/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpeateose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ ///////////////////////////////////////////////////////// // Manager and hits classes for set:MUON version 0 // ///////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include #include #include "AliCallf77.h" #include "AliConst.h" #include "AliMUONChamber.h" #include "AliMUONConstants.h" #include "AliMUONFactory.h" #include "AliMUONHit.h" #include "AliMUONPadHit.h" #include "AliMUONTriggerCircuit.h" #include "AliMUONv1.h" #include "AliMagF.h" #include "AliRun.h" #include "AliMC.h" ClassImp(AliMUONv1) //___________________________________________ AliMUONv1::AliMUONv1() : AliMUON() ,fTrackMomentum(), fTrackPosition() { // Constructor fChambers = 0; fStations = 0; fStepManagerVersionOld = kFALSE; fStepMaxInActiveGas = 0.6; fStepSum = 0x0; fDestepSum = 0x0; fElossRatio = 0x0; fAngleEffect10 = 0x0; fAngleEffectNorma= 0x0; } //___________________________________________ AliMUONv1::AliMUONv1(const char *name, const char *title) : AliMUON(name,title), fTrackMomentum(), fTrackPosition() { // Constructor // By default include all stations fStations = new Int_t[5]; for (Int_t i=0; i<5; i++) fStations[i] = 1; AliMUONFactory factory; factory.Build(this, title); fStepManagerVersionOld = kFALSE; fStepMaxInActiveGas = 0.6; fStepSum = new Float_t [AliMUONConstants::NCh()]; fDestepSum = new Float_t [AliMUONConstants::NCh()]; for (Int_t i=0; iSetParameter(0,1.02138); fElossRatio->SetParameter(1,-9.54149e-02); fElossRatio->SetParameter(2,+7.83433e-02); fElossRatio->SetParameter(3,-9.98208e-03); fElossRatio->SetParameter(4,+3.83279e-04); // Angle effect in tracking chambers at theta =10 degres as a function of ElossRatio (Khalil BOUDJEMLINE sep 2003 Ph.D Thesis) (in micrometers) fAngleEffect10 = new TF1("AngleEffect10","[0]+[1]*x+[2]*x*x",0.5,3.0); fAngleEffect10->SetParameter(0, 1.90691e+02); fAngleEffect10->SetParameter(1,-6.62258e+01); fAngleEffect10->SetParameter(2,+1.28247e+01); // Angle effect: Normalisation form theta=10 degres to theta between 0 and 10 (Khalil BOUDJEMLINE sep 2003 Ph.D Thesis) // Angle with respect to the wires assuming that chambers are perpendicular to the z axis. fAngleEffectNorma = new TF1("AngleEffectNorma","[0]+[1]*x+[2]*x*x+[3]*x*x*x",0.0,10.0); fAngleEffectNorma->SetParameter(0,4.148); fAngleEffectNorma->SetParameter(1,-6.809e-01); fAngleEffectNorma->SetParameter(2,5.151e-02); fAngleEffectNorma->SetParameter(3,-1.490e-03); } //___________________________________________ void AliMUONv1::CreateGeometry() { // // Note: all chambers have the same structure, which could be // easily parameterised. This was intentionally not done in order // to give a starting point for the implementation of the actual // design of each station. Int_t *idtmed = fIdtmed->GetArray()-1099; // Distance between Stations // Float_t bpar[3]; Float_t tpar[3]; // Float_t pgpar[10]; Float_t zpos1, zpos2, zfpos; // Outer excess and inner recess for mother volume radius // with respect to ROuter and RInner Float_t dframep=.001; // Value for station 3 should be 6 ... // Width (RdPhi) of the frame crosses for stations 1 and 2 (cm) // Float_t dframep1=.001; Float_t dframep1 = 11.0; // Bool_t frameCrosses=kFALSE; Bool_t frameCrosses=kTRUE; Float_t *dum=0; // Float_t dframez=0.9; // Half of the total thickness of frame crosses (including DAlu) // for each chamber in stations 1 and 2: // 3% of X0 of composite material, // but taken as Aluminium here, with same thickness in number of X0 Float_t dframez = 3. * 8.9 / 100; // Float_t dr; Float_t dstation; // // Rotation matrices in the x-y plane Int_t idrotm[1199]; // phi= 0 deg AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.); // phi= 90 deg AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.); // phi= 180 deg AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.); // phi= 270 deg AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.); // Float_t phi=2*TMath::Pi()/12/2; // // pointer to the current chamber // pointer to the current chamber Int_t idAlu1=idtmed[1103]; // medium 4 Int_t idAlu2=idtmed[1104]; // medium 5 // Int_t idAlu1=idtmed[1100]; // Int_t idAlu2=idtmed[1100]; Int_t idAir=idtmed[1100]; // medium 1 // Int_t idGas=idtmed[1105]; // medium 6 = Ar-isoC4H10 gas Int_t idGas=idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%) AliMUONChamber *iChamber, *iChamber1, *iChamber2; if (fStations[0]) { //******************************************************************** // Station 1 ** //******************************************************************** // CONCENTRIC // indices 1 and 2 for first and second chambers in the station // iChamber (first chamber) kept for other quanties than Z, // assumed to be the same in both chambers iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0]; iChamber2 =(AliMUONChamber*) (*fChambers)[1]; zpos1=iChamber1->Z(); zpos2=iChamber2->Z(); dstation = TMath::Abs(zpos2 - zpos1); // DGas decreased from standard one (0.5) iChamber->SetDGas(0.4); iChamber2->SetDGas(0.4); // DAlu increased from standard one (3% of X0), // because more electronics with smaller pads iChamber->SetDAlu(3.5 * 8.9 / 100.); iChamber2->SetDAlu(3.5 * 8.9 / 100.); zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // // Mother volume tpar[0] = iChamber->RInner()-dframep; tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); tpar[2] = dstation/5; gMC->Gsvolu("S01M", "TUBE", idAir, tpar, 3); gMC->Gsvolu("S02M", "TUBE", idAir, tpar, 3); gMC->Gspos("S01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); gMC->Gspos("S02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); // // Aluminium frames // // Outer frames // pgpar[0] = 360/12/2; // pgpar[1] = 360.; // pgpar[2] = 12.; // pgpar[3] = 2; // pgpar[4] = -dframez/2; // pgpar[5] = iChamber->ROuter(); // pgpar[6] = pgpar[5]+dframep1; // pgpar[7] = +dframez/2; // pgpar[8] = pgpar[5]; // pgpar[9] = pgpar[6]; // gMC->Gsvolu("S01O", "PGON", idAlu1, pgpar, 10); // gMC->Gsvolu("S02O", "PGON", idAlu1, pgpar, 10); // gMC->Gspos("S01O",1,"S01M", 0.,0.,-zfpos, 0,"ONLY"); // gMC->Gspos("S01O",2,"S01M", 0.,0.,+zfpos, 0,"ONLY"); // gMC->Gspos("S02O",1,"S02M", 0.,0.,-zfpos, 0,"ONLY"); // gMC->Gspos("S02O",2,"S02M", 0.,0.,+zfpos, 0,"ONLY"); // // // // Inner frame // tpar[0]= iChamber->RInner()-dframep1; // tpar[1]= iChamber->RInner(); // tpar[2]= dframez/2; // gMC->Gsvolu("S01I", "TUBE", idAlu1, tpar, 3); // gMC->Gsvolu("S02I", "TUBE", idAlu1, tpar, 3); // gMC->Gspos("S01I",1,"S01M", 0.,0.,-zfpos, 0,"ONLY"); // gMC->Gspos("S01I",2,"S01M", 0.,0.,+zfpos, 0,"ONLY"); // gMC->Gspos("S02I",1,"S02M", 0.,0.,-zfpos, 0,"ONLY"); // gMC->Gspos("S02I",2,"S02M", 0.,0.,+zfpos, 0,"ONLY"); // // Frame Crosses if (frameCrosses) { // outside gas // security for inside mother volume bpar[0] = (iChamber->ROuter() - iChamber->RInner()) * TMath::Cos(TMath::ASin(dframep1 / (iChamber->ROuter() - iChamber->RInner()))) / 2.0; bpar[1] = dframep1/2; // total thickness will be (4 * bpar[2]) for each chamber, // which has to be equal to (2 * dframez) - DAlu bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0; gMC->Gsvolu("S01B", "BOX", idAlu1, bpar, 3); gMC->Gsvolu("S02B", "BOX", idAlu1, bpar, 3); gMC->Gspos("S01B",1,"S01M", -iChamber->RInner()-bpar[0] , 0, zfpos, idrotm[1100],"ONLY"); gMC->Gspos("S01B",2,"S01M", iChamber->RInner()+bpar[0] , 0, zfpos, idrotm[1100],"ONLY"); gMC->Gspos("S01B",3,"S01M", 0, -iChamber->RInner()-bpar[0] , zfpos, idrotm[1101],"ONLY"); gMC->Gspos("S01B",4,"S01M", 0, iChamber->RInner()+bpar[0] , zfpos, idrotm[1101],"ONLY"); gMC->Gspos("S01B",5,"S01M", -iChamber->RInner()-bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("S01B",6,"S01M", +iChamber->RInner()+bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("S01B",7,"S01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("S01B",8,"S01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("S02B",1,"S02M", -iChamber->RInner()-bpar[0] , 0, zfpos, idrotm[1100],"ONLY"); gMC->Gspos("S02B",2,"S02M", iChamber->RInner()+bpar[0] , 0, zfpos, idrotm[1100],"ONLY"); gMC->Gspos("S02B",3,"S02M", 0, -iChamber->RInner()-bpar[0] , zfpos, idrotm[1101],"ONLY"); gMC->Gspos("S02B",4,"S02M", 0, iChamber->RInner()+bpar[0] , zfpos, idrotm[1101],"ONLY"); gMC->Gspos("S02B",5,"S02M", -iChamber->RInner()-bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("S02B",6,"S02M", +iChamber->RInner()+bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("S02B",7,"S02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("S02B",8,"S02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, idrotm[1101],"ONLY"); } // // Chamber Material represented by Alu sheet tpar[0]= iChamber->RInner(); tpar[1]= iChamber->ROuter(); tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; gMC->Gsvolu("S01A", "TUBE", idAlu2, tpar, 3); gMC->Gsvolu("S02A", "TUBE",idAlu2, tpar, 3); gMC->Gspos("S01A", 1, "S01M", 0., 0., 0., 0, "ONLY"); gMC->Gspos("S02A", 1, "S02M", 0., 0., 0., 0, "ONLY"); // // Sensitive volumes // tpar[2] = iChamber->DGas(); tpar[2] = iChamber->DGas()/2; gMC->Gsvolu("S01G", "TUBE", idGas, tpar, 3); gMC->Gsvolu("S02G", "TUBE", idGas, tpar, 3); gMC->Gspos("S01G", 1, "S01A", 0., 0., 0., 0, "ONLY"); gMC->Gspos("S02G", 1, "S02A", 0., 0., 0., 0, "ONLY"); // // Frame Crosses to be placed inside gas // NONE: chambers are sensitive everywhere // if (frameCrosses) { // dr = (iChamber->ROuter() - iChamber->RInner()); // bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2; // bpar[1] = dframep1/2; // bpar[2] = iChamber->DGas()/2; // gMC->Gsvolu("S01F", "BOX", idAlu1, bpar, 3); // gMC->Gsvolu("S02F", "BOX", idAlu1, bpar, 3); // gMC->Gspos("S01F",1,"S01G", +iChamber->RInner()+bpar[0] , 0, 0, // idrotm[1100],"ONLY"); // gMC->Gspos("S01F",2,"S01G", -iChamber->RInner()-bpar[0] , 0, 0, // idrotm[1100],"ONLY"); // gMC->Gspos("S01F",3,"S01G", 0, +iChamber->RInner()+bpar[0] , 0, // idrotm[1101],"ONLY"); // gMC->Gspos("S01F",4,"S01G", 0, -iChamber->RInner()-bpar[0] , 0, // idrotm[1101],"ONLY"); // gMC->Gspos("S02F",1,"S02G", +iChamber->RInner()+bpar[0] , 0, 0, // idrotm[1100],"ONLY"); // gMC->Gspos("S02F",2,"S02G", -iChamber->RInner()-bpar[0] , 0, 0, // idrotm[1100],"ONLY"); // gMC->Gspos("S02F",3,"S02G", 0, +iChamber->RInner()+bpar[0] , 0, // idrotm[1101],"ONLY"); // gMC->Gspos("S02F",4,"S02G", 0, -iChamber->RInner()-bpar[0] , 0, // idrotm[1101],"ONLY"); // } } if (fStations[1]) { //******************************************************************** // Station 2 ** //******************************************************************** // indices 1 and 2 for first and second chambers in the station // iChamber (first chamber) kept for other quanties than Z, // assumed to be the same in both chambers iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2]; iChamber2 =(AliMUONChamber*) (*fChambers)[3]; zpos1=iChamber1->Z(); zpos2=iChamber2->Z(); dstation = TMath::Abs(zpos2 - zpos1); // DGas and DAlu not changed from standard values zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // // Mother volume tpar[0] = iChamber->RInner()-dframep; tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); tpar[2] = dstation/5; gMC->Gsvolu("S03M", "TUBE", idAir, tpar, 3); gMC->Gsvolu("S04M", "TUBE", idAir, tpar, 3); gMC->Gspos("S03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); gMC->Gspos("S04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); gMC->Gsbool("S03M", "L3DO"); gMC->Gsbool("S03M", "L3O1"); gMC->Gsbool("S03M", "L3O2"); gMC->Gsbool("S04M", "L3DO"); gMC->Gsbool("S04M", "L3O1"); gMC->Gsbool("S04M", "L3O2"); // // Aluminium frames // // Outer frames // pgpar[0] = 360/12/2; // pgpar[1] = 360.; // pgpar[2] = 12.; // pgpar[3] = 2; // pgpar[4] = -dframez/2; // pgpar[5] = iChamber->ROuter(); // pgpar[6] = pgpar[5]+dframep; // pgpar[7] = +dframez/2; // pgpar[8] = pgpar[5]; // pgpar[9] = pgpar[6]; // gMC->Gsvolu("S03O", "PGON", idAlu1, pgpar, 10); // gMC->Gsvolu("S04O", "PGON", idAlu1, pgpar, 10); // gMC->Gspos("S03O",1,"S03M", 0.,0.,-zfpos, 0,"ONLY"); // gMC->Gspos("S03O",2,"S03M", 0.,0.,+zfpos, 0,"ONLY"); // gMC->Gspos("S04O",1,"S04M", 0.,0.,-zfpos, 0,"ONLY"); // gMC->Gspos("S04O",2,"S04M", 0.,0.,+zfpos, 0,"ONLY"); // // // // Inner frame // tpar[0]= iChamber->RInner()-dframep; // tpar[1]= iChamber->RInner(); // tpar[2]= dframez/2; // gMC->Gsvolu("S03I", "TUBE", idAlu1, tpar, 3); // gMC->Gsvolu("S04I", "TUBE", idAlu1, tpar, 3); // gMC->Gspos("S03I",1,"S03M", 0.,0.,-zfpos, 0,"ONLY"); // gMC->Gspos("S03I",2,"S03M", 0.,0.,+zfpos, 0,"ONLY"); // gMC->Gspos("S04I",1,"S04M", 0.,0.,-zfpos, 0,"ONLY"); // gMC->Gspos("S04I",2,"S04M", 0.,0.,+zfpos, 0,"ONLY"); // // Frame Crosses if (frameCrosses) { // outside gas // security for inside mother volume bpar[0] = (iChamber->ROuter() - iChamber->RInner()) * TMath::Cos(TMath::ASin(dframep1 / (iChamber->ROuter() - iChamber->RInner()))) / 2.0; bpar[1] = dframep1/2; // total thickness will be (4 * bpar[2]) for each chamber, // which has to be equal to (2 * dframez) - DAlu bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0; gMC->Gsvolu("S03B", "BOX", idAlu1, bpar, 3); gMC->Gsvolu("S04B", "BOX", idAlu1, bpar, 3); gMC->Gspos("S03B",1,"S03M", -iChamber->RInner()-bpar[0] , 0, zfpos, idrotm[1100],"ONLY"); gMC->Gspos("S03B",2,"S03M", +iChamber->RInner()+bpar[0] , 0, zfpos, idrotm[1100],"ONLY"); gMC->Gspos("S03B",3,"S03M", 0, -iChamber->RInner()-bpar[0] , zfpos, idrotm[1101],"ONLY"); gMC->Gspos("S03B",4,"S03M", 0, +iChamber->RInner()+bpar[0] , zfpos, idrotm[1101],"ONLY"); gMC->Gspos("S03B",5,"S03M", -iChamber->RInner()-bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("S03B",6,"S03M", +iChamber->RInner()+bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("S03B",7,"S03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("S03B",8,"S03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("S04B",1,"S04M", -iChamber->RInner()-bpar[0] , 0, zfpos, idrotm[1100],"ONLY"); gMC->Gspos("S04B",2,"S04M", +iChamber->RInner()+bpar[0] , 0, zfpos, idrotm[1100],"ONLY"); gMC->Gspos("S04B",3,"S04M", 0, -iChamber->RInner()-bpar[0] , zfpos, idrotm[1101],"ONLY"); gMC->Gspos("S04B",4,"S04M", 0, +iChamber->RInner()+bpar[0] , zfpos, idrotm[1101],"ONLY"); gMC->Gspos("S04B",5,"S04M", -iChamber->RInner()-bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("S04B",6,"S04M", +iChamber->RInner()+bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("S04B",7,"S04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("S04B",8,"S04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, idrotm[1101],"ONLY"); } // // Chamber Material represented by Alu sheet tpar[0]= iChamber->RInner(); tpar[1]= iChamber->ROuter(); tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; gMC->Gsvolu("S03A", "TUBE", idAlu2, tpar, 3); gMC->Gsvolu("S04A", "TUBE", idAlu2, tpar, 3); gMC->Gspos("S03A", 1, "S03M", 0., 0., 0., 0, "ONLY"); gMC->Gspos("S04A", 1, "S04M", 0., 0., 0., 0, "ONLY"); // // Sensitive volumes // tpar[2] = iChamber->DGas(); tpar[2] = iChamber->DGas()/2; gMC->Gsvolu("S03G", "TUBE", idGas, tpar, 3); gMC->Gsvolu("S04G", "TUBE", idGas, tpar, 3); gMC->Gspos("S03G", 1, "S03A", 0., 0., 0., 0, "ONLY"); gMC->Gspos("S04G", 1, "S04A", 0., 0., 0., 0, "ONLY"); // // Frame Crosses to be placed inside gas // NONE: chambers are sensitive everywhere // if (frameCrosses) { // dr = (iChamber->ROuter() - iChamber->RInner()); // bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2; // bpar[1] = dframep1/2; // bpar[2] = iChamber->DGas()/2; // gMC->Gsvolu("S03F", "BOX", idAlu1, bpar, 3); // gMC->Gsvolu("S04F", "BOX", idAlu1, bpar, 3); // gMC->Gspos("S03F",1,"S03G", +iChamber->RInner()+bpar[0] , 0, 0, // idrotm[1100],"ONLY"); // gMC->Gspos("S03F",2,"S03G", -iChamber->RInner()-bpar[0] , 0, 0, // idrotm[1100],"ONLY"); // gMC->Gspos("S03F",3,"S03G", 0, +iChamber->RInner()+bpar[0] , 0, // idrotm[1101],"ONLY"); // gMC->Gspos("S03F",4,"S03G", 0, -iChamber->RInner()-bpar[0] , 0, // idrotm[1101],"ONLY"); // gMC->Gspos("S04F",1,"S04G", +iChamber->RInner()+bpar[0] , 0, 0, // idrotm[1100],"ONLY"); // gMC->Gspos("S04F",2,"S04G", -iChamber->RInner()-bpar[0] , 0, 0, // idrotm[1100],"ONLY"); // gMC->Gspos("S04F",3,"S04G", 0, +iChamber->RInner()+bpar[0] , 0, // idrotm[1101],"ONLY"); // gMC->Gspos("S04F",4,"S04G", 0, -iChamber->RInner()-bpar[0] , 0, // idrotm[1101],"ONLY"); // } } // define the id of tracking media: Int_t idCopper = idtmed[1110]; Int_t idGlass = idtmed[1111]; Int_t idCarbon = idtmed[1112]; Int_t idRoha = idtmed[1113]; // sensitive area: 40*40 cm**2 const Float_t sensLength = 40.; const Float_t sensHeight = 40.; const Float_t sensWidth = 0.5; // according to TDR fig 2.120 const Int_t sensMaterial = idGas; const Float_t yOverlap = 1.5; // PCB dimensions in cm; width: 30 mum copper const Float_t pcbLength = sensLength; const Float_t pcbHeight = 60.; const Float_t pcbWidth = 0.003; const Int_t pcbMaterial = idCopper; // Insulating material: 200 mum glass fiber glued to pcb const Float_t insuLength = pcbLength; const Float_t insuHeight = pcbHeight; const Float_t insuWidth = 0.020; const Int_t insuMaterial = idGlass; // Carbon fiber panels: 200mum carbon/epoxy skin const Float_t panelLength = sensLength; const Float_t panelHeight = sensHeight; const Float_t panelWidth = 0.020; const Int_t panelMaterial = idCarbon; // rohacell between the two carbon panels const Float_t rohaLength = sensLength; const Float_t rohaHeight = sensHeight; const Float_t rohaWidth = 0.5; const Int_t rohaMaterial = idRoha; // Frame around the slat: 2 sticks along length,2 along height // H: the horizontal ones const Float_t hFrameLength = pcbLength; const Float_t hFrameHeight = 1.5; const Float_t hFrameWidth = sensWidth; const Int_t hFrameMaterial = idGlass; // V: the vertical ones const Float_t vFrameLength = 4.0; const Float_t vFrameHeight = sensHeight + hFrameHeight; const Float_t vFrameWidth = sensWidth; const Int_t vFrameMaterial = idGlass; // B: the horizontal border filled with rohacell const Float_t bFrameLength = hFrameLength; const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight; const Float_t bFrameWidth = hFrameWidth; const Int_t bFrameMaterial = idRoha; // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper) const Float_t nulocLength = 2.5; const Float_t nulocHeight = 7.5; const Float_t nulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite; const Int_t nulocMaterial = idCopper; const Float_t slatHeight = pcbHeight; const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth + 2.* panelWidth + rohaWidth); const Int_t slatMaterial = idAir; const Float_t dSlatLength = vFrameLength; // border on left and right Float_t spar[3]; Int_t i, j; // the panel volume contains the rohacell Float_t twidth = 2 * panelWidth + rohaWidth; Float_t panelpar[3] = { panelLength/2., panelHeight/2., twidth/2. }; Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. }; // insulating material contains PCB-> gas-> 2 borders filled with rohacell twidth = 2*(insuWidth + pcbWidth) + sensWidth; Float_t insupar[3] = { insuLength/2., insuHeight/2., twidth/2. }; twidth -= 2 * insuWidth; Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., twidth/2. }; Float_t senspar[3] = { sensLength/2., sensHeight/2., sensWidth/2. }; Float_t theight = 2*hFrameHeight + sensHeight; Float_t hFramepar[3]={hFrameLength/2., theight/2., hFrameWidth/2.}; Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.}; Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.}; Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.}; Float_t xx; Float_t xxmax = (bFrameLength - nulocLength)/2.; Int_t index=0; if (fStations[2]) { //******************************************************************** // Station 3 ** //******************************************************************** // indices 1 and 2 for first and second chambers in the station // iChamber (first chamber) kept for other quanties than Z, // assumed to be the same in both chambers iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4]; iChamber2 =(AliMUONChamber*) (*fChambers)[5]; zpos1=iChamber1->Z(); zpos2=iChamber2->Z(); dstation = TMath::Abs(zpos2 - zpos1); // // Mother volume tpar[0] = iChamber->RInner()-dframep; tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); tpar[2] = dstation/5; char *slats5Mother = "S05M"; char *slats6Mother = "S06M"; Float_t zoffs5 = 0; Float_t zoffs6 = 0; if (gAlice->GetModule("DIPO")) { slats5Mother="DDIP"; slats6Mother="DDIP"; zoffs5 = TMath::Abs(zpos1); zoffs6 = TMath::Abs(zpos2); } else { gMC->Gsvolu("S05M", "TUBE", idAir, tpar, 3); gMC->Gsvolu("S06M", "TUBE", idAir, tpar, 3); gMC->Gspos("S05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); gMC->Gspos("S06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); } // volumes for slat geometry (xx=5,..,10 chamber id): // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes // SxxG --> Sensitive volume (gas) // SxxP --> PCB (copper) // SxxI --> Insulator (vetronite) // SxxC --> Carbon panel // SxxR --> Rohacell // SxxH, SxxV --> Horizontal and Vertical frames (vetronite) // SB5x --> Volumes for the 35 cm long PCB // slat dimensions: slat is a MOTHER volume!!! made of air // only for chamber 5: slat 1 has a PCB shorter by 5cm! Float_t tlength = 35.; Float_t panelpar2[3] = { tlength/2., panelpar[1], panelpar[2]}; Float_t rohapar2[3] = { tlength/2., rohapar[1], rohapar[2]}; Float_t insupar2[3] = { tlength/2., insupar[1], insupar[2]}; Float_t pcbpar2[3] = { tlength/2., pcbpar[1], pcbpar[2]}; Float_t senspar2[3] = { tlength/2., senspar[1], senspar[2]}; Float_t hFramepar2[3] = { tlength/2., hFramepar[1], hFramepar[2]}; Float_t bFramepar2[3] = { tlength/2., bFramepar[1], bFramepar[2]}; const Int_t nSlats3 = 5; // number of slats per quadrant const Int_t nPCB3[nSlats3] = {3,3,4,3,2}; // n PCB per slat const Float_t xpos3[nSlats3] = {31., 40., 0., 0., 0.}; Float_t slatLength3[nSlats3]; // create and position the slat (mother) volumes char volNam5[5]; char volNam6[5]; Float_t xSlat3; Float_t spar2[3]; for (i = 0; iGetModule("DIPO")) {zSlat*=-1.;} sprintf(volNam5,"S05%d",i); gMC->Gsvolu(volNam5,"BOX",slatMaterial,spar2,3); gMC->Gspos(volNam5, i*4+1,slats5Mother, -xSlat32, ySlat31, zoffs5-zSlat-2.*dzCh3, 0, "ONLY"); gMC->Gspos(volNam5, i*4+2,slats5Mother, +xSlat32, ySlat31, zoffs5-zSlat+2.*dzCh3, 0, "ONLY"); if (i>0) { gMC->Gspos(volNam5, i*4+3,slats5Mother,-xSlat32, ySlat32, zoffs5-zSlat-2.*dzCh3, 0, "ONLY"); gMC->Gspos(volNam5, i*4+4,slats5Mother,+xSlat32, ySlat32, zoffs5-zSlat+2.*dzCh3, 0, "ONLY"); } sprintf(volNam6,"S06%d",i); gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3); gMC->Gspos(volNam6, i*4+1,slats6Mother,-xSlat3, ySlat31, zoffs6-zSlat-2.*dzCh3, 0, "ONLY"); gMC->Gspos(volNam6, i*4+2,slats6Mother,+xSlat3, ySlat31, zoffs6-zSlat+2.*dzCh3, 0, "ONLY"); if (i>0) { gMC->Gspos(volNam6, i*4+3,slats6Mother,-xSlat3, ySlat32, zoffs6-zSlat-2.*dzCh3, 0, "ONLY"); gMC->Gspos(volNam6, i*4+4,slats6Mother,+xSlat3, ySlat32, zoffs6-zSlat+2.*dzCh3, 0, "ONLY"); } } // create the panel volume gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3); gMC->Gsvolu("SB5C","BOX",panelMaterial,panelpar2,3); gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3); // create the rohacell volume gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3); gMC->Gsvolu("SB5R","BOX",rohaMaterial,rohapar2,3); gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3); // create the insulating material volume gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3); gMC->Gsvolu("SB5I","BOX",insuMaterial,insupar2,3); gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3); // create the PCB volume gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3); gMC->Gsvolu("SB5P","BOX",pcbMaterial,pcbpar2,3); gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3); // create the sensitive volumes, gMC->Gsvolu("S05G","BOX",sensMaterial,dum,0); gMC->Gsvolu("S06G","BOX",sensMaterial,dum,0); // create the vertical frame volume gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3); gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3); // create the horizontal frame volume gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3); gMC->Gsvolu("SB5H","BOX",hFrameMaterial,hFramepar2,3); gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3); // create the horizontal border volume gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3); gMC->Gsvolu("SB5B","BOX",bFrameMaterial,bFramepar2,3); gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3); index=0; for (i = 0; iGspos("S05V",2*i-1,volNam5, xvFrame2, 0., 0. , 0, "ONLY"); gMC->Gspos("S05V",2*i ,volNam5,-xvFrame2, 0., 0. , 0, "ONLY"); gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY"); gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY"); } // position the panels and the insulating material for (j=0; jGspos("SB5C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY"); gMC->Gspos("SB5C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY"); gMC->Gspos("SB5I",index ,volNam5, xx, 0., 0 , 0, "ONLY"); } else if ( (i==1 || i==2) && j < nPCB3[i]-1) { gMC->Gspos("S05C",2*index-1,volNam5, xx2, 0., zPanel , 0, "ONLY"); gMC->Gspos("S05C",2*index ,volNam5, xx2, 0.,-zPanel , 0, "ONLY"); gMC->Gspos("S05I",index ,volNam5, xx2, 0., 0 , 0, "ONLY"); } else { gMC->Gspos("S05C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY"); gMC->Gspos("S05C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY"); gMC->Gspos("S05I",index ,volNam5, xx, 0., 0 , 0, "ONLY"); } gMC->Gspos("S06C",2*index-1,volNam6, xx, 0., zPanel , 0, "ONLY"); gMC->Gspos("S06C",2*index ,volNam6, xx, 0.,-zPanel , 0, "ONLY"); gMC->Gspos("S06I",index,volNam6, xx, 0., 0 , 0, "ONLY"); } } // position the rohacell volume inside the panel volume gMC->Gspos("S05R",1,"S05C",0.,0.,0.,0,"ONLY"); gMC->Gspos("SB5R",1,"SB5C",0.,0.,0.,0,"ONLY"); gMC->Gspos("S06R",1,"S06C",0.,0.,0.,0,"ONLY"); // position the PCB volume inside the insulating material volume gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY"); gMC->Gspos("SB5P",1,"SB5I",0.,0.,0.,0,"ONLY"); gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY"); // position the horizontal frame volume inside the PCB volume gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY"); gMC->Gspos("SB5H",1,"SB5P",0.,0.,0.,0,"ONLY"); gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY"); // position the sensitive volume inside the horizontal frame volume gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3); gMC->Gsposp("S05G",1,"SB5H",0.,0.,0.,0,"ONLY",senspar2,3); gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3); // position the border volumes inside the PCB volume Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY"); gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY"); gMC->Gspos("SB5B",1,"SB5P",0., yborder,0.,0,"ONLY"); gMC->Gspos("SB5B",2,"SB5P",0.,-yborder,0.,0,"ONLY"); gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY"); gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY"); // create the NULOC volume and position it in the horizontal frame gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3); gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3); index = 0; Float_t xxmax2 = xxmax - 5./2.; for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { index++; gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); gMC->Gspos("S05N",2*index ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY"); if (xx > -xxmax2 && xx< xxmax2) { gMC->Gspos("S05N",2*index-1,"SB5B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); gMC->Gspos("S05N",2*index ,"SB5B", xx, 0., bFrameWidth/4., 0, "ONLY"); } gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); gMC->Gspos("S06N",2*index ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY"); } // position the volumes approximating the circular section of the pipe Float_t yoffs = sensHeight/2. - yOverlap; Float_t epsilon = 0.001; Int_t ndiv=6; Float_t divpar[3]; Double_t dydiv= sensHeight/ndiv; Double_t ydiv = yoffs -dydiv; Int_t imax=0; imax = 1; Float_t rmin = 33.; Float_t z1 = spar[2], z2=2*spar[2]*1.01; for (Int_t idiv=0;idivGsposp("S05G",imax+4*idiv+1,slats5Mother,-xvol, yvol, zoffs5-z1-z2, 0, "ONLY",divpar,3); gMC->Gsposp("S06G",imax+4*idiv+1,slats6Mother,-xvol, yvol, zoffs6-z1-z2, 0, "ONLY",divpar,3); gMC->Gsposp("S05G",imax+4*idiv+2,slats5Mother,-xvol,-yvol, zoffs5-z1-z2, 0, "ONLY",divpar,3); gMC->Gsposp("S06G",imax+4*idiv+2,slats6Mother,-xvol,-yvol, zoffs6-z1-z2, 0, "ONLY",divpar,3); gMC->Gsposp("S05G",imax+4*idiv+3,slats5Mother,+xvol, yvol, zoffs5-z1+z2, 0, "ONLY",divpar,3); gMC->Gsposp("S06G",imax+4*idiv+3,slats6Mother,+xvol, yvol, zoffs6-z1+z2, 0, "ONLY",divpar,3); gMC->Gsposp("S05G",imax+4*idiv+4,slats5Mother,+xvol,-yvol, zoffs5-z1+z2, 0, "ONLY",divpar,3); gMC->Gsposp("S06G",imax+4*idiv+4,slats6Mother,+xvol,-yvol, zoffs6-z1+z2, 0, "ONLY",divpar,3); } } if (fStations[3]) { //******************************************************************** // Station 4 ** //******************************************************************** // indices 1 and 2 for first and second chambers in the station // iChamber (first chamber) kept for other quanties than Z, // assumed to be the same in both chambers iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6]; iChamber2 =(AliMUONChamber*) (*fChambers)[7]; zpos1=iChamber1->Z(); zpos2=iChamber2->Z(); dstation = TMath::Abs(zpos2 - zpos1); // zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more // // Mother volume tpar[0] = iChamber->RInner()-dframep; tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); tpar[2] = dstation/4; gMC->Gsvolu("S07M", "TUBE", idAir, tpar, 3); gMC->Gsvolu("S08M", "TUBE", idAir, tpar, 3); gMC->Gspos("S07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); gMC->Gspos("S08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); const Int_t nSlats4 = 6; // number of slats per quadrant const Int_t nPCB4[nSlats4] = {4,4,5,5,4,3}; // n PCB per slat const Float_t xpos4[nSlats4] = {38.5, 40., 0., 0., 0., 0.}; Float_t slatLength4[nSlats4]; // create and position the slat (mother) volumes char volNam7[5]; char volNam8[5]; Float_t xSlat4; Float_t ySlat4; for (i = 0; iGsvolu(volNam7,"BOX",slatMaterial,spar,3); gMC->Gspos(volNam7, i*4+1,"S07M",-xSlat4, ySlat4, -zSlat-2.*dzCh4, 0, "ONLY"); gMC->Gspos(volNam7, i*4+2,"S07M",+xSlat4, ySlat4, -zSlat+2.*dzCh4, 0, "ONLY"); if (i>0) { gMC->Gspos(volNam7, i*4+3,"S07M",-xSlat4,-ySlat4, -zSlat-2.*dzCh4, 0, "ONLY"); gMC->Gspos(volNam7, i*4+4,"S07M",+xSlat4,-ySlat4, -zSlat+2.*dzCh4, 0, "ONLY"); } sprintf(volNam8,"S08%d",i); gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3); gMC->Gspos(volNam8, i*4+1,"S08M",-xSlat4, ySlat4, -zSlat-2.*dzCh4, 0, "ONLY"); gMC->Gspos(volNam8, i*4+2,"S08M",+xSlat4, ySlat4, -zSlat+2.*dzCh4, 0, "ONLY"); if (i>0) { gMC->Gspos(volNam8, i*4+3,"S08M",-xSlat4,-ySlat4, -zSlat-2.*dzCh4, 0, "ONLY"); gMC->Gspos(volNam8, i*4+4,"S08M",+xSlat4,-ySlat4, -zSlat+2.*dzCh4, 0, "ONLY"); } } // create the panel volume gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3); gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3); // create the rohacell volume gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3); gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3); // create the insulating material volume gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3); gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3); // create the PCB volume gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3); gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3); // create the sensitive volumes, gMC->Gsvolu("S07G","BOX",sensMaterial,dum,0); gMC->Gsvolu("S08G","BOX",sensMaterial,dum,0); // create the vertical frame volume gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3); gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3); // create the horizontal frame volume gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3); gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3); // create the horizontal border volume gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3); gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3); index=0; for (i = 0; iGspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY"); gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY"); gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY"); gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY"); } // position the panels and the insulating material for (j=0; jGspos("S07C",2*index-1,volNam7, xx, 0., zPanel , 0, "ONLY"); gMC->Gspos("S07C",2*index ,volNam7, xx, 0.,-zPanel , 0, "ONLY"); gMC->Gspos("S08C",2*index-1,volNam8, xx, 0., zPanel , 0, "ONLY"); gMC->Gspos("S08C",2*index ,volNam8, xx, 0.,-zPanel , 0, "ONLY"); gMC->Gspos("S07I",index,volNam7, xx, 0., 0 , 0, "ONLY"); gMC->Gspos("S08I",index,volNam8, xx, 0., 0 , 0, "ONLY"); } } // position the rohacell volume inside the panel volume gMC->Gspos("S07R",1,"S07C",0.,0.,0.,0,"ONLY"); gMC->Gspos("S08R",1,"S08C",0.,0.,0.,0,"ONLY"); // position the PCB volume inside the insulating material volume gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY"); gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY"); // position the horizontal frame volume inside the PCB volume gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY"); gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY"); // position the sensitive volume inside the horizontal frame volume gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3); gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3); // position the border volumes inside the PCB volume Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY"); gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY"); gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY"); gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY"); // create the NULOC volume and position it in the horizontal frame gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3); gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3); index = 0; for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { index++; gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); gMC->Gspos("S07N",2*index ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY"); gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); gMC->Gspos("S08N",2*index ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY"); } // position the volumes approximating the circular section of the pipe Float_t yoffs = sensHeight/2. - yOverlap; Float_t epsilon = 0.001; Int_t ndiv=6; Float_t divpar[3]; Double_t dydiv= sensHeight/ndiv; Double_t ydiv = yoffs -dydiv; Int_t imax=0; imax = 1; Float_t rmin = 40.; Float_t z1 = -spar[2], z2=2*spar[2]*1.01; for (Int_t idiv=0;idivGsposp("S07G",imax+4*idiv+1,"S07M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3); gMC->Gsposp("S08G",imax+4*idiv+1,"S08M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3); gMC->Gsposp("S07G",imax+4*idiv+2,"S07M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3); gMC->Gsposp("S08G",imax+4*idiv+2,"S08M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3); gMC->Gsposp("S07G",imax+4*idiv+3,"S07M", xvol, yvol, -z1+z2, 0, "ONLY",divpar,3); gMC->Gsposp("S08G",imax+4*idiv+3,"S08M", xvol, yvol, -z1+z2, 0, "ONLY",divpar,3); gMC->Gsposp("S07G",imax+4*idiv+4,"S07M", xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3); gMC->Gsposp("S08G",imax+4*idiv+4,"S08M", xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3); } } if (fStations[4]) { //******************************************************************** // Station 5 ** //******************************************************************** // indices 1 and 2 for first and second chambers in the station // iChamber (first chamber) kept for other quanties than Z, // assumed to be the same in both chambers iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8]; iChamber2 =(AliMUONChamber*) (*fChambers)[9]; zpos1=iChamber1->Z(); zpos2=iChamber2->Z(); dstation = TMath::Abs(zpos2 - zpos1); // zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more // // Mother volume tpar[0] = iChamber->RInner()-dframep; tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); tpar[2] = dstation/5.; gMC->Gsvolu("S09M", "TUBE", idAir, tpar, 3); gMC->Gsvolu("S10M", "TUBE", idAir, tpar, 3); gMC->Gspos("S09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); gMC->Gspos("S10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); const Int_t nSlats5 = 7; // number of slats per quadrant const Int_t nPCB5[nSlats5] = {5,5,6,6,5,4,3}; // n PCB per slat const Float_t xpos5[nSlats5] = {38.5, 40., 0., 0., 0., 0., 0.}; Float_t slatLength5[nSlats5]; char volNam9[5]; char volNam10[5]; Float_t xSlat5; Float_t ySlat5; for (i = 0; iGsvolu(volNam9,"BOX",slatMaterial,spar,3); gMC->Gspos(volNam9, i*4+1,"S09M",-xSlat5, ySlat5, -zSlat-2.*dzCh5, 0, "ONLY"); gMC->Gspos(volNam9, i*4+2,"S09M",+xSlat5, ySlat5, -zSlat+2.*dzCh5, 0, "ONLY"); if (i>0) { gMC->Gspos(volNam9, i*4+3,"S09M",-xSlat5,-ySlat5, -zSlat-2.*dzCh5, 0, "ONLY"); gMC->Gspos(volNam9, i*4+4,"S09M",+xSlat5,-ySlat5, -zSlat+2.*dzCh5, 0, "ONLY"); } sprintf(volNam10,"S10%d",i); gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3); gMC->Gspos(volNam10, i*4+1,"S10M",-xSlat5, ySlat5, -zSlat-2.*dzCh5, 0, "ONLY"); gMC->Gspos(volNam10, i*4+2,"S10M",+xSlat5, ySlat5, -zSlat+2.*dzCh5, 0, "ONLY"); if (i>0) { gMC->Gspos(volNam10, i*4+3,"S10M",-xSlat5,-ySlat5, -zSlat-2.*dzCh5, 0, "ONLY"); gMC->Gspos(volNam10, i*4+4,"S10M",+xSlat5,-ySlat5, -zSlat+2.*dzCh5, 0, "ONLY"); } } // create the panel volume gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3); gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3); // create the rohacell volume gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3); gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3); // create the insulating material volume gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3); gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3); // create the PCB volume gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3); gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3); // create the sensitive volumes, gMC->Gsvolu("S09G","BOX",sensMaterial,dum,0); gMC->Gsvolu("S10G","BOX",sensMaterial,dum,0); // create the vertical frame volume gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3); gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3); // create the horizontal frame volume gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3); gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3); // create the horizontal border volume gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3); gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3); index=0; for (i = 0; iGspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY"); gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY"); gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY"); gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY"); } // position the panels and the insulating material for (j=0; jGspos("S09C",2*index-1,volNam9, xx, 0., zPanel , 0, "ONLY"); gMC->Gspos("S09C",2*index ,volNam9, xx, 0.,-zPanel , 0, "ONLY"); gMC->Gspos("S10C",2*index-1,volNam10, xx, 0., zPanel , 0, "ONLY"); gMC->Gspos("S10C",2*index ,volNam10, xx, 0.,-zPanel , 0, "ONLY"); gMC->Gspos("S09I",index,volNam9, xx, 0., 0 , 0, "ONLY"); gMC->Gspos("S10I",index,volNam10, xx, 0., 0 , 0, "ONLY"); } } // position the rohacell volume inside the panel volume gMC->Gspos("S09R",1,"S09C",0.,0.,0.,0,"ONLY"); gMC->Gspos("S10R",1,"S10C",0.,0.,0.,0,"ONLY"); // position the PCB volume inside the insulating material volume gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY"); gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY"); // position the horizontal frame volume inside the PCB volume gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY"); gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY"); // position the sensitive volume inside the horizontal frame volume gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3); gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3); // position the border volumes inside the PCB volume Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY"); gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY"); gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY"); gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY"); // create the NULOC volume and position it in the horizontal frame gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3); gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3); index = 0; for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { index++; gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); gMC->Gspos("S09N",2*index ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY"); gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); gMC->Gspos("S10N",2*index ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY"); } // position the volumes approximating the circular section of the pipe Float_t yoffs = sensHeight/2. - yOverlap; Float_t epsilon = 0.001; Int_t ndiv=6; Float_t divpar[3]; Double_t dydiv= sensHeight/ndiv; Double_t ydiv = yoffs -dydiv; Int_t imax=0; // for (Int_t islat=0; islatGsposp("S09G",imax+4*idiv+1,"S09M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3); gMC->Gsposp("S10G",imax+4*idiv+1,"S10M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3); gMC->Gsposp("S09G",imax+4*idiv+2,"S09M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3); gMC->Gsposp("S10G",imax+4*idiv+2,"S10M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3); gMC->Gsposp("S09G",imax+4*idiv+3,"S09M", +xvol, yvol, -z1+z2, 0, "ONLY",divpar,3); gMC->Gsposp("S10G",imax+4*idiv+3,"S10M", +xvol, yvol, -z1+z2, 0, "ONLY",divpar,3); gMC->Gsposp("S09G",imax+4*idiv+4,"S09M", +xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3); gMC->Gsposp("S10G",imax+4*idiv+4,"S10M", +xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3); } } //******************************************************************** // Trigger ** //******************************************************************** /* zpos1 and zpos2 are the middle of the first and second planes of station 1 (+1m for second station): zpos1=(zpos1m+zpos1p)/2=(15999+16071)/2=16035 mm, thick/2=40 mm zpos2=(zpos2m+zpos2p)/2=(16169+16241)/2=16205 mm, thick/2=40 mm zposxm and zposxp= middles of gaz gaps within a detection plane rem: the total thickness accounts for 1 mm of al on both side of the RPCs (see zpos1 and zpos2) */ // vertical gap between right and left chambers (kDXZERO*2=4cm) const Float_t kDXZERO=2.; // main distances for chamber definition in first plane/first station const Float_t kXMIN=34.; const Float_t kXMED=51.; const Float_t kXMAX=272.; // kXMAX will become 255. in real life. segmentation to be updated accordingly // (see fig.2-4 & 2-5 of Local Trigger Board PRR) const Float_t kYMIN=34.; const Float_t kYMAX=51.; // inner/outer radius of flange between beam shield. and chambers (1/station) const Float_t kRMIN[2]={50.,50.}; const Float_t kRMAX[2]={64.,68.}; // z position of the middle of the gas gap in mother vol const Float_t kZm=-3.6; const Float_t kZp=+3.6; iChamber1 = (AliMUONChamber*) (*fChambers)[10]; zpos1 = iChamber1->Z(); // ratio of zpos1m/zpos1p and inverse for first plane Float_t zmp=(zpos1+3.6)/(zpos1-3.6); Float_t zpm=1./zmp; Int_t icount=0; // chamber counter (0 1 2 3) for (Int_t istation=0; istation<2; istation++) { // loop on stations for (Int_t iplane=0; iplane<2; iplane++) { // loop on detection planes Int_t iVolNum=1; // counter Volume Number icount = Int_t(iplane*TMath::Power(2,0))+ Int_t(istation*TMath::Power(2,1)); char volPlane[5]; sprintf(volPlane,"SM%d%d",istation+1,iplane+1); iChamber = (AliMUONChamber*) (*fChambers)[10+icount]; Float_t zpos = iChamber->Z(); // mother volume tpar[0] = iChamber->RInner(); tpar[1] = iChamber->ROuter(); tpar[2] = 4.0; gMC->Gsvolu(volPlane,"TUBE",idAir,tpar,3); // Flange between beam shielding and RPC tpar[0]= kRMIN[istation]; tpar[1]= kRMAX[istation]; tpar[2]= 4.0; char volFlange[5]; sprintf(volFlange,"SF%dA",icount+1); gMC->Gsvolu(volFlange,"TUBE",idAlu1,tpar,3); //Al gMC->Gspos(volFlange,1,volPlane,0.,0.,0.,0,"MANY"); // scaling factor Float_t zRatio = zpos / zpos1; // chamber prototype tpar[0]= 0.; tpar[1]= 0.; tpar[2]= 0.; char volAlu[5]; // Alu char volBak[5]; // Bakelite char volGaz[5]; // Gas streamer sprintf(volAlu,"SC%dA",icount+1); sprintf(volBak,"SB%dA",icount+1); sprintf(volGaz,"SG%dA",icount+1); gMC->Gsvolu(volAlu,"BOX",idAlu1,tpar,0); // Al gMC->Gsvolu(volBak,"BOX",idtmed[1107],tpar,0); // Bakelite gMC->Gsvolu(volGaz,"BOX",idtmed[1106],tpar,0); // Gas streamer // chamber type A tpar[0] = -1.; tpar[1] = -1.; Float_t xA=(kDXZERO+kXMED+(kXMAX-kXMED)/2.)*zRatio; Float_t yAm=0.; Float_t yAp=0.; tpar[2] = 0.1; gMC->Gsposp(volGaz,1,volBak,0.,0.,0.,0,"ONLY",tpar,3); tpar[2] = 0.3; gMC->Gsposp(volBak,1,volAlu,0.,0.,0.,0,"ONLY",tpar,3); tpar[2] = 0.4; tpar[0] = ((kXMAX-kXMED)/2.)*zRatio; tpar[1] = kYMIN*zRatio; gMC->Gsposp(volAlu,iVolNum++,volPlane, -xA,yAm,-kZm,0,"ONLY",tpar,3); gMC->Gsposp(volAlu,iVolNum++,volPlane, xA,yAp,-kZp,0,"ONLY",tpar,3); gMC->Gsbool(volAlu,volFlange); // chamber type B Float_t tpar1save=tpar[1]; Float_t y1msave=yAm; Float_t y1psave=yAp; tpar[0] = ((kXMAX-kXMIN)/2.) * zRatio; tpar[1] = ((kYMAX-kYMIN)/2.) * zRatio; Float_t xB=(kDXZERO+kXMIN)*zRatio+tpar[0]; Float_t yBp=(y1msave+tpar1save)*zpm+tpar[1]; Float_t yBm=(y1psave+tpar1save)*zmp+tpar[1]; gMC->Gsposp(volAlu,iVolNum++,volPlane, -xB, yBp,-kZp,0,"ONLY",tpar,3); gMC->Gsposp(volAlu,iVolNum++,volPlane, xB, yBm,-kZm,0,"ONLY",tpar,3); gMC->Gsposp(volAlu,iVolNum++,volPlane, -xB,-yBp,-kZp,0,"ONLY",tpar,3); gMC->Gsposp(volAlu,iVolNum++,volPlane, xB,-yBm,-kZm,0,"ONLY",tpar,3); // chamber type C (note : same Z than type B) tpar1save=tpar[1]; y1msave=yBm; y1psave=yBp; tpar[0] = (kXMAX/2)*zRatio; tpar[1] = (kYMAX/2)*zRatio; Float_t xC=kDXZERO*zRatio+tpar[0]; Float_t yCp=(y1psave+tpar1save)*1.+tpar[1]; Float_t yCm=(y1msave+tpar1save)*1.+tpar[1]; gMC->Gsposp(volAlu,iVolNum++,volPlane,-xC, yCp,-kZp,0,"ONLY",tpar,3); gMC->Gsposp(volAlu,iVolNum++,volPlane, xC, yCm,-kZm,0,"ONLY",tpar,3); gMC->Gsposp(volAlu,iVolNum++,volPlane,-xC,-yCp,-kZp,0,"ONLY",tpar,3); gMC->Gsposp(volAlu,iVolNum++,volPlane, xC,-yCm,-kZm,0,"ONLY",tpar,3); // chamber type D, E and F (same size) tpar1save=tpar[1]; y1msave=yCm; y1psave=yCp; tpar[0] = (kXMAX/2.)*zRatio; tpar[1] = kYMIN*zRatio; Float_t xD=kDXZERO*zRatio+tpar[0]; Float_t yDp=(y1msave+tpar1save)*zpm+tpar[1]; Float_t yDm=(y1psave+tpar1save)*zmp+tpar[1]; gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yDm,-kZm,0,"ONLY",tpar,3); gMC->Gsposp(volAlu,iVolNum++,volPlane, xD, yDp,-kZp,0,"ONLY",tpar,3); gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yDm,-kZm,0,"ONLY",tpar,3); gMC->Gsposp(volAlu,iVolNum++,volPlane, xD,-yDp,-kZp,0,"ONLY",tpar,3); tpar1save=tpar[1]; y1msave=yDm; y1psave=yDp; Float_t yEp=(y1msave+tpar1save)*zpm+tpar[1]; Float_t yEm=(y1psave+tpar1save)*zmp+tpar[1]; gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yEp,-kZp,0,"ONLY",tpar,3); gMC->Gsposp(volAlu,iVolNum++,volPlane, xD, yEm,-kZm,0,"ONLY",tpar,3); gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yEp,-kZp,0,"ONLY",tpar,3); gMC->Gsposp(volAlu,iVolNum++,volPlane, xD,-yEm,-kZm,0,"ONLY",tpar,3); tpar1save=tpar[1]; y1msave=yEm; y1psave=yEp; Float_t yFp=(y1msave+tpar1save)*zpm+tpar[1]; Float_t yFm=(y1psave+tpar1save)*zmp+tpar[1]; gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yFm,-kZm,0,"ONLY",tpar,3); gMC->Gsposp(volAlu,iVolNum++,volPlane, xD, yFp,-kZp,0,"ONLY",tpar,3); gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yFm,-kZm,0,"ONLY",tpar,3); gMC->Gsposp(volAlu,iVolNum++,volPlane, xD,-yFp,-kZp,0,"ONLY",tpar,3); // Positioning plane in ALICE gMC->Gspos(volPlane,1,"ALIC",0.,0.,zpos,0,"ONLY"); } // end loop on detection planes } // end loop on stations } //___________________________________________ void AliMUONv1::CreateMaterials() { // *** DEFINITION OF AVAILABLE MUON MATERIALS *** // // Ar-CO2 gas (80%+20%) Float_t ag1[3] = { 39.95,12.01,16. }; Float_t zg1[3] = { 18.,6.,8. }; Float_t wg1[3] = { .8,.0667,.13333 }; Float_t dg1 = .001821; // // Ar-buthane-freon gas -- trigger chambers Float_t atr1[4] = { 39.95,12.01,1.01,19. }; Float_t ztr1[4] = { 18.,6.,1.,9. }; Float_t wtr1[4] = { .56,.1262857,.2857143,.028 }; Float_t dtr1 = .002599; // // Ar-CO2 gas Float_t agas[3] = { 39.95,12.01,16. }; Float_t zgas[3] = { 18.,6.,8. }; Float_t wgas[3] = { .74,.086684,.173316 }; Float_t dgas = .0018327; // // Ar-Isobutane gas (80%+20%) -- tracking Float_t ag[3] = { 39.95,12.01,1.01 }; Float_t zg[3] = { 18.,6.,1. }; Float_t wg[3] = { .8,.057,.143 }; Float_t dg = .0019596; // // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 }; Float_t ztrig[5] = { 18.,6.,1.,9.,16. }; Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 }; Float_t dtrig = .0031463; // // bakelite Float_t abak[3] = {12.01 , 1.01 , 16.}; Float_t zbak[3] = {6. , 1. , 8.}; Float_t wbak[3] = {6. , 6. , 1.}; Float_t dbak = 1.4; Float_t epsil, stmin, deemax, tmaxfd, stemax; Int_t iSXFLD = gAlice->Field()->Integ(); Float_t sXMGMX = gAlice->Field()->Max(); // // --- Define the various materials for GEANT --- AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500); AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak); AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg); AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig); AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1); AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1); AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas); // materials for slat: // Sensitive area: gas (already defined) // PCB: copper // insulating material and frame: vetronite // walls: carbon, rohacell, carbon Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.}; Float_t zglass[5]={ 6., 14., 8., 5., 11.}; Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01}; Float_t dglass=1.74; // rohacell: C9 H13 N1 O2 Float_t arohac[4] = {12.01, 1.01, 14.010, 16.}; Float_t zrohac[4] = { 6., 1., 7., 8.}; Float_t wrohac[4] = { 9., 13., 1., 2.}; Float_t drohac = 0.03; AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.); AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass); AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9); AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac); epsil = .001; // Tracking precision, stemax = -1.; // Maximum displacement for multiple scat tmaxfd = -20.; // Maximum angle due to field deflection deemax = -.3; // Maximum fractional energy loss, DLS stmin = -.8; // // Air AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); // // Aluminum AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); // // Ar-isoC4H10 gas AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, fMaxDestepGas, epsil, stmin); // // Ar-Isobuthane-Forane-SF6 gas AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, fMaxDestepAlu, epsil, stmin); // tracking media for slats: check the parameters!! AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); } //___________________________________________ void AliMUONv1::Init() { // // Initialize Tracking Chambers // if(fDebug) printf("\n%s: Start Init for version 1 - CPC chamber type\n\n",ClassName()); Int_t i; for (i=0; iInit(); } // // Set the chamber (sensitive region) GEANT identifier ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("S01G")); ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("S02G")); ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("S03G")); ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("S04G")); ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G")); ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G")); ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G")); ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G")); ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G")); ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G")); ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("SG1A")); ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("SG2A")); ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("SG3A")); ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("SG4A")); if(fDebug) printf("\n%s: Finished Init for version 1 - CPC chamber type\n",ClassName()); //cp if(fDebug) printf("\n%s: Start Init for Trigger Circuits\n",ClassName()); for (i=0; iInit(i); } if(fDebug) printf("%s: Finished Init for Trigger Circuits\n",ClassName()); //cp } //_______________________________________________________________________________ Int_t AliMUONv1::GetChamberId(Int_t volId) const { // Check if the volume with specified volId is a sensitive volume (gas) // of some chamber and returns the chamber number; // if not sensitive volume - return 0. // --- for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++) if (volId==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()) return i; return 0; } //_______________________________________________________________________________ void AliMUONv1::StepManager() { if (fStepManagerVersionOld) { StepManagerOld(); return; } // Only charged tracks if( !(gMC->TrackCharge()) ) return; // Only charged tracks // Only gas gap inside chamber // Tag chambers and record hits when track enters Int_t idvol=-1; Int_t iChamber=0; Int_t id=0; Int_t copy; const Float_t kBig = 1.e10; id=gMC->CurrentVolID(copy); // printf("id == %d \n",id); for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++) { if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()) { iChamber = i; idvol = i-1; } } if (idvol == -1) { return; } if( gMC->IsTrackEntering() ) { Float_t theta = fTrackMomentum.Theta(); if ((TMath::Pi()-theta)*kRaddeg>=15.) gMC->SetMaxStep(fStepMaxInActiveGas); // We use Pi-theta because z is negative } // if (GetDebug()) { // Float_t z = ( (AliMUONChamber*)(*fChambers)[idvol])->Z() ; // Info("StepManager Step","Active volume found %d chamber %d Z chamber is %f ",idvol,iChamber, z); // } // Particule id and mass, Int_t ipart = gMC->TrackPid(); Float_t mass = gMC->TrackMass(); fDestepSum[idvol]+=gMC->Edep(); // Get current particle id (ipart), track position (pos) and momentum (mom) if ( fStepSum[idvol]==0.0 ) gMC->TrackMomentum(fTrackMomentum); fStepSum[idvol]+=gMC->TrackStep(); // if (GetDebug()) { // Info("StepManager Step","iChamber %d, Particle %d, theta %f phi %f mass %f StepSum %f eloss %g", // iChamber,ipart, fTrackMomentum.Theta()*kRaddeg, fTrackMomentum.Phi()*kRaddeg, mass, fStepSum[idvol], gMC->Edep()); // Info("StepManager Step","Track Momentum %f %f %f", fTrackMomentum.X(), fTrackMomentum.Y(), fTrackMomentum.Z()) ; // gMC->TrackPosition(fTrackPosition); // Info("StepManager Step","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ; // } // Track left chamber or StepSum larger than fStepMaxInActiveGas if ( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()|| (fStepSum[idvol]>fStepMaxInActiveGas) ) { if ( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared() ) gMC->SetMaxStep(kBig); gMC->TrackPosition(fTrackPosition); Float_t theta = fTrackMomentum.Theta(); Float_t phi = fTrackMomentum.Phi(); TLorentzVector BackToWire( fStepSum[idvol]/2.*sin(theta)*cos(phi), fStepSum[idvol]/2.*sin(theta)*sin(phi), fStepSum[idvol]/2.*cos(theta),0.0 ); // if (GetDebug()) // Info("StepManager Exit","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ; // if (GetDebug()) // Info("StepManager Exit ","Track BackToWire %f %f %f",BackToWire.X(),BackToWire.Y(),BackToWire.Z()) ; fTrackPosition-=BackToWire; //-------------- Angle effect // Ratio between energy loss of particle and Mip as a function of BetaGamma of particle (Energy/Mass) Float_t Beta_x_Gamma = fTrackMomentum.P()/mass;// pc/mc2 Float_t SigmaEffect_10degrees; Float_t SigmaEffect_thetadegrees; Float_t ELossParticle_ELossMip; Float_t YAngleEffect=0.; Float_t theta_wires = TMath::Abs( TMath::ASin( TMath::Sin(TMath::Pi()-theta) * TMath::Sin(phi) ) );// We use Pi-theta because z is negative if ( (Beta_x_Gamma >3.2) && (theta_wires*kRaddeg<=15.) ) { Beta_x_Gamma=TMath::Log(Beta_x_Gamma); ELossParticle_ELossMip = fElossRatio->Eval(Beta_x_Gamma); // 10 degrees is a reference for a model (arbitrary) SigmaEffect_10degrees=fAngleEffect10->Eval(ELossParticle_ELossMip);// in micrometers // Angle with respect to the wires assuming that chambers are perpendicular to the z axis. SigmaEffect_thetadegrees = SigmaEffect_10degrees/fAngleEffectNorma->Eval(theta_wires*kRaddeg); // For 5mm gap if ( (iChamber==1) || (iChamber==2) ) SigmaEffect_thetadegrees/=(1.09833e+00+1.70000e-02*(theta_wires*kRaddeg)); // The gap is different (4mm) YAngleEffect=1.e-04*gRandom->Gaus(0,SigmaEffect_thetadegrees); // Error due to the angle effect in cm } // One hit per chamber GetMUONData()->AddHit(fIshunt, gAlice->GetMCApp()->GetCurrentTrackNumber(), iChamber, ipart, fTrackPosition.X(), fTrackPosition.Y()+YAngleEffect, fTrackPosition.Z(), 0.0, fTrackMomentum.P(),theta, phi, fStepSum[idvol], fDestepSum[idvol], fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()); // if (GetDebug()){ // Info("StepManager Exit","Particle exiting from chamber %d",iChamber); // Info("StepManager Exit","StepSum %f eloss geant %g ",fStepSum[idvol],fDestepSum[idvol]); // Info("StepManager Exit","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ; // } fStepSum[idvol] =0; // Reset for the next event fDestepSum[idvol]=0; // Reset for the next event } } //__________________________________________ void AliMUONv1::StepManagerOld() { Int_t copy, id; static Int_t idvol; static Int_t vol[2]; Int_t ipart; TLorentzVector pos; TLorentzVector mom; Float_t theta,phi; Float_t destep, step; static Float_t Sstep; static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength; const Float_t kBig = 1.e10; static Float_t hits[15]; TClonesArray &lhits = *fHits; // // // Only charged tracks if( !(gMC->TrackCharge()) ) return; // // Only gas gap inside chamber // Tag chambers and record hits when track enters id=gMC->CurrentVolID(copy); vol[0] = GetChamberId(id); idvol = vol[0] -1; if (idvol == -1) return; // // Get current particle id (ipart), track position (pos) and momentum (mom) gMC->TrackPosition(pos); gMC->TrackMomentum(mom); ipart = gMC->TrackPid(); // // momentum loss and steplength in last step destep = gMC->Edep(); step = gMC->TrackStep(); // cout<<"------------"<IsTrackEntering()) { gMC->SetMaxStep(fMaxStepGas); Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; Double_t rt = TMath::Sqrt(tc); Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]); Double_t tx = mom[0]/pmom; Double_t ty = mom[1]/pmom; Double_t tz = mom[2]/pmom; Double_t s = ((AliMUONChamber*)(*fChambers)[idvol]) ->ResponseModel() ->Pitch()/tz; theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; hits[0] = Float_t(ipart); // Geant3 particle type hits[1] = pos[0]+s*tx; // X-position for hit hits[2] = pos[1]+s*ty; // Y-position for hit hits[3] = pos[2]+s*tz; // Z-position for hit hits[4] = theta; // theta angle of incidence hits[5] = phi; // phi angle of incidence hits[8] = 0;//PadHits does not exist anymore (Float_t) fNPadHits; // first padhit hits[9] = -1; // last pad hit hits[10] = mom[3]; // hit momentum P hits[11] = mom[0]; // Px hits[12] = mom[1]; // Py hits[13] = mom[2]; // Pz tof=gMC->TrackTime(); hits[14] = tof; // Time of flight tlength = 0; eloss = 0; eloss2 = 0; Sstep=0; xhit = pos[0]; yhit = pos[1]; zhit = pos[2]; Chamber(idvol).ChargeCorrelationInit(); // Only if not trigger chamber // printf("---------------------------\n"); // printf(">>>> Y = %f \n",hits[2]); // printf("---------------------------\n"); // if(idvol < AliMUONConstants::NTrackingCh()) { // // // // Initialize hit position (cursor) in the segmentation model // ((AliMUONChamber*) (*fChambers)[idvol]) // ->SigGenInit(pos[0], pos[1], pos[2]); // } else { // //geant3->Gpcxyz(); // //printf("In the Trigger Chamber #%d\n",idvol-9); // } } eloss2+=destep; Sstep+=step; // cout<IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){ gMC->SetMaxStep(kBig); eloss += destep; tlength += step; Float_t x0,y0,z0; Float_t localPos[3]; Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; gMC->Gmtod(globalPos,localPos,1); if(idvol < AliMUONConstants::NTrackingCh()) { // tracking chambers x0 = 0.5*(xhit+pos[0]); y0 = 0.5*(yhit+pos[1]); z0 = 0.5*(zhit+pos[2]); } else { // trigger chambers x0 = xhit; y0 = yhit; z0 = 0.; } // if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol); hits[6] = tlength; // track length hits[7] = eloss2; // de/dx energy loss // if (fNPadHits > (Int_t)hits[8]) { // hits[8] = hits[8]+1; // hits[9] = 0: // PadHits does not exist anymore (Float_t) fNPadHits; //} // // new hit new(lhits[fNhits++]) AliMUONHit(fIshunt, gAlice->GetMCApp()->GetCurrentTrackNumber(), vol,hits); eloss = 0; // // Check additional signal generation conditions // defined by the segmentation // model (boundary crossing conditions) // only for tracking chambers } else if ((idvol < AliMUONConstants::NTrackingCh()) && ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2])) { ((AliMUONChamber*) (*fChambers)[idvol]) ->SigGenInit(pos[0], pos[1], pos[2]); Float_t localPos[3]; Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; gMC->Gmtod(globalPos,localPos,1); eloss += destep; // if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh()) // MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol); xhit = pos[0]; yhit = pos[1]; zhit = pos[2]; eloss = 0; tlength += step ; // // nothing special happened, add up energy loss } else { eloss += destep; tlength += step ; } }