/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpeateose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.12 2000/10/25 19:55:35 morsch Switches for each station individually for debug and lego. Revision 1.11 2000/10/22 16:44:01 morsch Update of slat geometry for stations 3,4,5 (A. deFalco) Revision 1.10 2000/10/12 16:07:04 gosset StepManager: * SigGenCond only called for tracking chambers, hence no more division by 0, and may use last ALIROOT/dummies.C with exception handling; * "10" replaced by "AliMUONConstants::NTrackingCh()". Revision 1.9 2000/10/06 15:37:22 morsch Problems with variable redefinition in for-loop solved. Variable names starting with u-case letters changed to l-case. Revision 1.8 2000/10/06 09:06:31 morsch Include Slat chambers (stations 3-5) into geometry (A. de Falco) Revision 1.7 2000/10/02 21:28:09 fca Removal of useless dependecies via forward declarations Revision 1.6 2000/10/02 17:20:45 egangler Cleaning of the code (continued ) : -> coding conventions -> void Streamers -> some useless includes removed or replaced by "class" statement Revision 1.5 2000/06/28 15:16:35 morsch (1) Client code adapted to new method signatures in AliMUONSegmentation (see comments there) to allow development of slat-muon chamber simulation and reconstruction code in the MUON framework. The changes should have no side effects (mostly dummy arguments). (2) Hit disintegration uses 3-dim hit coordinates to allow simulation of chambers with overlapping modules (MakePadHits, Disintegration). Revision 1.4 2000/06/26 14:02:38 morsch Add class AliMUONConstants with MUON specific constants using static memeber data and access methods. Revision 1.3 2000/06/22 14:10:05 morsch HP scope problems corrected (PH) Revision 1.2 2000/06/15 07:58:49 morsch Code from MUON-dev joined Revision 1.1.2.14 2000/06/14 14:37:25 morsch Initialization of TriggerCircuit added (PC) Revision 1.1.2.13 2000/06/09 21:55:47 morsch Most coding rule violations corrected. Revision 1.1.2.12 2000/05/05 11:34:29 morsch Log inside comments. Revision 1.1.2.11 2000/05/05 10:06:48 morsch Coding Rule violations regarding trigger section corrected (CP) Log messages included. */ ///////////////////////////////////////////////////////// // Manager and hits classes for set:MUON version 0 // ///////////////////////////////////////////////////////// #include #include #include #include #include #include "AliMUONv1.h" #include "AliRun.h" #include "AliMC.h" #include "AliMagF.h" #include "AliCallf77.h" #include "AliConst.h" #include "AliMUONChamber.h" #include "AliMUONHit.h" #include "AliMUONPadHit.h" #include "AliMUONConstants.h" #include "AliMUONTriggerCircuit.h" ClassImp(AliMUONv1) //___________________________________________ AliMUONv1::AliMUONv1() : AliMUON() { // Constructor fChambers = 0; } //___________________________________________ AliMUONv1::AliMUONv1(const char *name, const char *title) : AliMUON(name,title) { // Constructor } //___________________________________________ void AliMUONv1::CreateGeometry() { // // Note: all chambers have the same structure, which could be // easily parameterised. This was intentionally not done in order // to give a starting point for the implementation of the actual // design of each station. Int_t *idtmed = fIdtmed->GetArray()-1099; // Distance between Stations // Float_t bpar[3]; Float_t tpar[3]; Float_t pgpar[10]; Float_t zpos1, zpos2, zfpos; Float_t dframep=.001; // Value for station 3 should be 6 ... Float_t dframep1=.001; // Bool_t frames=kTRUE; Bool_t frames=kFALSE; Float_t dframez=0.9; Float_t dr; Float_t dstation; // // Rotation matrices in the x-y plane Int_t idrotm[1199]; // phi= 0 deg AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.); // phi= 90 deg AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.); // phi= 180 deg AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.); // phi= 270 deg AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.); // Float_t phi=2*TMath::Pi()/12/2; // // pointer to the current chamber // pointer to the current chamber Int_t idAlu1=idtmed[1103]; Int_t idAlu2=idtmed[1104]; // Int_t idAlu1=idtmed[1100]; // Int_t idAlu2=idtmed[1100]; Int_t idAir=idtmed[1100]; Int_t idGas=idtmed[1105]; AliMUONChamber *iChamber, *iChamber1, *iChamber2; Int_t stations[5] = {1, 1, 1, 1, 1}; if (stations[0]) { //******************************************************************** // Station 1 ** //******************************************************************** // CONCENTRIC // indices 1 and 2 for first and second chambers in the station // iChamber (first chamber) kept for other quanties than Z, // assumed to be the same in both chambers iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0]; iChamber2 =(AliMUONChamber*) (*fChambers)[1]; zpos1=iChamber1->Z(); zpos2=iChamber2->Z(); dstation = zpos2 - zpos1; zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // // Mother volume tpar[0] = iChamber->RInner()-dframep1; tpar[1] = (iChamber->ROuter()+dframep1)/TMath::Cos(phi); tpar[2] = dstation/4; gMC->Gsvolu("C01M", "TUBE", idAir, tpar, 3); gMC->Gsvolu("C02M", "TUBE", idAir, tpar, 3); gMC->Gspos("C01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); gMC->Gspos("C02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); // Aluminium frames // Outer frames pgpar[0] = 360/12/2; pgpar[1] = 360.; pgpar[2] = 12.; pgpar[3] = 2; pgpar[4] = -dframez/2; pgpar[5] = iChamber->ROuter(); pgpar[6] = pgpar[5]+dframep1; pgpar[7] = +dframez/2; pgpar[8] = pgpar[5]; pgpar[9] = pgpar[6]; gMC->Gsvolu("C01O", "PGON", idAlu1, pgpar, 10); gMC->Gsvolu("C02O", "PGON", idAlu1, pgpar, 10); gMC->Gspos("C01O",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); gMC->Gspos("C01O",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); gMC->Gspos("C02O",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); gMC->Gspos("C02O",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); // // Inner frame tpar[0]= iChamber->RInner()-dframep1; tpar[1]= iChamber->RInner(); tpar[2]= dframez/2; gMC->Gsvolu("C01I", "TUBE", idAlu1, tpar, 3); gMC->Gsvolu("C02I", "TUBE", idAlu1, tpar, 3); gMC->Gspos("C01I",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); gMC->Gspos("C01I",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); gMC->Gspos("C02I",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); gMC->Gspos("C02I",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); // // Frame Crosses if (frames) { bpar[0] = (iChamber->ROuter() - iChamber->RInner())/2; bpar[1] = dframep1/2; bpar[2] = dframez/2; gMC->Gsvolu("C01B", "BOX", idAlu1, bpar, 3); gMC->Gsvolu("C02B", "BOX", idAlu1, bpar, 3); gMC->Gspos("C01B",1,"C01M", +iChamber->RInner()+bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C01B",2,"C01M", -iChamber->RInner()-bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C01B",3,"C01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C01B",4,"C01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C01B",5,"C01M", +iChamber->RInner()+bpar[0] , 0,+zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C01B",6,"C01M", -iChamber->RInner()-bpar[0] , 0,+zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C01B",7,"C01M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C01B",8,"C01M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C02B",1,"C02M", +iChamber->RInner()+bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C02B",2,"C02M", -iChamber->RInner()-bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C02B",3,"C02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C02B",4,"C02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C02B",5,"C02M", +iChamber->RInner()+bpar[0] , 0,+zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C02B",6,"C02M", -iChamber->RInner()-bpar[0] , 0,+zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C02B",7,"C02M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C02B",8,"C02M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, idrotm[1101],"ONLY"); } // // Chamber Material represented by Alu sheet tpar[0]= iChamber->RInner(); tpar[1]= iChamber->ROuter(); tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; gMC->Gsvolu("C01A", "TUBE", idAlu2, tpar, 3); gMC->Gsvolu("C02A", "TUBE",idAlu2, tpar, 3); gMC->Gspos("C01A", 1, "C01M", 0., 0., 0., 0, "ONLY"); gMC->Gspos("C02A", 1, "C02M", 0., 0., 0., 0, "ONLY"); // // Sensitive volumes // tpar[2] = iChamber->DGas(); tpar[2] = iChamber->DGas()/2; gMC->Gsvolu("C01G", "TUBE", idtmed[1108], tpar, 3); gMC->Gsvolu("C02G", "TUBE", idtmed[1108], tpar, 3); gMC->Gspos("C01G", 1, "C01A", 0., 0., 0., 0, "ONLY"); gMC->Gspos("C02G", 1, "C02A", 0., 0., 0., 0, "ONLY"); // // Frame Crosses to be placed inside gas if (frames) { dr = (iChamber->ROuter() - iChamber->RInner()); bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2; bpar[1] = dframep1/2; bpar[2] = iChamber->DGas()/2; gMC->Gsvolu("C01F", "BOX", idAlu1, bpar, 3); gMC->Gsvolu("C02F", "BOX", idAlu1, bpar, 3); gMC->Gspos("C01F",1,"C01G", +iChamber->RInner()+bpar[0] , 0, 0, idrotm[1100],"ONLY"); gMC->Gspos("C01F",2,"C01G", -iChamber->RInner()-bpar[0] , 0, 0, idrotm[1100],"ONLY"); gMC->Gspos("C01F",3,"C01G", 0, +iChamber->RInner()+bpar[0] , 0, idrotm[1101],"ONLY"); gMC->Gspos("C01F",4,"C01G", 0, -iChamber->RInner()-bpar[0] , 0, idrotm[1101],"ONLY"); gMC->Gspos("C02F",1,"C02G", +iChamber->RInner()+bpar[0] , 0, 0, idrotm[1100],"ONLY"); gMC->Gspos("C02F",2,"C02G", -iChamber->RInner()-bpar[0] , 0, 0, idrotm[1100],"ONLY"); gMC->Gspos("C02F",3,"C02G", 0, +iChamber->RInner()+bpar[0] , 0, idrotm[1101],"ONLY"); gMC->Gspos("C02F",4,"C02G", 0, -iChamber->RInner()-bpar[0] , 0, idrotm[1101],"ONLY"); } } if (stations[1]) { //******************************************************************** // Station 2 ** //******************************************************************** // indices 1 and 2 for first and second chambers in the station // iChamber (first chamber) kept for other quanties than Z, // assumed to be the same in both chambers iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2]; iChamber2 =(AliMUONChamber*) (*fChambers)[3]; zpos1=iChamber1->Z(); zpos2=iChamber2->Z(); dstation = zpos2 - zpos1; zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // // Mother volume tpar[0] = iChamber->RInner()-dframep; tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); tpar[2] = dstation/4; gMC->Gsvolu("C03M", "TUBE", idAir, tpar, 3); gMC->Gsvolu("C04M", "TUBE", idAir, tpar, 3); gMC->Gspos("C03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); gMC->Gspos("C04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); // Aluminium frames // Outer frames pgpar[0] = 360/12/2; pgpar[1] = 360.; pgpar[2] = 12.; pgpar[3] = 2; pgpar[4] = -dframez/2; pgpar[5] = iChamber->ROuter(); pgpar[6] = pgpar[5]+dframep; pgpar[7] = +dframez/2; pgpar[8] = pgpar[5]; pgpar[9] = pgpar[6]; gMC->Gsvolu("C03O", "PGON", idAlu1, pgpar, 10); gMC->Gsvolu("C04O", "PGON", idAlu1, pgpar, 10); gMC->Gspos("C03O",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); gMC->Gspos("C03O",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); gMC->Gspos("C04O",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); gMC->Gspos("C04O",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); // // Inner frame tpar[0]= iChamber->RInner()-dframep; tpar[1]= iChamber->RInner(); tpar[2]= dframez/2; gMC->Gsvolu("C03I", "TUBE", idAlu1, tpar, 3); gMC->Gsvolu("C04I", "TUBE", idAlu1, tpar, 3); gMC->Gspos("C03I",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); gMC->Gspos("C03I",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); gMC->Gspos("C04I",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); gMC->Gspos("C04I",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); // // Frame Crosses if (frames) { bpar[0] = (iChamber->ROuter() - iChamber->RInner())/2; bpar[1] = dframep/2; bpar[2] = dframez/2; gMC->Gsvolu("C03B", "BOX", idAlu1, bpar, 3); gMC->Gsvolu("C04B", "BOX", idAlu1, bpar, 3); gMC->Gspos("C03B",1,"C03M", +iChamber->RInner()+bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C03B",2,"C03M", -iChamber->RInner()-bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C03B",3,"C03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C03B",4,"C03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C03B",5,"C03M", +iChamber->RInner()+bpar[0] , 0,+zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C03B",6,"C03M", -iChamber->RInner()-bpar[0] , 0,+zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C03B",7,"C03M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C03B",8,"C03M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C04B",1,"C04M", +iChamber->RInner()+bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C04B",2,"C04M", -iChamber->RInner()-bpar[0] , 0,-zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C04B",3,"C04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C04B",4,"C04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C04B",5,"C04M", +iChamber->RInner()+bpar[0] , 0,+zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C04B",6,"C04M", -iChamber->RInner()-bpar[0] , 0,+zfpos, idrotm[1100],"ONLY"); gMC->Gspos("C04B",7,"C04M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, idrotm[1101],"ONLY"); gMC->Gspos("C04B",8,"C04M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, idrotm[1101],"ONLY"); } // // Chamber Material represented by Alu sheet tpar[0]= iChamber->RInner(); tpar[1]= iChamber->ROuter(); tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; gMC->Gsvolu("C03A", "TUBE", idAlu2, tpar, 3); gMC->Gsvolu("C04A", "TUBE", idAlu2, tpar, 3); gMC->Gspos("C03A", 1, "C03M", 0., 0., 0., 0, "ONLY"); gMC->Gspos("C04A", 1, "C04M", 0., 0., 0., 0, "ONLY"); // // Sensitive volumes // tpar[2] = iChamber->DGas(); tpar[2] = iChamber->DGas()/2; gMC->Gsvolu("C03G", "TUBE", idGas, tpar, 3); gMC->Gsvolu("C04G", "TUBE", idGas, tpar, 3); gMC->Gspos("C03G", 1, "C03A", 0., 0., 0., 0, "ONLY"); gMC->Gspos("C04G", 1, "C04A", 0., 0., 0., 0, "ONLY"); if (frames) { // // Frame Crosses to be placed inside gas dr = (iChamber->ROuter() - iChamber->RInner()); bpar[0] = TMath::Sqrt(dr*dr-dframep*dframep/4)/2; bpar[1] = dframep/2; bpar[2] = iChamber->DGas()/2; gMC->Gsvolu("C03F", "BOX", idAlu1, bpar, 3); gMC->Gsvolu("C04F", "BOX", idAlu1, bpar, 3); gMC->Gspos("C03F",1,"C03G", +iChamber->RInner()+bpar[0] , 0, 0, idrotm[1100],"ONLY"); gMC->Gspos("C03F",2,"C03G", -iChamber->RInner()-bpar[0] , 0, 0, idrotm[1100],"ONLY"); gMC->Gspos("C03F",3,"C03G", 0, +iChamber->RInner()+bpar[0] , 0, idrotm[1101],"ONLY"); gMC->Gspos("C03F",4,"C03G", 0, -iChamber->RInner()-bpar[0] , 0, idrotm[1101],"ONLY"); gMC->Gspos("C04F",1,"C04G", +iChamber->RInner()+bpar[0] , 0, 0, idrotm[1100],"ONLY"); gMC->Gspos("C04F",2,"C04G", -iChamber->RInner()-bpar[0] , 0, 0, idrotm[1100],"ONLY"); gMC->Gspos("C04F",3,"C04G", 0, +iChamber->RInner()+bpar[0] , 0, idrotm[1101],"ONLY"); gMC->Gspos("C04F",4,"C04G", 0, -iChamber->RInner()-bpar[0] , 0, idrotm[1101],"ONLY"); } } // define the id of tracking media: Int_t idCopper = idtmed[1110]; Int_t idGlass = idtmed[1111]; Int_t idCarbon = idtmed[1112]; Int_t idRoha = idtmed[1113]; // sensitive area: 40*40 cm**2 const Float_t sensLength = 40.; const Float_t sensHeight = 40.; const Float_t sensWidth = 0.5; // according to TDR fig 2.120 const Int_t sensMaterial = idGas; const Float_t yOverlap = 1.5; // PCB dimensions in cm; width: 30 mum copper const Float_t pcbLength = sensLength; const Float_t pcbHeight = 60.; const Float_t pcbWidth = 0.003; const Int_t pcbMaterial = idCopper; // Insulating material: 200 mum glass fiber glued to pcb const Float_t insuLength = pcbLength; const Float_t insuHeight = pcbHeight; const Float_t insuWidth = 0.020; const Int_t insuMaterial = idGlass; // Carbon fiber panels: 200mum carbon/epoxy skin const Float_t panelLength = sensLength; const Float_t panelHeight = sensHeight; const Float_t panelWidth = 0.020; const Int_t panelMaterial = idCarbon; // rohacell between the two carbon panels const Float_t rohaLength = sensLength; const Float_t rohaHeight = sensHeight; const Float_t rohaWidth = 0.5; const Int_t rohaMaterial = idRoha; // Frame around the slat: 2 sticks along length,2 along height // H: the horizontal ones const Float_t hFrameLength = pcbLength; const Float_t hFrameHeight = 1.5; const Float_t hFrameWidth = sensWidth; const Int_t hFrameMaterial = idGlass; // V: the vertical ones const Float_t vFrameLength = 4.0; const Float_t vFrameHeight = sensHeight + hFrameHeight; const Float_t vFrameWidth = sensWidth; const Int_t vFrameMaterial = idGlass; // B: the horizontal border filled with rohacell const Float_t bFrameLength = hFrameLength; const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight; const Float_t bFrameWidth = hFrameWidth; const Int_t bFrameMaterial = idRoha; // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper) const Float_t nulocLength = 2.5; const Float_t nulocHeight = 7.5; const Float_t nulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite; const Int_t nulocMaterial = idCopper; // Gassiplex package const Float_t gassiLength = 1.0; const Float_t gassiHeight = 1.0; const Float_t gassiWidth = 0.15; // check it !!! const Int_t gassiMaterial = idGlass; const Float_t slatHeight = pcbHeight; const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth + 2.* panelWidth + rohaWidth); const Int_t slatMaterial = idAir; const Float_t dSlatLength = vFrameLength; // border on left and right Float_t spar[3]; Int_t i, j; Float_t sensPar[3] = { sensLength/2., sensHeight/2., sensWidth/2. }; Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., pcbWidth/2. }; Float_t insupar[3] = { insuLength/2., insuHeight/2., insuWidth/2. }; Float_t panelpar[3] = { panelLength/2., panelHeight/2., panelWidth/2. }; Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. }; Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.}; Float_t hFramepar[3]={hFrameLength/2., hFrameHeight/2., hFrameWidth/2.}; Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.}; Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.}; Float_t gassipar[3]={gassiLength/2., gassiHeight/2., gassiWidth/2.}; Float_t xx; Float_t xxmax = (bFrameLength - nulocLength)/2.; Int_t index=0; if (stations[2]) { //******************************************************************** // Station 3 ** //******************************************************************** // indices 1 and 2 for first and second chambers in the station // iChamber (first chamber) kept for other quanties than Z, // assumed to be the same in both chambers iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4]; iChamber2 =(AliMUONChamber*) (*fChambers)[5]; zpos1=iChamber1->Z(); zpos2=iChamber2->Z(); dstation = zpos2 - zpos1; zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // // Mother volume tpar[0] = iChamber->RInner()-dframep; tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); tpar[2] = dstation/4; gMC->Gsvolu("C05M", "TUBE", idAir, tpar, 3); gMC->Gsvolu("C06M", "TUBE", idAir, tpar, 3); gMC->Gspos("C05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); gMC->Gspos("C06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); // volumes for slat geometry (xx=5,..,10 chamber id): // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes // SxxG --> Sensitive volume (gas) // SxxP --> PCB (copper) // SxxI --> Insulator (vetronite) // SxxC --> Carbon panel // SxxR --> Rohacell // SxxH, SxxV --> Horizontal and Vertical frames (vetronite) // slat dimensions: slat is a MOTHER volume!!! made of air const Int_t nSlats3 = 4; // number of slats per quadrant const Int_t nPCB3[nSlats3] = {3,4,3,2}; // n PCB per slat Float_t slatLength3[nSlats3]; // create and position the slat (mother) volumes char volNam5[5]; char volDiv5[5]; char volNam6[5]; char volDiv6[5]; Float_t xSlat3; for (i = 0; iGsvolu(volNam5,"BOX",slatMaterial,spar,3); gMC->Gspos(volNam5, i*4+1,"C05M", xSlat3, ySlat31, zSlat, 0, "ONLY"); gMC->Gspos(volNam5, i*4+2,"C05M",-xSlat3, ySlat31, zSlat, 0, "ONLY"); gMC->Gspos(volNam5, i*4+3,"C05M", xSlat3, ySlat32,-zSlat, 0, "ONLY"); gMC->Gspos(volNam5, i*4+4,"C05M",-xSlat3, ySlat32,-zSlat, 0, "ONLY"); sprintf(volNam6,"S06%d",i); gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3); gMC->Gspos(volNam6, i*4+1,"C06M", xSlat3, ySlat31, zSlat, 0, "ONLY"); gMC->Gspos(volNam6, i*4+2,"C06M",-xSlat3, ySlat31, zSlat, 0, "ONLY"); gMC->Gspos(volNam6, i*4+3,"C06M", xSlat3, ySlat32,-zSlat, 0, "ONLY"); gMC->Gspos(volNam6, i*4+4,"C06M",-xSlat3, ySlat32,-zSlat, 0, "ONLY"); // 1st pcb in 1st slat made by some rectangular divisions /* if (i==0) { Int_t ndiv=8; Double_t dydiv= sensHeight/ndiv; Double_t ydiv = -dydiv; for (Int_t idiv=0;idivGsvolu(volDiv5,"BOX",sensMaterial,spar,3); Float_t xvol=(pcbLength+xdiv)/2.; Float_t yvol=ydiv+dydiv/2.; gMC->Gspos(volDiv5, 1,"C05M", xvol, yvol, zSlat, 0, "ONLY"); gMC->Gspos(volDiv5, 2,"C05M",-xvol, yvol, zSlat, 0, "ONLY"); gMC->Gspos(volDiv5, 3,"C05M", xvol,-yvol,-zSlat, 0, "ONLY"); gMC->Gspos(volDiv5, 4,"C05M",-xvol,-yvol,-zSlat, 0, "ONLY"); gMC->Gspos(volDiv6, 1,"C06M", xvol, yvol, zSlat, 0, "ONLY"); gMC->Gspos(volDiv6, 2,"C06M",-xvol, yvol, zSlat, 0, "ONLY"); gMC->Gspos(volDiv6, 3,"C06M", xvol,-yvol,-zSlat, 0, "ONLY"); gMC->Gspos(volDiv6, 4,"C06M",-xvol,-yvol,-zSlat, 0, "ONLY"); } } */ } // create the sensitive volumes (subdivided as the PCBs), gMC->Gsvolu("S05G","BOX",sensMaterial,sensPar,3); gMC->Gsvolu("S06G","BOX",sensMaterial,sensPar,3); // create the PCB volume gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3); gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3); // create the insulating material volume gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3); gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3); // create the panel volume gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3); gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3); // create the rohacell volume gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3); gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3); // create the vertical frame volume gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3); gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3); // create the horizontal frame volume gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3); gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3); // create the horizontal border volume gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3); gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3); index=0; for (i = 0; iGspos("S05V",2*i-1,volNam5, xvFrame, 0., 0. , 0, "ONLY"); gMC->Gspos("S05V",2*i ,volNam5,-xvFrame, 0., 0. , 0, "ONLY"); gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY"); gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY"); for (j=0; jGspos("S05G",index,volNam5, xx, yy, zSens , 0, "ONLY"); gMC->Gspos("S06G",index,volNam6, xx, yy, zSens , 0, "ONLY"); Float_t zPCB = (sensWidth+pcbWidth)/2.; gMC->Gspos("S05P",2*index-1,volNam5, xx, yy, zPCB , 0, "ONLY"); gMC->Gspos("S05P",2*index ,volNam5, xx, yy,-zPCB , 0, "ONLY"); gMC->Gspos("S06P",2*index-1,volNam6, xx, yy, zPCB , 0, "ONLY"); gMC->Gspos("S06P",2*index ,volNam6, xx, yy,-zPCB , 0, "ONLY"); Float_t zInsu = (insuWidth+pcbWidth)/2. + zPCB; gMC->Gspos("S05I",2*index-1,volNam5, xx, yy, zInsu , 0, "ONLY"); gMC->Gspos("S05I",2*index ,volNam5, xx, yy,-zInsu , 0, "ONLY"); gMC->Gspos("S06I",2*index-1,volNam6, xx, yy, zInsu , 0, "ONLY"); gMC->Gspos("S06I",2*index ,volNam6, xx, yy,-zInsu , 0, "ONLY"); Float_t zPanel1 = (insuWidth+panelWidth)/2. + zInsu; gMC->Gspos("S05C",4*index-3,volNam5, xx, yy, zPanel1 , 0, "ONLY"); gMC->Gspos("S05C",4*index-2,volNam5, xx, yy,-zPanel1 , 0, "ONLY"); gMC->Gspos("S06C",4*index-3,volNam6, xx, yy, zPanel1 , 0, "ONLY"); gMC->Gspos("S06C",4*index-2,volNam6, xx, yy,-zPanel1 , 0, "ONLY"); Float_t zRoha = (rohaWidth+panelWidth)/2. + zPanel1; gMC->Gspos("S05R",2*index-1,volNam5, xx, yy, zRoha , 0, "ONLY"); gMC->Gspos("S05R",2*index ,volNam5, xx, yy,-zRoha , 0, "ONLY"); gMC->Gspos("S06R",2*index-1,volNam6, xx, yy, zRoha , 0, "ONLY"); gMC->Gspos("S06R",2*index ,volNam6, xx, yy,-zRoha , 0, "ONLY"); Float_t zPanel2 = (rohaWidth+panelWidth)/2. + zRoha; gMC->Gspos("S05C",4*index-1,volNam5, xx, yy, zPanel2 , 0, "ONLY"); gMC->Gspos("S05C",4*index ,volNam5, xx, yy,-zPanel2 , 0, "ONLY"); gMC->Gspos("S06C",4*index-1,volNam6, xx, yy, zPanel2 , 0, "ONLY"); gMC->Gspos("S06C",4*index ,volNam6, xx, yy,-zPanel2 , 0, "ONLY"); Float_t yframe = (sensHeight + hFrameHeight)/2.; gMC->Gspos("S05H",2*index-1,volNam5, xx, yframe, 0. , 0, "ONLY"); gMC->Gspos("S05H",2*index ,volNam5, xx,-yframe, 0. , 0, "ONLY"); gMC->Gspos("S06H",2*index-1,volNam6, xx, yframe, 0. , 0, "ONLY"); gMC->Gspos("S06H",2*index ,volNam6, xx,-yframe, 0. , 0, "ONLY"); Float_t yborder = (bFrameHeight + hFrameHeight)/2. + yframe; gMC->Gspos("S05B",2*index-1,volNam5, xx, yborder, 0. , 0, "ONLY"); gMC->Gspos("S05B",2*index ,volNam5, xx,-yborder, 0. , 0, "ONLY"); gMC->Gspos("S06B",2*index-1,volNam6, xx, yborder, 0. , 0, "ONLY"); gMC->Gspos("S06B",2*index ,volNam6, xx,-yborder, 0. , 0, "ONLY"); } } // create the NULOC volume and position it in the horizontal frame gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3); gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3); index = 0; for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) { index++; gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); gMC->Gspos("S05N",2*index ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY"); gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); gMC->Gspos("S06N",2*index ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY"); } // create the gassiplex volume gMC->Gsvolu("S05E","BOX",gassiMaterial,gassipar,3); gMC->Gsvolu("S06E","BOX",gassiMaterial,gassipar,3); // position 4 gassiplex in the nuloc gMC->Gspos("S05E",1,"S05N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S05E",2,"S05N", 0., - nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S05E",3,"S05N", 0., nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S05E",4,"S05N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S06E",1,"S06N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S06E",2,"S06N", 0., - nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S06E",3,"S06N", 0., nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S06E",4,"S06N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY"); } if (stations[3]) { //******************************************************************** // Station 4 ** //******************************************************************** // indices 1 and 2 for first and second chambers in the station // iChamber (first chamber) kept for other quanties than Z, // assumed to be the same in both chambers iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6]; iChamber2 =(AliMUONChamber*) (*fChambers)[7]; zpos1=iChamber1->Z(); zpos2=iChamber2->Z(); dstation = zpos2 - zpos1; zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // // Mother volume tpar[0] = iChamber->RInner()-dframep; tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); tpar[2] = 3.252; gMC->Gsvolu("C07M", "TUBE", idAir, tpar, 3); gMC->Gsvolu("C08M", "TUBE", idAir, tpar, 3); gMC->Gspos("C07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); gMC->Gspos("C08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); const Int_t nSlats4 = 6; // number of slats per quadrant const Int_t nPCB4[nSlats4] = {4,5,5,4,3,2}; // n PCB per slat // slat dimensions: slat is a MOTHER volume!!! made of air Float_t slatLength4[nSlats4]; // create and position the slat (mother) volumes char volNam7[5]; char volNam8[5]; Float_t xSlat4; Float_t ySlat4; for (i = 0; iGsvolu(volNam7,"BOX",slatMaterial,spar,3); gMC->Gspos(volNam7, i*4+1,"C07M", xSlat4, ySlat4, zSlat, 0, "ONLY"); gMC->Gspos(volNam7, i*4+2,"C07M",-xSlat4, ySlat4, zSlat, 0, "ONLY"); if (i>0) { gMC->Gspos(volNam7, i*4+3,"C07M", xSlat4,-ySlat4, zSlat, 0, "ONLY"); gMC->Gspos(volNam7, i*4+4,"C07M",-xSlat4,-ySlat4, zSlat, 0, "ONLY"); } sprintf(volNam8,"S08%d",i); gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3); gMC->Gspos(volNam8, i*4+1,"C08M", xSlat4, ySlat4, zSlat, 0, "ONLY"); gMC->Gspos(volNam8, i*4+2,"C08M",-xSlat4, ySlat4, zSlat, 0, "ONLY"); if (i>0) { gMC->Gspos(volNam8, i*4+3,"C08M", xSlat4,-ySlat4, zSlat, 0, "ONLY"); gMC->Gspos(volNam8, i*4+4,"C08M",-xSlat4,-ySlat4, zSlat, 0, "ONLY"); } } // create the sensitive volumes (subdivided as the PCBs), gMC->Gsvolu("S07G","BOX",sensMaterial,sensPar,3); gMC->Gsvolu("S08G","BOX",sensMaterial,sensPar,3); // create the PCB volume gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3); gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3); // create the insulating material volume gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3); gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3); // create the panel volume gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3); gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3); // create the rohacell volume gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3); gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3); // create the vertical frame volume gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3); gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3); // create the horizontal frame volume gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3); gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3); // create the horizontal border volume gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3); gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3); for (i = 0; iGspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY"); gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY"); gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY"); gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY"); for (j=0; jGspos("S07G",index,volNam7, xx, yy, zSens , 0, "ONLY"); gMC->Gspos("S08G",index,volNam8, xx, yy, zSens , 0, "ONLY"); Float_t zPCB = (sensWidth+pcbWidth)/2.; gMC->Gspos("S07P",2*index-1,volNam7, xx, yy, zPCB , 0, "ONLY"); gMC->Gspos("S07P",2*index ,volNam7, xx, yy,-zPCB , 0, "ONLY"); gMC->Gspos("S08P",2*index-1,volNam8, xx, yy, zPCB , 0, "ONLY"); gMC->Gspos("S08P",2*index ,volNam8, xx, yy,-zPCB , 0, "ONLY"); Float_t zInsu = (insuWidth+pcbWidth)/2. + zPCB; gMC->Gspos("S07I",2*index-1,volNam7, xx, yy, zInsu , 0, "ONLY"); gMC->Gspos("S07I",2*index ,volNam7, xx, yy,-zInsu , 0, "ONLY"); gMC->Gspos("S08I",2*index-1,volNam8, xx, yy, zInsu , 0, "ONLY"); gMC->Gspos("S08I",2*index ,volNam8, xx, yy,-zInsu , 0, "ONLY"); Float_t zPanel1 = (insuWidth+panelWidth)/2. + zInsu; gMC->Gspos("S07C",4*index-3,volNam7, xx, yy, zPanel1 , 0, "ONLY"); gMC->Gspos("S07C",4*index-2,volNam7, xx, yy,-zPanel1 , 0, "ONLY"); gMC->Gspos("S08C",4*index-3,volNam8, xx, yy, zPanel1 , 0, "ONLY"); gMC->Gspos("S08C",4*index-2,volNam8, xx, yy,-zPanel1 , 0, "ONLY"); Float_t zRoha = (rohaWidth+panelWidth)/2. + zPanel1; gMC->Gspos("S07R",2*index-1,volNam7, xx, yy, zRoha , 0, "ONLY"); gMC->Gspos("S07R",2*index ,volNam7, xx, yy,-zRoha , 0, "ONLY"); gMC->Gspos("S08R",2*index-1,volNam8, xx, yy, zRoha , 0, "ONLY"); gMC->Gspos("S08R",2*index ,volNam8, xx, yy,-zRoha , 0, "ONLY"); Float_t zPanel2 = (rohaWidth+panelWidth)/2. + zRoha; gMC->Gspos("S07C",4*index-1,volNam7, xx, yy, zPanel2 , 0, "ONLY"); gMC->Gspos("S07C",4*index ,volNam7, xx, yy,-zPanel2 , 0, "ONLY"); gMC->Gspos("S08C",4*index-1,volNam8, xx, yy, zPanel2 , 0, "ONLY"); gMC->Gspos("S08C",4*index ,volNam8, xx, yy,-zPanel2 , 0, "ONLY"); Float_t yframe = (sensHeight + hFrameHeight)/2.; gMC->Gspos("S07H",2*index-1,volNam7, xx, yframe, 0. , 0, "ONLY"); gMC->Gspos("S07H",2*index ,volNam7, xx,-yframe, 0. , 0, "ONLY"); gMC->Gspos("S08H",2*index-1,volNam8, xx, yframe, 0. , 0, "ONLY"); gMC->Gspos("S08H",2*index ,volNam8, xx,-yframe, 0. , 0, "ONLY"); Float_t yborder = (bFrameHeight + hFrameHeight)/2. + yframe; gMC->Gspos("S07B",2*index-1,volNam7, xx, yborder, 0. , 0, "ONLY"); gMC->Gspos("S07B",2*index ,volNam7, xx,-yborder, 0. , 0, "ONLY"); gMC->Gspos("S08B",2*index-1,volNam8, xx, yborder, 0. , 0, "ONLY"); gMC->Gspos("S08B",2*index ,volNam8, xx,-yborder, 0. , 0, "ONLY"); } } // create the NULOC volume and position it in the horizontal frame gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3); gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3); index = 0; for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) { index++; gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); gMC->Gspos("S07N",2*index ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY"); gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); gMC->Gspos("S08N",2*index ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY"); } // create the gassiplex volume gMC->Gsvolu("S07E","BOX",gassiMaterial,gassipar,3); gMC->Gsvolu("S08E","BOX",gassiMaterial,gassipar,3); // position 4 gassiplex in the nuloc gMC->Gspos("S07E",1,"S07N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S07E",2,"S07N", 0., - nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S07E",3,"S07N", 0., nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S07E",4,"S07N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S08E",1,"S08N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S08E",2,"S08N", 0., - nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S08E",3,"S08N", 0., nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S08E",4,"S08N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY"); } if (stations[4]) { //******************************************************************** // Station 5 ** //******************************************************************** // indices 1 and 2 for first and second chambers in the station // iChamber (first chamber) kept for other quanties than Z, // assumed to be the same in both chambers iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8]; iChamber2 =(AliMUONChamber*) (*fChambers)[9]; zpos1=iChamber1->Z(); zpos2=iChamber2->Z(); dstation = zpos2 - zpos1; zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // // Mother volume tpar[0] = iChamber->RInner()-dframep; tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); tpar[2] = dstation/4; gMC->Gsvolu("C09M", "TUBE", idAir, tpar, 3); gMC->Gsvolu("C10M", "TUBE", idAir, tpar, 3); gMC->Gspos("C09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); gMC->Gspos("C10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); const Int_t nSlats5 = 7; // number of slats per quadrant const Int_t nPCB5[nSlats5] = {7,7,6,6,5,4,2}; // n PCB per slat // slat dimensions: slat is a MOTHER volume!!! made of air Float_t slatLength5[nSlats5]; char volNam9[5]; char volNam10[5]; Float_t xSlat5; Float_t ySlat5; for (i = 0; iGsvolu(volNam9,"BOX",slatMaterial,spar,3); gMC->Gspos(volNam9, i*4+1,"C09M", xSlat5, ySlat5, zSlat, 0, "ONLY"); gMC->Gspos(volNam9, i*4+2,"C09M",-xSlat5, ySlat5, zSlat, 0, "ONLY"); if (i>0) { gMC->Gspos(volNam9, i*4+3,"C09M", xSlat5,-ySlat5, zSlat, 0, "ONLY"); gMC->Gspos(volNam9, i*4+4,"C09M",-xSlat5,-ySlat5, zSlat, 0, "ONLY"); } sprintf(volNam10,"S10%d",i); gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3); gMC->Gspos(volNam10, i*4+1,"C10M", xSlat5, ySlat5, zSlat, 0, "ONLY"); gMC->Gspos(volNam10, i*4+2,"C10M",-xSlat5, ySlat5, zSlat, 0, "ONLY"); if (i>0) { gMC->Gspos(volNam10, i*4+3,"C10M", xSlat5,-ySlat5, zSlat, 0, "ONLY"); gMC->Gspos(volNam10, i*4+4,"C10M",-xSlat5,-ySlat5, zSlat, 0, "ONLY"); } } // create the sensitive volumes (subdivided as the PCBs), gMC->Gsvolu("S09G","BOX",sensMaterial,sensPar,3); gMC->Gsvolu("S10G","BOX",sensMaterial,sensPar,3); // create the PCB volume gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3); gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3); // create the insulating material volume gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3); gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3); // create the panel volume gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3); gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3); // create the rohacell volume gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3); gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3); // create the vertical frame volume gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3); gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3); // create the horizontal frame volume gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3); gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3); // create the horizontal border volume gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3); gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3); for (i = 0; iGspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY"); gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY"); gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY"); gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY"); for (j=0; jGspos("S09G",index,volNam9, xx, yy, zSens , 0, "ONLY"); gMC->Gspos("S10G",index,volNam10, xx, yy, zSens , 0, "ONLY"); Float_t zPCB = (sensWidth+pcbWidth)/2.; gMC->Gspos("S09P",2*index-1,volNam9, xx, yy, zPCB , 0, "ONLY"); gMC->Gspos("S09P",2*index ,volNam9, xx, yy,-zPCB , 0, "ONLY"); gMC->Gspos("S10P",2*index-1,volNam10, xx, yy, zPCB , 0, "ONLY"); gMC->Gspos("S10P",2*index ,volNam10, xx, yy,-zPCB , 0, "ONLY"); Float_t zInsu = (insuWidth+pcbWidth)/2. + zPCB; gMC->Gspos("S09I",2*index-1,volNam9, xx, yy, zInsu , 0, "ONLY"); gMC->Gspos("S09I",2*index ,volNam9, xx, yy,-zInsu , 0, "ONLY"); gMC->Gspos("S10I",2*index-1,volNam10, xx, yy, zInsu , 0, "ONLY"); gMC->Gspos("S10I",2*index ,volNam10, xx, yy,-zInsu , 0, "ONLY"); Float_t zPanel1 = (insuWidth+panelWidth)/2. + zInsu; gMC->Gspos("S09C",4*index-3,volNam9, xx, yy, zPanel1 , 0, "ONLY"); gMC->Gspos("S09C",4*index-2,volNam9, xx, yy,-zPanel1 , 0, "ONLY"); gMC->Gspos("S10C",4*index-3,volNam10, xx, yy, zPanel1 , 0, "ONLY"); gMC->Gspos("S10C",4*index-2,volNam10, xx, yy,-zPanel1 , 0, "ONLY"); Float_t zRoha = (rohaWidth+panelWidth)/2. + zPanel1; gMC->Gspos("S09R",2*index-1,volNam9, xx, yy, zRoha , 0, "ONLY"); gMC->Gspos("S09R",2*index ,volNam9, xx, yy,-zRoha , 0, "ONLY"); gMC->Gspos("S10R",2*index-1,volNam10, xx, yy, zRoha , 0, "ONLY"); gMC->Gspos("S10R",2*index ,volNam10, xx, yy,-zRoha , 0, "ONLY"); Float_t zPanel2 = (rohaWidth+panelWidth)/2. + zRoha; gMC->Gspos("S09C",4*index-1,volNam9, xx, yy, zPanel2 , 0, "ONLY"); gMC->Gspos("S09C",4*index ,volNam9, xx, yy,-zPanel2 , 0, "ONLY"); gMC->Gspos("S10C",4*index-1,volNam10, xx, yy, zPanel2 , 0, "ONLY"); gMC->Gspos("S10C",4*index ,volNam10, xx, yy,-zPanel2 , 0, "ONLY"); Float_t yframe = (sensHeight + hFrameHeight)/2.; gMC->Gspos("S09H",2*index-1,volNam9, xx, yframe, 0. , 0, "ONLY"); gMC->Gspos("S09H",2*index ,volNam9, xx,-yframe, 0. , 0, "ONLY"); gMC->Gspos("S10H",2*index-1,volNam10, xx, yframe, 0. , 0, "ONLY"); gMC->Gspos("S10H",2*index ,volNam10, xx,-yframe, 0. , 0, "ONLY"); Float_t yborder = (bFrameHeight + hFrameHeight)/2. + yframe; gMC->Gspos("S09B",2*index-1,volNam9, xx, yborder, 0. , 0, "ONLY"); gMC->Gspos("S09B",2*index ,volNam9, xx,-yborder, 0. , 0, "ONLY"); gMC->Gspos("S10B",2*index-1,volNam10, xx, yborder, 0. , 0, "ONLY"); gMC->Gspos("S10B",2*index ,volNam10, xx,-yborder, 0. , 0, "ONLY"); } } // create the NULOC volume and position it in the horizontal frame gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3); gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3); index = 0; for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) { index++; gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); gMC->Gspos("S09N",2*index ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY"); gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); gMC->Gspos("S10N",2*index ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY"); } // create the gassiplex volume gMC->Gsvolu("S09E","BOX",gassiMaterial,gassipar,3); gMC->Gsvolu("S10E","BOX",gassiMaterial,gassipar,3); // position 4 gassiplex in the nuloc gMC->Gspos("S09E",1,"S09N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S09E",2,"S09N", 0., - nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S09E",3,"S09N", 0., nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S09E",4,"S09N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S10E",1,"S10N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S10E",2,"S10N", 0., - nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S10E",3,"S10N", 0., nulocHeight/8., 0. , 0, "ONLY"); gMC->Gspos("S10E",4,"S10N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY"); } /////////////////////////////////////// // GEOMETRY FOR THE TRIGGER CHAMBERS // /////////////////////////////////////// // 03/00 P. Dupieux : introduce a slighly more realistic // geom. of the trigger readout planes with // 2 Zpos per trigger plane (alternate // between left and right of the trigger) // Parameters of the Trigger Chambers const Float_t kXMC1MIN=34.; const Float_t kXMC1MED=51.; const Float_t kXMC1MAX=272.; const Float_t kYMC1MIN=34.; const Float_t kYMC1MAX=51.; const Float_t kRMIN1=50.; const Float_t kRMAX1=62.; const Float_t kRMIN2=50.; const Float_t kRMAX2=66.; // zposition of the middle of the gas gap in mother vol const Float_t kZMCm=-3.6; const Float_t kZMCp=+3.6; // TRIGGER STATION 1 - TRIGGER STATION 1 - TRIGGER STATION 1 // iChamber 1 and 2 for first and second chambers in the station // iChamber (first chamber) kept for other quanties than Z, // assumed to be the same in both chambers iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[10]; iChamber2 =(AliMUONChamber*) (*fChambers)[11]; // 03/00 // zpos1 and zpos2 are now the middle of the first and second // plane of station 1 : // zpos1=(16075+15995)/2=16035 mm, thick/2=40 mm // zpos2=(16225+16145)/2=16185 mm, thick/2=40 mm // // zpos1m=15999 mm , zpos1p=16071 mm (middles of gas gaps) // zpos2m=16149 mm , zpos2p=16221 mm (middles of gas gaps) // rem : the total thickness accounts for 1 mm of al on both // side of the RPCs (see zpos1 and zpos2), as previously zpos1=iChamber1->Z(); zpos2=iChamber2->Z(); // Mother volume definition tpar[0] = iChamber->RInner(); tpar[1] = iChamber->ROuter(); tpar[2] = 4.0; gMC->Gsvolu("CM11", "TUBE", idAir, tpar, 3); gMC->Gsvolu("CM12", "TUBE", idAir, tpar, 3); // Definition of the flange between the beam shielding and the RPC tpar[0]= kRMIN1; tpar[1]= kRMAX1; tpar[2]= 4.0; gMC->Gsvolu("CF1A", "TUBE", idAlu1, tpar, 3); //Al gMC->Gspos("CF1A", 1, "CM11", 0., 0., 0., 0, "MANY"); gMC->Gspos("CF1A", 2, "CM12", 0., 0., 0., 0, "MANY"); // FIRST PLANE OF STATION 1 // ratios of zpos1m/zpos1p and inverse for first plane Float_t zmp=(zpos1-3.6)/(zpos1+3.6); Float_t zpm=1./zmp; // Definition of prototype for chambers in the first plane tpar[0]= 0.; tpar[1]= 0.; tpar[2]= 0.; gMC->Gsvolu("CC1A", "BOX ", idAlu1, tpar, 0); //Al gMC->Gsvolu("CB1A", "BOX ", idtmed[1107], tpar, 0); //Bakelite gMC->Gsvolu("CG1A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer // chamber type A tpar[0] = -1.; tpar[1] = -1.; const Float_t kXMC1A=kXMC1MED+(kXMC1MAX-kXMC1MED)/2.; const Float_t kYMC1Am=0.; const Float_t kYMC1Ap=0.; tpar[2] = 0.1; gMC->Gsposp("CG1A", 1, "CB1A", 0., 0., 0., 0, "ONLY",tpar,3); tpar[2] = 0.3; gMC->Gsposp("CB1A", 1, "CC1A", 0., 0., 0., 0, "ONLY",tpar,3); tpar[2] = 0.4; tpar[0] = (kXMC1MAX-kXMC1MED)/2.; tpar[1] = kYMC1MIN; gMC->Gsposp("CC1A", 1, "CM11",kXMC1A,kYMC1Am,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 2, "CM11",-kXMC1A,kYMC1Ap,kZMCp, 0, "ONLY", tpar, 3); // chamber type B Float_t tpar1save=tpar[1]; Float_t y1msave=kYMC1Am; Float_t y1psave=kYMC1Ap; tpar[0] = (kXMC1MAX-kXMC1MIN)/2.; tpar[1] = (kYMC1MAX-kYMC1MIN)/2.; const Float_t kXMC1B=kXMC1MIN+tpar[0]; const Float_t kYMC1Bp=(y1msave+tpar1save)*zpm+tpar[1]; const Float_t kYMC1Bm=(y1psave+tpar1save)*zmp+tpar[1]; gMC->Gsposp("CC1A", 3, "CM11",kXMC1B,kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 4, "CM11",-kXMC1B,kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 5, "CM11",kXMC1B,-kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 6, "CM11",-kXMC1B,-kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); // chamber type C (end of type B !!) tpar1save=tpar[1]; y1msave=kYMC1Bm; y1psave=kYMC1Bp; tpar[0] = kXMC1MAX/2; tpar[1] = kYMC1MAX/2; const Float_t kXMC1C=tpar[0]; // warning : same Z than type B const Float_t kYMC1Cp=(y1psave+tpar1save)*1.+tpar[1]; const Float_t kYMC1Cm=(y1msave+tpar1save)*1.+tpar[1]; gMC->Gsposp("CC1A", 7, "CM11",kXMC1C,kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 8, "CM11",-kXMC1C,kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 9, "CM11",kXMC1C,-kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 10, "CM11",-kXMC1C,-kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); // chamber type D, E and F (same size) tpar1save=tpar[1]; y1msave=kYMC1Cm; y1psave=kYMC1Cp; tpar[0] = kXMC1MAX/2.; tpar[1] = kYMC1MIN; const Float_t kXMC1D=tpar[0]; const Float_t kYMC1Dp=(y1msave+tpar1save)*zpm+tpar[1]; const Float_t kYMC1Dm=(y1psave+tpar1save)*zmp+tpar[1]; gMC->Gsposp("CC1A", 11, "CM11",kXMC1D,kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 12, "CM11",-kXMC1D,kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 13, "CM11",kXMC1D,-kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 14, "CM11",-kXMC1D,-kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); tpar1save=tpar[1]; y1msave=kYMC1Dm; y1psave=kYMC1Dp; const Float_t kYMC1Ep=(y1msave+tpar1save)*zpm+tpar[1]; const Float_t kYMC1Em=(y1psave+tpar1save)*zmp+tpar[1]; gMC->Gsposp("CC1A", 15, "CM11",kXMC1D,kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 16, "CM11",-kXMC1D,kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 17, "CM11",kXMC1D,-kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 18, "CM11",-kXMC1D,-kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); tpar1save=tpar[1]; y1msave=kYMC1Em; y1psave=kYMC1Ep; const Float_t kYMC1Fp=(y1msave+tpar1save)*zpm+tpar[1]; const Float_t kYMC1Fm=(y1psave+tpar1save)*zmp+tpar[1]; gMC->Gsposp("CC1A", 19, "CM11",kXMC1D,kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 20, "CM11",-kXMC1D,kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 21, "CM11",kXMC1D,-kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC1A", 22, "CM11",-kXMC1D,-kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); // Positioning first plane in ALICE gMC->Gspos("CM11", 1, "ALIC", 0., 0., zpos1, 0, "ONLY"); // End of geometry definition for the first plane of station 1 // SECOND PLANE OF STATION 1 : proj ratio = zpos2/zpos1 const Float_t kZ12=zpos2/zpos1; // Definition of prototype for chambers in the second plane of station 1 tpar[0]= 0.; tpar[1]= 0.; tpar[2]= 0.; gMC->Gsvolu("CC2A", "BOX ", idAlu1, tpar, 0); //Al gMC->Gsvolu("CB2A", "BOX ", idtmed[1107], tpar, 0); //Bakelite gMC->Gsvolu("CG2A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer // chamber type A tpar[0] = -1.; tpar[1] = -1.; const Float_t kXMC2A=kXMC1A*kZ12; const Float_t kYMC2Am=0.; const Float_t kYMC2Ap=0.; tpar[2] = 0.1; gMC->Gsposp("CG2A", 1, "CB2A", 0., 0., 0., 0, "ONLY",tpar,3); tpar[2] = 0.3; gMC->Gsposp("CB2A", 1, "CC2A", 0., 0., 0., 0, "ONLY",tpar,3); tpar[2] = 0.4; tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ12; tpar[1] = kYMC1MIN*kZ12; gMC->Gsposp("CC2A", 1, "CM12",kXMC2A,kYMC2Am,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 2, "CM12",-kXMC2A,kYMC2Ap,kZMCp, 0, "ONLY", tpar, 3); // chamber type B tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ12; tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ12; const Float_t kXMC2B=kXMC1B*kZ12; const Float_t kYMC2Bp=kYMC1Bp*kZ12; const Float_t kYMC2Bm=kYMC1Bm*kZ12; gMC->Gsposp("CC2A", 3, "CM12",kXMC2B,kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 4, "CM12",-kXMC2B,kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 5, "CM12",kXMC2B,-kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 6, "CM12",-kXMC2B,-kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); // chamber type C (end of type B !!) tpar[0] = (kXMC1MAX/2)*kZ12; tpar[1] = (kYMC1MAX/2)*kZ12; const Float_t kXMC2C=kXMC1C*kZ12; const Float_t kYMC2Cp=kYMC1Cp*kZ12; const Float_t kYMC2Cm=kYMC1Cm*kZ12; gMC->Gsposp("CC2A", 7, "CM12",kXMC2C,kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 8, "CM12",-kXMC2C,kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 9, "CM12",kXMC2C,-kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 10, "CM12",-kXMC2C,-kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); // chamber type D, E and F (same size) tpar[0] = (kXMC1MAX/2.)*kZ12; tpar[1] = kYMC1MIN*kZ12; const Float_t kXMC2D=kXMC1D*kZ12; const Float_t kYMC2Dp=kYMC1Dp*kZ12; const Float_t kYMC2Dm=kYMC1Dm*kZ12; gMC->Gsposp("CC2A", 11, "CM12",kXMC2D,kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 12, "CM12",-kXMC2D,kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 13, "CM12",kXMC2D,-kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 14, "CM12",-kXMC2D,-kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); const Float_t kYMC2Ep=kYMC1Ep*kZ12; const Float_t kYMC2Em=kYMC1Em*kZ12; gMC->Gsposp("CC2A", 15, "CM12",kXMC2D,kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 16, "CM12",-kXMC2D,kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 17, "CM12",kXMC2D,-kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 18, "CM12",-kXMC2D,-kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); const Float_t kYMC2Fp=kYMC1Fp*kZ12; const Float_t kYMC2Fm=kYMC1Fm*kZ12; gMC->Gsposp("CC2A", 19, "CM12",kXMC2D,kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 20, "CM12",-kXMC2D,kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 21, "CM12",kXMC2D,-kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC2A", 22, "CM12",-kXMC2D,-kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); // Positioning second plane of station 1 in ALICE gMC->Gspos("CM12", 1, "ALIC", 0., 0., zpos2, 0, "ONLY"); // End of geometry definition for the second plane of station 1 // TRIGGER STATION 2 - TRIGGER STATION 2 - TRIGGER STATION 2 // 03/00 // zpos3 and zpos4 are now the middle of the first and second // plane of station 2 : // zpos3=(17075+16995)/2=17035 mm, thick/2=40 mm // zpos4=(17225+17145)/2=17185 mm, thick/2=40 mm // // zpos3m=16999 mm , zpos3p=17071 mm (middles of gas gaps) // zpos4m=17149 mm , zpos4p=17221 mm (middles of gas gaps) // rem : the total thickness accounts for 1 mm of al on both // side of the RPCs (see zpos3 and zpos4), as previously iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[12]; iChamber2 =(AliMUONChamber*) (*fChambers)[13]; Float_t zpos3=iChamber1->Z(); Float_t zpos4=iChamber2->Z(); // Mother volume definition tpar[0] = iChamber->RInner(); tpar[1] = iChamber->ROuter(); tpar[2] = 4.0; gMC->Gsvolu("CM21", "TUBE", idAir, tpar, 3); gMC->Gsvolu("CM22", "TUBE", idAir, tpar, 3); // Definition of the flange between the beam shielding and the RPC // ???? interface shielding tpar[0]= kRMIN2; tpar[1]= kRMAX2; tpar[2]= 4.0; gMC->Gsvolu("CF2A", "TUBE", idAlu1, tpar, 3); //Al gMC->Gspos("CF2A", 1, "CM21", 0., 0., 0., 0, "MANY"); gMC->Gspos("CF2A", 2, "CM22", 0., 0., 0., 0, "MANY"); // FIRST PLANE OF STATION 2 : proj ratio = zpos3/zpos1 const Float_t kZ13=zpos3/zpos1; // Definition of prototype for chambers in the first plane of station 2 tpar[0]= 0.; tpar[1]= 0.; tpar[2]= 0.; gMC->Gsvolu("CC3A", "BOX ", idAlu1, tpar, 0); //Al gMC->Gsvolu("CB3A", "BOX ", idtmed[1107], tpar, 0); //Bakelite gMC->Gsvolu("CG3A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer // chamber type A tpar[0] = -1.; tpar[1] = -1.; const Float_t kXMC3A=kXMC1A*kZ13; const Float_t kYMC3Am=0.; const Float_t kYMC3Ap=0.; tpar[2] = 0.1; gMC->Gsposp("CG3A", 1, "CB3A", 0., 0., 0., 0, "ONLY",tpar,3); tpar[2] = 0.3; gMC->Gsposp("CB3A", 1, "CC3A", 0., 0., 0., 0, "ONLY",tpar,3); tpar[2] = 0.4; tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ13; tpar[1] = kYMC1MIN*kZ13; gMC->Gsposp("CC3A", 1, "CM21",kXMC3A,kYMC3Am,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 2, "CM21",-kXMC3A,kYMC3Ap,kZMCp, 0, "ONLY", tpar, 3); // chamber type B tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ13; tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ13; const Float_t kXMC3B=kXMC1B*kZ13; const Float_t kYMC3Bp=kYMC1Bp*kZ13; const Float_t kYMC3Bm=kYMC1Bm*kZ13; gMC->Gsposp("CC3A", 3, "CM21",kXMC3B,kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 4, "CM21",-kXMC3B,kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 5, "CM21",kXMC3B,-kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 6, "CM21",-kXMC3B,-kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); // chamber type C (end of type B !!) tpar[0] = (kXMC1MAX/2)*kZ13; tpar[1] = (kYMC1MAX/2)*kZ13; const Float_t kXMC3C=kXMC1C*kZ13; const Float_t kYMC3Cp=kYMC1Cp*kZ13; const Float_t kYMC3Cm=kYMC1Cm*kZ13; gMC->Gsposp("CC3A", 7, "CM21",kXMC3C,kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 8, "CM21",-kXMC3C,kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 9, "CM21",kXMC3C,-kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 10, "CM21",-kXMC3C,-kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); // chamber type D, E and F (same size) tpar[0] = (kXMC1MAX/2.)*kZ13; tpar[1] = kYMC1MIN*kZ13; const Float_t kXMC3D=kXMC1D*kZ13; const Float_t kYMC3Dp=kYMC1Dp*kZ13; const Float_t kYMC3Dm=kYMC1Dm*kZ13; gMC->Gsposp("CC3A", 11, "CM21",kXMC3D,kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 12, "CM21",-kXMC3D,kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 13, "CM21",kXMC3D,-kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 14, "CM21",-kXMC3D,-kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); const Float_t kYMC3Ep=kYMC1Ep*kZ13; const Float_t kYMC3Em=kYMC1Em*kZ13; gMC->Gsposp("CC3A", 15, "CM21",kXMC3D,kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 16, "CM21",-kXMC3D,kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 17, "CM21",kXMC3D,-kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 18, "CM21",-kXMC3D,-kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); const Float_t kYMC3Fp=kYMC1Fp*kZ13; const Float_t kYMC3Fm=kYMC1Fm*kZ13; gMC->Gsposp("CC3A", 19, "CM21",kXMC3D,kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 20, "CM21",-kXMC3D,kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 21, "CM21",kXMC3D,-kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC3A", 22, "CM21",-kXMC3D,-kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); // Positioning first plane of station 2 in ALICE gMC->Gspos("CM21", 1, "ALIC", 0., 0., zpos3, 0, "ONLY"); // End of geometry definition for the first plane of station 2 // SECOND PLANE OF STATION 2 : proj ratio = zpos4/zpos1 const Float_t kZ14=zpos4/zpos1; // Definition of prototype for chambers in the second plane of station 2 tpar[0]= 0.; tpar[1]= 0.; tpar[2]= 0.; gMC->Gsvolu("CC4A", "BOX ", idAlu1, tpar, 0); //Al gMC->Gsvolu("CB4A", "BOX ", idtmed[1107], tpar, 0); //Bakelite gMC->Gsvolu("CG4A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer // chamber type A tpar[0] = -1.; tpar[1] = -1.; const Float_t kXMC4A=kXMC1A*kZ14; const Float_t kYMC4Am=0.; const Float_t kYMC4Ap=0.; tpar[2] = 0.1; gMC->Gsposp("CG4A", 1, "CB4A", 0., 0., 0., 0, "ONLY",tpar,3); tpar[2] = 0.3; gMC->Gsposp("CB4A", 1, "CC4A", 0., 0., 0., 0, "ONLY",tpar,3); tpar[2] = 0.4; tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ14; tpar[1] = kYMC1MIN*kZ14; gMC->Gsposp("CC4A", 1, "CM22",kXMC4A,kYMC4Am,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 2, "CM22",-kXMC4A,kYMC4Ap,kZMCp, 0, "ONLY", tpar, 3); // chamber type B tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ14; tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ14; const Float_t kXMC4B=kXMC1B*kZ14; const Float_t kYMC4Bp=kYMC1Bp*kZ14; const Float_t kYMC4Bm=kYMC1Bm*kZ14; gMC->Gsposp("CC4A", 3, "CM22",kXMC4B,kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 4, "CM22",-kXMC4B,kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 5, "CM22",kXMC4B,-kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 6, "CM22",-kXMC4B,-kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); // chamber type C (end of type B !!) tpar[0] =(kXMC1MAX/2)*kZ14; tpar[1] = (kYMC1MAX/2)*kZ14; const Float_t kXMC4C=kXMC1C*kZ14; const Float_t kYMC4Cp=kYMC1Cp*kZ14; const Float_t kYMC4Cm=kYMC1Cm*kZ14; gMC->Gsposp("CC4A", 7, "CM22",kXMC4C,kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 8, "CM22",-kXMC4C,kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 9, "CM22",kXMC4C,-kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 10, "CM22",-kXMC4C,-kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); // chamber type D, E and F (same size) tpar[0] = (kXMC1MAX/2.)*kZ14; tpar[1] = kYMC1MIN*kZ14; const Float_t kXMC4D=kXMC1D*kZ14; const Float_t kYMC4Dp=kYMC1Dp*kZ14; const Float_t kYMC4Dm=kYMC1Dm*kZ14; gMC->Gsposp("CC4A", 11, "CM22",kXMC4D,kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 12, "CM22",-kXMC4D,kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 13, "CM22",kXMC4D,-kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 14, "CM22",-kXMC4D,-kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); const Float_t kYMC4Ep=kYMC1Ep*kZ14; const Float_t kYMC4Em=kYMC1Em*kZ14; gMC->Gsposp("CC4A", 15, "CM22",kXMC4D,kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 16, "CM22",-kXMC4D,kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 17, "CM22",kXMC4D,-kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 18, "CM22",-kXMC4D,-kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); const Float_t kYMC4Fp=kYMC1Fp*kZ14; const Float_t kYMC4Fm=kYMC1Fm*kZ14; gMC->Gsposp("CC4A", 19, "CM22",kXMC4D,kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 20, "CM22",-kXMC4D,kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 21, "CM22",kXMC4D,-kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); gMC->Gsposp("CC4A", 22, "CM22",-kXMC4D,-kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); // Positioning second plane of station 2 in ALICE gMC->Gspos("CM22", 1, "ALIC", 0., 0., zpos4, 0, "ONLY"); // End of geometry definition for the second plane of station 2 // End of trigger geometry definition } //___________________________________________ void AliMUONv1::CreateMaterials() { // *** DEFINITION OF AVAILABLE MUON MATERIALS *** // // Ar-CO2 gas Float_t ag1[3] = { 39.95,12.01,16. }; Float_t zg1[3] = { 18.,6.,8. }; Float_t wg1[3] = { .8,.0667,.13333 }; Float_t dg1 = .001821; // // Ar-buthane-freon gas -- trigger chambers Float_t atr1[4] = { 39.95,12.01,1.01,19. }; Float_t ztr1[4] = { 18.,6.,1.,9. }; Float_t wtr1[4] = { .56,.1262857,.2857143,.028 }; Float_t dtr1 = .002599; // // Ar-CO2 gas Float_t agas[3] = { 39.95,12.01,16. }; Float_t zgas[3] = { 18.,6.,8. }; Float_t wgas[3] = { .74,.086684,.173316 }; Float_t dgas = .0018327; // // Ar-Isobutane gas (80%+20%) -- tracking Float_t ag[3] = { 39.95,12.01,1.01 }; Float_t zg[3] = { 18.,6.,1. }; Float_t wg[3] = { .8,.057,.143 }; Float_t dg = .0019596; // // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 }; Float_t ztrig[5] = { 18.,6.,1.,9.,16. }; Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 }; Float_t dtrig = .0031463; // // bakelite Float_t abak[3] = {12.01 , 1.01 , 16.}; Float_t zbak[3] = {6. , 1. , 8.}; Float_t wbak[3] = {6. , 6. , 1.}; Float_t dbak = 1.4; Float_t epsil, stmin, deemax, tmaxfd, stemax; Int_t iSXFLD = gAlice->Field()->Integ(); Float_t sXMGMX = gAlice->Field()->Max(); // // --- Define the various materials for GEANT --- AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500); AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak); AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg); AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig); AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1); AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1); AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas); // materials for slat: // Sensitive area: gas (already defined) // PCB: copper // insulating material and frame: vetronite // walls: carbon, rohacell, carbon Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.}; Float_t zglass[5]={ 6., 14., 8., 5., 11.}; Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01}; Float_t dglass=1.74; // rohacell: C9 H13 N1 O2 Float_t arohac[4] = {12.01, 1.01, 14.010, 16.}; Float_t zrohac[4] = { 6., 1., 7., 8.}; Float_t wrohac[4] = { 9., 13., 1., 2.}; Float_t drohac = 0.03; AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.); AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass); AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9); AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac); epsil = .001; // Tracking precision, stemax = -1.; // Maximum displacement for multiple scat tmaxfd = -20.; // Maximum angle due to field deflection deemax = -.3; // Maximum fractional energy loss, DLS stmin = -.8; // // Air AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); // // Aluminum AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); // // Ar-isoC4H10 gas AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, fMaxDestepGas, epsil, stmin); // // Ar-Isobuthane-Forane-SF6 gas AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, fMaxDestepAlu, epsil, stmin); // tracking media for slats: check the parameters!! AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin); } //___________________________________________ void AliMUONv1::Init() { // // Initialize Tracking Chambers // printf("\n\n\n Start Init for version 1 - CPC chamber type\n\n\n"); Int_t i; for (i=0; iInit(); } // // Set the chamber (sensitive region) GEANT identifier AliMC* gMC = AliMC::GetMC(); ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("C01G")); ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("C02G")); ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("C03G")); ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("C04G")); ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G")); ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G")); ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G")); ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G")); ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G")); ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G")); ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("CG1A")); ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("CG2A")); ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("CG3A")); ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("CG4A")); printf("\n\n\n Finished Init for version 0 - CPC chamber type\n\n\n"); //cp printf("\n\n\n Start Init for Trigger Circuits\n\n\n"); for (i=0; iInit(i); } printf(" Finished Init for Trigger Circuits\n\n\n"); //cp } //___________________________________________ void AliMUONv1::StepManager() { Int_t copy, id; static Int_t idvol; static Int_t vol[2]; Int_t ipart; TLorentzVector pos; TLorentzVector mom; Float_t theta,phi; Float_t destep, step; static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength; const Float_t kBig=1.e10; // modifs perso static Float_t hits[15]; TClonesArray &lhits = *fHits; // // Set maximum step size for gas // numed=gMC->GetMedium(); // // Only charged tracks if( !(gMC->TrackCharge()) ) return; // // Only gas gap inside chamber // Tag chambers and record hits when track enters idvol=-1; id=gMC->CurrentVolID(copy); for (Int_t i=1; i<=AliMUONConstants::NCh(); i++) { if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()){ vol[0]=i; idvol=i-1; } } if (idvol == -1) return; // // Get current particle id (ipart), track position (pos) and momentum (mom) gMC->TrackPosition(pos); gMC->TrackMomentum(mom); ipart = gMC->TrackPid(); //Int_t ipart1 = gMC->IdFromPDG(ipart); //printf("ich, ipart %d %d \n",vol[0],ipart1); // // momentum loss and steplength in last step destep = gMC->Edep(); step = gMC->TrackStep(); // // record hits when track enters ... if( gMC->IsTrackEntering()) { gMC->SetMaxStep(fMaxStepGas); Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; Double_t rt = TMath::Sqrt(tc); Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]); Double_t tx=mom[0]/pmom; Double_t ty=mom[1]/pmom; Double_t tz=mom[2]/pmom; Double_t s=((AliMUONChamber*)(*fChambers)[idvol]) ->ResponseModel() ->Pitch()/tz; theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; hits[0] = Float_t(ipart); // Geant3 particle type hits[1] = pos[0]+s*tx; // X-position for hit hits[2] = pos[1]+s*ty; // Y-position for hit hits[3] = pos[2]+s*tz; // Z-position for hit hits[4] = theta; // theta angle of incidence hits[5] = phi; // phi angle of incidence hits[8] = (Float_t) fNPadHits; // first padhit hits[9] = -1; // last pad hit // modifs perso hits[10] = mom[3]; // hit momentum P hits[11] = mom[0]; // Px/P hits[12] = mom[1]; // Py/P hits[13] = mom[2]; // Pz/P // fin modifs perso tof=gMC->TrackTime(); hits[14] = tof; // Time of flight // phi angle of incidence tlength = 0; eloss = 0; eloss2 = 0; xhit = pos[0]; yhit = pos[1]; zhit = pos[2]; // Only if not trigger chamber if(idvolSigGenInit(pos[0], pos[1], pos[2]); } else { //geant3->Gpcxyz(); //printf("In the Trigger Chamber #%d\n",idvol-9); } } eloss2+=destep; // // Calculate the charge induced on a pad (disintegration) in case // // Mip left chamber ... if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){ gMC->SetMaxStep(kBig); eloss += destep; tlength += step; Float_t x0,y0,z0; Float_t localPos[3]; Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; gMC->Gmtod(globalPos,localPos,1); if(idvol0) MakePadHits(x0,y0,z0,eloss,tof,idvol); hits[6]=tlength; hits[7]=eloss2; if (fNPadHits > (Int_t)hits[8]) { hits[8]= hits[8]+1; hits[9]= (Float_t) fNPadHits; } new(lhits[fNhits++]) AliMUONHit(fIshunt,gAlice->CurrentTrack(),vol,hits); eloss = 0; // // Check additional signal generation conditions // defined by the segmentation // model (boundary crossing conditions) // only for tracking chambers } else if ((idvol < AliMUONConstants::NTrackingCh()) && ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2])) { ((AliMUONChamber*) (*fChambers)[idvol]) ->SigGenInit(pos[0], pos[1], pos[2]); Float_t localPos[3]; Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; gMC->Gmtod(globalPos,localPos,1); if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh()) MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol); xhit = pos[0]; yhit = pos[1]; zhit = pos[2]; eloss = destep; tlength += step ; // // nothing special happened, add up energy loss } else { eloss += destep; tlength += step ; } }