1; g3 = (tet-sint) * hp*rho1; g4 = -cost; g5 = sint; g6 = cost * hp; vout[kix] = vect[kix] + g1*vect[kipx] + g2*hxp[0] + g3*f1; vout[kiy] = vect[kiy] + g1*vect[kipy] + g2*hxp[1] + g3*f2; vout[kiz] = vect[kiz] + g1*vect[kipz] + g2*hxp[2] + g3*f3; vout[kipx] = vect[kipx] + g4*vect[kipx] + g5*hxp[0] + g6*f1; vout[kipy] = vect[kipy] + g4*vect[kipy] + g5*hxp[1] + g6*f2; vout[kipz] = vect[kipz] + g4*vect[kipz] + g5*hxp[2] + g6*f3; return; } //___________________________________________________________ void AliMUONTrackParam::GetField(Double_t *Position, Double_t *Field) const { // interface to "gAlice->Field()->Field" for arguments in double precision Float_t x[3], b[3]; x[0] = Position[0]; x[1] = Position[1]; x[2] = Position[2]; gAlice->Field()->Field(x, b); Field[0] = b[0]; Field[1] = b[1]; Field[2] = b[2]; return; }