/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //_________________________________________________________________________ // Base Class for PHOS description: // PHOS consists of a PbWO4 calorimeter (EMCA) and a gazeous charged // particles detector (CPV or PPSD). // The only provided method here is CreateMaterials, // which defines the materials common to all PHOS versions. // //*-- Author: Laurent Aphecetche & Yves Schutz (SUBATECH) ////////////////////////////////////////////////////////////////////////////// // --- ROOT system --- class TFile; #include #include #include #include #include #include // --- Standard library --- // --- AliRoot header files --- #include "AliMagF.h" #include "AliPHOS.h" #include "AliPHOSGetter.h" #include "AliRun.h" #include "AliPHOSDigitizer.h" #include "AliPHOSSDigitizer.h" #include "AliPHOSDigit.h" #include "AliAltroBuffer.h" #include "AliLog.h" ClassImp(AliPHOS) Double_t AliPHOS::fgCapa = 1.; // 1pF Int_t AliPHOS::fgOrder = 2 ; Double_t AliPHOS::fgTimeMax = 2.56E-5 ; // each sample is over 100 ns fTimeMax/fTimeBins Double_t AliPHOS::fgTimePeak = 4.1E-6 ; // 4 micro seconds Double_t AliPHOS::fgTimeTrigger = 100E-9 ; // 100ns, just for a reference //____________________________________________________________________________ AliPHOS:: AliPHOS() : AliDetector() { // Default ctor fName = "PHOS" ; fQATask = 0; fTreeQA = 0; fDebug = 0; } //____________________________________________________________________________ AliPHOS::AliPHOS(const char* name, const char* title): AliDetector(name, title) { // ctor : title is used to identify the layout fQATask = 0 ; fTreeQA = 0 ; fDebug = 0 ; fHighCharge = 8.2 ; // adjusted for a high gain range of 5.12 GeV (10 bits) fHighGain = 6.64 ; fHighLowGainFactor = 16. ; // adjusted for a low gain range of 82 GeV (10 bits) fLowGainOffset = GetGeometry()->GetNModules() + 1 ; // offset added to the module id to distinguish high and low gain data } //____________________________________________________________________________ AliPHOS::~AliPHOS() { } //____________________________________________________________________________ void AliPHOS::Copy(AliPHOS & phos) { // copy method to be used byy the cpy ctor TObject::Copy(phos) ; // fQATask = AliPHOSQAChecker::Copy(*(phos.fQATask)) ; phos.fTreeQA = fTreeQA->CloneTree() ; phos.fHighCharge = fHighCharge ; phos.fHighGain = fHighGain ; phos.fHighLowGainFactor = fHighLowGainFactor ; phos.fLowGainOffset = fLowGainOffset; } //____________________________________________________________________________ AliDigitizer* AliPHOS::CreateDigitizer(AliRunDigitizer* manager) const { return new AliPHOSDigitizer(manager); } //____________________________________________________________________________ void AliPHOS::CreateMaterials() { // Definitions of materials to build PHOS and associated tracking media. // media number in idtmed are 699 to 798. // --- The PbWO4 crystals --- Float_t aX[3] = {207.19, 183.85, 16.0} ; Float_t zX[3] = {82.0, 74.0, 8.0} ; Float_t wX[3] = {1.0, 1.0, 4.0} ; Float_t dX = 8.28 ; AliMixture(0, "PbWO4$", aX, zX, dX, -3, wX) ; // --- The polysterene scintillator (CH) --- Float_t aP[2] = {12.011, 1.00794} ; Float_t zP[2] = {6.0, 1.0} ; Float_t wP[2] = {1.0, 1.0} ; Float_t dP = 1.032 ; AliMixture(1, "Polystyrene$", aP, zP, dP, -2, wP) ; // --- Aluminium --- AliMaterial(2, "Al$", 26.98, 13., 2.7, 8.9, 999., 0, 0) ; // --- Absorption length is ignored ^ // --- Tyvek (CnH2n) --- Float_t aT[2] = {12.011, 1.00794} ; Float_t zT[2] = {6.0, 1.0} ; Float_t wT[2] = {1.0, 2.0} ; Float_t dT = 0.331 ; AliMixture(3, "Tyvek$", aT, zT, dT, -2, wT) ; // --- Polystyrene foam --- Float_t aF[2] = {12.011, 1.00794} ; Float_t zF[2] = {6.0, 1.0} ; Float_t wF[2] = {1.0, 1.0} ; Float_t dF = 0.12 ; AliMixture(4, "Foam$", aF, zF, dF, -2, wF) ; // --- Titanium --- Float_t aTIT[3] = {47.88, 26.98, 54.94} ; Float_t zTIT[3] = {22.0, 13.0, 25.0} ; Float_t wTIT[3] = {69.0, 6.0, 1.0} ; Float_t dTIT = 4.5 ; AliMixture(5, "Titanium$", aTIT, zTIT, dTIT, -3, wTIT); // --- Silicon --- AliMaterial(6, "Si$", 28.0855, 14., 2.33, 9.36, 42.3, 0, 0) ; // --- Foam thermo insulation --- Float_t aTI[2] = {12.011, 1.00794} ; Float_t zTI[2] = {6.0, 1.0} ; Float_t wTI[2] = {1.0, 1.0} ; Float_t dTI = 0.04 ; AliMixture(7, "Thermo Insul.$", aTI, zTI, dTI, -2, wTI) ; // --- Textolitn --- Float_t aTX[4] = {16.0, 28.09, 12.011, 1.00794} ; Float_t zTX[4] = {8.0, 14.0, 6.0, 1.0} ; Float_t wTX[4] = {292.0, 68.0, 462.0, 736.0} ; Float_t dTX = 1.75 ; AliMixture(8, "Textolit$", aTX, zTX, dTX, -4, wTX) ; //--- FR4 --- Float_t aFR[3] = {28.0855, 15.9994, 17.749} ; Float_t zFR[3] = {14., 8., 8.875} ; Float_t wFR[3] = {.28, .32, .4} ; Float_t dFR = 1.8 ; AliMixture(9, "FR4$", aFR, zFR, dFR, -3, wFR) ; // --- The Composite Material for micromegas (so far polyetylene) --- Float_t aCM[2] = {12.01, 1.} ; Float_t zCM[2] = {6., 1.} ; Float_t wCM[2] = {1., 2.} ; Float_t dCM = 0.935 ; AliMixture(10, "Compo Mat$", aCM, zCM, dCM, -2, wCM) ; // --- Copper --- AliMaterial(11, "Cu$", 63.546, 29, 8.96, 1.43, 14.8, 0, 0) ; // --- G10 : Printed Circuit material --- Float_t aG10[4] = { 12., 1., 16., 28.} ; Float_t zG10[4] = { 6., 1., 8., 14.} ; Float_t wG10[4] = { .259, .288, .248, .205} ; Float_t dG10 = 1.7 ; AliMixture(12, "G10$", aG10, zG10, dG10, -4, wG10); // --- Lead --- AliMaterial(13, "Pb$", 207.2, 82, 11.35, 0.56, 0., 0, 0) ; // --- The gas mixture --- // Co2 Float_t aCO[2] = {12.0, 16.0} ; Float_t zCO[2] = {6.0, 8.0} ; Float_t wCO[2] = {1.0, 2.0} ; Float_t dCO = 0.001977 ; AliMixture(14, "CO2$", aCO, zCO, dCO, -2, wCO); // Ar Float_t dAr = 0.001782 ; AliMaterial(15, "Ar$", 39.948, 18.0, dAr, 14.0, 0., 0, 0) ; // ArCo2 Char_t namate[21]=""; Float_t aGM[2] ; Float_t zGM[2] ; Float_t wGM[2] ; Float_t dGM ; Float_t absL, radL, density ; Float_t buf[1] ; Int_t nbuf ; gMC->Gfmate((*fIdmate)[15], namate, aGM[0], zGM[0], density, radL, absL, buf, nbuf) ; // Get properties of Ar gMC->Gfmate((*fIdmate)[14], namate, aGM[1], zGM[1], density, radL, absL, buf, nbuf) ; // Get properties of CO2 // Create gas mixture Float_t arContent = 0.80 ; // Ar-content of the Ar/CO2-mixture (80% / 20%) wGM[0] = arContent; wGM[1] = 1. - arContent ; dGM = wGM[0] * dAr + wGM[1] * dCO; AliMixture(16, "ArCO2$", aGM, zGM, dGM, 2, wGM) ; // --- Stainless steel (let it be pure iron) --- AliMaterial(17, "Steel$", 55.845, 26, 7.87, 1.76, 0., 0, 0) ; // --- Fiberglass --- Float_t aFG[4] = {16.0, 28.09, 12.011, 1.00794} ; Float_t zFG[4] = {8.0, 14.0, 6.0, 1.0} ; Float_t wFG[4] = {292.0, 68.0, 462.0, 736.0} ; Float_t dFG = 1.9 ; AliMixture(18, "Fibergla$", aFG, zFG, dFG, -4, wFG) ; // --- Cables in Air box --- // SERVICES Float_t aCA[4] = { 1.,12.,55.8,63.5 }; Float_t zCA[4] = { 1.,6.,26.,29. }; Float_t wCA[4] = { .014,.086,.42,.48 }; Float_t dCA = 0.8 ; //this density is raw estimation, if you know better - correct AliMixture(19, "Cables $", aCA, zCA, dCA, -4, wCA) ; // --- Air --- Float_t aAir[4]={12.0107,14.0067,15.9994,39.948}; Float_t zAir[4]={6.,7.,8.,18.}; Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827}; Float_t dAir = 1.20479E-3; AliMixture(99, "Air$", aAir, zAir, dAir, 4, wAir) ; // DEFINITION OF THE TRACKING MEDIA // for PHOS: idtmed[699->798] equivalent to fIdtmed[0->100] Int_t * idtmed = fIdtmed->GetArray() - 699 ; Int_t isxfld = gAlice->Field()->Integ() ; Float_t sxmgmx = gAlice->Field()->Max() ; // The scintillator of the calorimeter made of PBW04 -> idtmed[699] AliMedium(0, "PHOS Xtal $", 0, 1, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.1, 0.1, 0, 0) ; // The scintillator of the CPV made of Polystyrene scintillator -> idtmed[700] AliMedium(1, "CPV scint. $", 1, 1, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.1, 0.1, 0, 0) ; // Various Aluminium parts made of Al -> idtmed[701] AliMedium(2, "Al parts $", 2, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.001, 0.001, 0, 0) ; // The Tywek which wraps the calorimeter crystals -> idtmed[702] AliMedium(3, "Tyvek wrapper$", 3, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.001, 0.001, 0, 0) ; // The Polystyrene foam around the calorimeter module -> idtmed[703] AliMedium(4, "Polyst. foam $", 4, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.1, 0.1, 0, 0) ; // The Titanium around the calorimeter crystal -> idtmed[704] AliMedium(5, "Titan. cover $", 5, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.0001, 0.0001, 0, 0) ; // The Silicon of the pin diode to read out the calorimeter crystal -> idtmed[705] AliMedium(6, "Si PIN $", 6, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.01, 0.01, 0, 0) ; // The thermo insulating material of the box which contains the calorimeter module -> idtmed[706] AliMedium(7, "Thermo Insul.$", 7, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.1, 0.1, 0, 0) ; // The Textolit which makes up the box which contains the calorimeter module -> idtmed[707] AliMedium(8, "Textolit $", 8, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.1, 0.1, 0, 0) ; // FR4: The Plastic which makes up the frame of micromegas -> idtmed[708] AliMedium(9, "FR4 $", 9, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.1, 0.0001, 0, 0) ; // The Composite Material for micromegas -> idtmed[709] AliMedium(10, "CompoMat $", 10, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.1, 0.1, 0, 0) ; // Copper -> idtmed[710] AliMedium(11, "Copper $", 11, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.1, 0.0001, 0, 0) ; // G10: Printed Circuit material -> idtmed[711] AliMedium(12, "G10 $", 12, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.1, 0.01, 0, 0) ; // The Lead -> idtmed[712] AliMedium(13, "Lead $", 13, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.1, 0.1, 0, 0) ; // The gas mixture: ArCo2 -> idtmed[715] AliMedium(16, "ArCo2 $", 16, 1, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.1, 0.01, 0, 0) ; // Stainless steel -> idtmed[716] AliMedium(17, "Steel $", 17, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.1, 0.0001, 0, 0) ; // Fibergalss -> idtmed[717] AliMedium(18, "Fiberglass$", 18, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.1, 0.1, 0, 0) ; // Cables in air -> idtmed[718] AliMedium(19, "Cables $", 19, 0, isxfld, sxmgmx, 10.0, 0.1, 0.1, 0.1, 0.1, 0, 0) ; // Air -> idtmed[798] AliMedium(99, "Air $", 99, 0, isxfld, sxmgmx, 10.0, 1.0, 0.1, 0.1, 10.0, 0, 0) ; // --- Set decent energy thresholds for gamma and electron tracking // Tracking threshold for photons and electrons in the scintillator crystal gMC->Gstpar(idtmed[699], "CUTGAM",0.5E-4) ; gMC->Gstpar(idtmed[699], "CUTELE",1.0E-4) ; // --- Generate explicitly delta rays in the titan cover --- gMC->Gstpar(idtmed[704], "LOSS",3.) ; gMC->Gstpar(idtmed[704], "DRAY",1.) ; // --- and in aluminium parts --- gMC->Gstpar(idtmed[701], "LOSS",3.) ; gMC->Gstpar(idtmed[701], "DRAY",1.) ; // --- and in PIN diode gMC->Gstpar(idtmed[705], "LOSS",3) ; gMC->Gstpar(idtmed[705], "DRAY",1) ; // --- and in the passive convertor gMC->Gstpar(idtmed[712], "LOSS",3) ; gMC->Gstpar(idtmed[712], "DRAY",1) ; // Tracking threshold for photons and electrons in the gas ArC02 gMC->Gstpar(idtmed[715], "CUTGAM",1.E-5) ; gMC->Gstpar(idtmed[715], "CUTELE",1.E-5) ; gMC->Gstpar(idtmed[715], "CUTNEU",1.E-5) ; gMC->Gstpar(idtmed[715], "CUTHAD",1.E-5) ; gMC->Gstpar(idtmed[715], "CUTMUO",1.E-5) ; gMC->Gstpar(idtmed[715], "BCUTE",1.E-5) ; gMC->Gstpar(idtmed[715], "BCUTM",1.E-5) ; gMC->Gstpar(idtmed[715], "DCUTE",1.E-5) ; gMC->Gstpar(idtmed[715], "DCUTM",1.E-5) ; gMC->Gstpar(idtmed[715], "PPCUTM",1.E-5) ; gMC->Gstpar(idtmed[715], "LOSS",2.) ; gMC->Gstpar(idtmed[715], "DRAY",0.) ; gMC->Gstpar(idtmed[715], "STRA",2.) ; } //____________________________________________________________________________ void AliPHOS::Digits2Raw() { // convert digits of the current event to raw data AliPHOSLoader * loader = dynamic_cast(fLoader) ; // get the digits loader->LoadDigits(); TClonesArray* digits = loader->Digits() ; if (!digits) { AliError(Form("No digits found !")); return; } // get the digitizer loader->LoadDigitizer(); AliPHOSDigitizer * digitizer = dynamic_cast(loader->Digitizer()) ; // get the geometry AliPHOSGeometry* geom = GetGeometry(); if (!geom) { AliError(Form("No geometry found !")); return; } // some digitization constants const Int_t kDDLOffset = 0x600; // assigned to PHOS const Int_t kThreshold = 1; // skip digits below this threshold AliAltroBuffer* buffer = NULL; Int_t prevDDL = -1; Int_t adcValuesLow[fkTimeBins]; Int_t adcValuesHigh[fkTimeBins]; // loop over digits (assume ordered digits) for (Int_t iDigit = 0; iDigit < digits->GetEntries(); iDigit++) { AliPHOSDigit* digit = dynamic_cast(digits->At(iDigit)) ; if (digit->GetAmp() < kThreshold) continue; Int_t relId[4]; geom->AbsToRelNumbering(digit->GetId(), relId); Int_t module = relId[0]; // Begin FIXME if (relId[1] != 0) continue; // ignore digits from CPV // End FIXME // PHOS EMCA has 4 DDL per module. Splitting is done based on the row number Int_t iDDL = 4 * (module - 1) + (4 * (relId[2] - 1)) / geom->GetNPhi(); // new DDL if (iDDL != prevDDL) { // write real header and close previous file if (buffer) { buffer->Flush(); buffer->WriteDataHeader(kFALSE, kFALSE); delete buffer; } // open new file and write dummy header TString fileName("PHOS_") ; fileName += (iDDL + kDDLOffset) ; fileName += ".ddl" ; buffer = new AliAltroBuffer(fileName.Data(), 1); buffer->WriteDataHeader(kTRUE, kFALSE); //Dummy; prevDDL = iDDL; } // out of time range signal (?) if (digit->GetTimeR() > GetRawFormatTimeMax() ) { buffer->FillBuffer(digit->GetAmp()); buffer->FillBuffer(GetRawFormatTimeBins() ); // time bin buffer->FillBuffer(3); // bunch length buffer->WriteTrailer(3, relId[3], relId[2], module); // trailer // calculate the time response function } else { Double_t energy = 0 ; if ( digit->GetId() <= geom->GetNModules() * geom->GetNCristalsInModule()) energy = digit->GetAmp() * digitizer->GetEMCchannel() + digitizer->GetEMCpedestal() ; else energy = digit->GetAmp() * digitizer->GetCPVchannel() + digitizer->GetCPVpedestal() ; Bool_t lowgain = RawSampledResponse(digit->GetTimeR(), energy, adcValuesHigh, adcValuesLow) ; if (lowgain) buffer->WriteChannel(relId[3], relId[2], module + fLowGainOffset, GetRawFormatTimeBins(), adcValuesLow, kThreshold); else buffer->WriteChannel(relId[3], relId[2], module, GetRawFormatTimeBins(), adcValuesHigh, kThreshold); } } // write real header and close last file if (buffer) { buffer->Flush(); buffer->WriteDataHeader(kFALSE, kFALSE); delete buffer; } loader->UnloadDigits(); } //____________________________________________________________________________ void AliPHOS::Hits2SDigits() { // create summable digits AliPHOSSDigitizer* phosDigitizer = new AliPHOSSDigitizer(fLoader->GetRunLoader()->GetFileName().Data()) ; phosDigitizer->SetEventRange(0, -1) ; // do all the events phosDigitizer->ExecuteTask("all") ; } //____________________________________________________________________________ AliLoader* AliPHOS::MakeLoader(const char* topfoldername) { //different behaviour than standard (singleton getter) // --> to be discussed and made eventually coherent fLoader = new AliPHOSLoader(GetName(),topfoldername); return fLoader; } //__________________________________________________________________ Double_t AliPHOS::RawResponseFunction(Double_t *x, Double_t *par) { // Shape of the electronics raw reponse: // It is a semi-gaussian, 2nd order Gamma function of the general form // v(t) = n**n * Q * A**n / C *(t/tp)**n * exp(-n * t/tp) with // tp : peaking time par[0] // n : order of the function // C : integrating capacitor in the preamplifier // A : open loop gain of the preamplifier // Q : the total APD charge to be measured Q = C * energy Double_t signal ; Double_t xx = x[0] - ( fgTimeTrigger + par[3] ) ; if (xx < 0 || xx > fgTimeMax) signal = 0. ; else { Double_t fac = par[0] * TMath::Power(fgOrder, fgOrder) * TMath::Power(par[1], fgOrder) / fgCapa ; signal = fac * par[2] * TMath::Power(xx / fgTimePeak, fgOrder) * TMath::Exp(-fgOrder * (xx / fgTimePeak)) ; } return signal ; } //__________________________________________________________________ Double_t AliPHOS::RawResponseFunctionMax(Double_t charge, Double_t gain) { return ( charge * TMath::Power(fgOrder, fgOrder) * TMath::Power(gain, fgOrder) / ( fgCapa * TMath::Exp(fgOrder) ) ); } //__________________________________________________________________ Bool_t AliPHOS::RawSampledResponse(const Double_t dtime, const Double_t damp, Int_t * adcH, Int_t * adcL) const { // for a start time dtime and an amplitude damp given by digit, // calculates the raw sampled response AliPHOS::RawResponseFunction const Int_t kRawSignalOverflow = 0x3FF ; Bool_t lowGain = kFALSE ; TF1 signalF("signal", RawResponseFunction, 0, GetRawFormatTimeMax(), 4); for (Int_t iTime = 0; iTime < GetRawFormatTimeBins(); iTime++) { signalF.SetParameter(0, GetRawFormatHighCharge() ) ; signalF.SetParameter(1, GetRawFormatHighGain() ) ; signalF.SetParameter(2, damp) ; signalF.SetParameter(3, dtime) ; Double_t time = iTime * GetRawFormatTimeMax() / GetRawFormatTimeBins() ; Double_t signal = signalF.Eval(time) ; if ( static_cast(signal+0.5) > kRawSignalOverflow ){ // larger than 10 bits signal = kRawSignalOverflow ; lowGain = kTRUE ; } adcH[iTime] = static_cast(signal + 0.5) ; signalF.SetParameter(0, GetRawFormatLowCharge() ) ; signalF.SetParameter(1, GetRawFormatLowGain() ) ; signal = signalF.Eval(time) ; if ( static_cast(signal+0.5) > kRawSignalOverflow) // larger than 10 bits signal = kRawSignalOverflow ; adcL[iTime] = static_cast(0.5 + signal ) ; } return lowGain ; } //____________________________________________________________________________ void AliPHOS::SetTreeAddress() { // Links Hits in the Tree to Hits array TBranch *branch; char branchname[20]; sprintf(branchname,"%s",GetName()); // Branch address for hit tree TTree *treeH = TreeH(); if (treeH) { branch = treeH->GetBranch(branchname); if (branch) { if (fHits == 0x0) fHits= new TClonesArray("AliPHOSHit",1000); //AliInfo(Form("<%s> Setting Hits Address",GetName())); branch->SetAddress(&fHits); } } } //____________________________________________________________________________ void AliPHOS::WriteQA() { // Make TreeQA in the output file. if(fTreeQA == 0) fTreeQA = new TTree("TreeQA", "QA Alarms") ; // Create Alarms branches Int_t bufferSize = 32000 ; Int_t splitlevel = 0 ; TFolder* topfold = GetLoader()->GetTopFolder(); //get top aliroot folder; skowron TString phosqafn(AliConfig::Instance()->GetQAFolderName()+"/"); //get name of QAaut folder relative to top event; skowron phosqafn+=GetName(); //hard wired string!!! add the detector name to the pathname; skowron TFolder * alarmsF = (TFolder*)topfold->FindObjectAny(phosqafn); //get the folder if (alarmsF == 0x0) { AliError(Form("Can not find folder with qa alarms")); return; } TString branchName(alarmsF->GetName()); TBranch * alarmsBranch = fTreeQA->Branch(branchName,"TFolder", &alarmsF, bufferSize, splitlevel); TString branchTitle = branchName + " QA alarms" ; alarmsBranch->SetTitle(branchTitle); alarmsBranch->Fill() ; //fTreeQA->Fill() ; }