/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /* History of cvs commits: * * $Log: AliPHOSClusterizerv1.cxx,v $ * Revision 1.118 2007/12/11 21:23:26 kharlov * Added possibility to swith off unfolding * * Revision 1.117 2007/10/18 08:42:05 kharlov * Bad channels cleaned before clusterization * * Revision 1.116 2007/10/01 20:24:08 kharlov * Memory leaks fixed * * Revision 1.115 2007/09/26 14:22:17 cvetan * Important changes to the reconstructor classes. Complete elimination of the run-loaders, which are now steered only from AliReconstruction. Removal of the corresponding Reconstruct() and FillESD() methods. * * Revision 1.114 2007/09/06 16:06:44 kharlov * Absence of sorting results in loose of all unfolded clusters * * Revision 1.113 2007/08/28 12:55:07 policheh * Loaders removed from the reconstruction code (C.Cheshkov) * * Revision 1.112 2007/08/22 09:20:50 hristov * Updated QA classes (Yves) * * Revision 1.111 2007/08/08 12:11:28 kharlov * Protection against uninitialized fQADM * * Revision 1.110 2007/08/07 14:16:00 kharlov * Quality assurance added (Yves Schutz) * * Revision 1.109 2007/07/24 17:20:35 policheh * Usage of RecoParam objects instead of hardcoded parameters in reconstruction. * (See $ALICE_ROOT/PHOS/macros/BeamTest2006/RawReconstruction.C). * * Revision 1.108 2007/06/18 07:00:51 kharlov * Bug fix for attempt to use AliPHOSEmcRecPoint after its deletion * * Revision 1.107 2007/05/25 14:12:26 policheh * Local to tracking CS transformation added for CPV rec. points * * Revision 1.106 2007/05/24 13:01:22 policheh * Local to tracking CS transformation invoked for each EMC rec.point * * Revision 1.105 2007/05/02 13:41:22 kharlov * Mode protection against absence of calib.data from AliPHOSCalibData to AliPHOSClusterizerv1::GetCalibrationParameters() * * Revision 1.104 2007/04/27 16:55:53 kharlov * Calibration stops if PHOS CDB objects do not exist * * Revision 1.103 2007/04/11 11:55:45 policheh * SetDistancesToBadChannels() added. * * Revision 1.102 2007/03/28 19:18:15 kharlov * RecPoints recalculation in TSM removed * * Revision 1.101 2007/03/06 06:51:27 kharlov * Calculation of cluster properties dep. on vertex posponed to TrackSegmentMaker * * Revision 1.100 2007/01/10 11:07:26 kharlov * Raw digits writing to file (B.Polichtchouk) * * Revision 1.99 2006/11/07 16:49:51 kharlov * Corrections for next event switch in case of raw data (B.Polichtchouk) * * Revision 1.98 2006/10/27 17:14:27 kharlov * Introduce AliDebug and AliLog (B.Polichtchouk) * * Revision 1.97 2006/08/29 11:41:19 kharlov * Missing implementation of ctors and = operator are added * * Revision 1.96 2006/08/25 16:56:30 kharlov * Compliance with Effective C++ * * Revision 1.95 2006/08/11 12:36:26 cvetan * Update of the PHOS code needed in order to read and reconstruct the beam test raw data (i.e. without an existing galice.root) * * Revision 1.94 2006/08/07 12:27:49 hristov * Removing obsolete code which affected the event numbering scheme * * Revision 1.93 2006/08/01 12:20:17 cvetan * 1. Adding a possibility to read and reconstruct an old rcu formatted raw data. This is controlled by an option of AliReconstruction and AliPHOSReconstructor. 2. In case of raw data processing (without galice.root) create the default AliPHOSGeometry object. Most likely this should be moved to the CDB * * Revision 1.92 2006/04/29 20:26:46 hristov * Separate EMC and CPV calibration (Yu.Kharlov) * * Revision 1.91 2006/04/22 10:30:17 hristov * Add fEnergy to AliPHOSDigit and operate with EMC amplitude in energy units (Yu.Kharlov) * * Revision 1.90 2006/04/11 15:22:59 hristov * run number in query set to -1: forces AliCDBManager to use its run number (A.Colla) * * Revision 1.89 2006/03/13 14:05:42 kharlov * Calibration objects for EMC and CPV * * Revision 1.88 2006/01/11 08:54:52 hristov * Additional protection in case no calibration entry was found * * Revision 1.87 2005/11/22 08:46:43 kharlov * Updated to new CDB (Boris Polichtchouk) * * Revision 1.86 2005/11/14 21:52:43 hristov * Coding conventions * * Revision 1.85 2005/09/27 16:08:08 hristov * New version of CDB storage framework (A.Colla) * * Revision 1.84 2005/09/21 10:02:47 kharlov * Reading calibration from CDB (Boris Polichtchouk) * * Revision 1.82 2005/09/02 15:43:13 kharlov * Add comments in GetCalibrationParameters and Calibrate * * Revision 1.81 2005/09/02 14:32:07 kharlov * Calibration of raw data * * Revision 1.80 2005/08/24 15:31:36 kharlov * Setting raw digits flag * * Revision 1.79 2005/07/25 15:53:53 kharlov * Read raw data * * Revision 1.78 2005/05/28 14:19:04 schutz * Compilation warnings fixed by T.P. * */ //*-- Author: Yves Schutz (SUBATECH) & Dmitri Peressounko (SUBATECH & Kurchatov Institute) ////////////////////////////////////////////////////////////////////////////// // Clusterization class. Performs clusterization (collects neighbouring active cells) and // unfolds the clusters having several local maxima. // Results are stored in TreeR#, branches PHOSEmcRP (EMC recPoints), // PHOSCpvRP (CPV RecPoints) and AliPHOSClusterizer (Clusterizer with all // parameters including input digits branch title, thresholds etc.) // This TTask is normally called from Reconstructioner, but can as well be used in // standalone mode. // Use Case: // root [0] AliPHOSClusterizerv1 * cl = new AliPHOSClusterizerv1() // root [1] cl->Digits2Clusters(digitsTree,clusterTree) // //finds RecPoints in the current event // root [2] cl->SetDigitsBranch("digits2") // //sets another title for Digitis (input) branch // root [3] cl->SetRecPointsBranch("recp2") // //sets another title four output branches // root [4] cl->SetEmcLocalMaxCut(0.03) // //set clusterization parameters // --- ROOT system --- #include "TMath.h" #include "TMinuit.h" #include "TTree.h" #include "TBenchmark.h" #include "TClonesArray.h" // --- Standard library --- // --- AliRoot header files --- #include "AliLog.h" #include "AliConfig.h" #include "AliPHOSGeometry.h" #include "AliPHOSClusterizerv1.h" #include "AliPHOSEmcRecPoint.h" #include "AliPHOSCpvRecPoint.h" #include "AliPHOSDigit.h" #include "AliPHOSDigitizer.h" #include "AliCDBManager.h" #include "AliCDBStorage.h" #include "AliCDBEntry.h" #include "AliPHOSRecoParam.h" #include "AliPHOSReconstructor.h" #include "AliPHOSCalibData.h" ClassImp(AliPHOSClusterizerv1) //____________________________________________________________________________ AliPHOSClusterizerv1::AliPHOSClusterizerv1() : AliPHOSClusterizer(), fDefaultInit(0), fEmcCrystals(0), fToUnfold(0), fWrite(0), fNumberOfEmcClusters(0), fNumberOfCpvClusters(0), fEmcClusteringThreshold(0), fCpvClusteringThreshold(0), fEmcLocMaxCut(0), fW0(0), fCpvLocMaxCut(0), fW0CPV(0), fTimeGateLowAmp(0.), fTimeGateLow(0.), fTimeGateHigh(0.), fEcoreRadius(0) { // default ctor (to be used mainly by Streamer) fDefaultInit = kTRUE ; for(Int_t i=0; i<53760; i++){ fDigitsUsed[i]=0 ; } } //____________________________________________________________________________ AliPHOSClusterizerv1::AliPHOSClusterizerv1(AliPHOSGeometry *geom) : AliPHOSClusterizer(geom), fDefaultInit(0), fEmcCrystals(0), fToUnfold(0), fWrite(0), fNumberOfEmcClusters(0), fNumberOfCpvClusters(0), fEmcClusteringThreshold(0), fCpvClusteringThreshold(0), fEmcLocMaxCut(0), fW0(0), fCpvLocMaxCut(0), fW0CPV(0), fTimeGateLowAmp(0.), fTimeGateLow(0.), fTimeGateHigh(0.), fEcoreRadius(0) { // ctor with the indication of the file where header Tree and digits Tree are stored for(Int_t i=0; i<53760; i++){ fDigitsUsed[i]=0 ; } Init() ; fDefaultInit = kFALSE ; } //____________________________________________________________________________ AliPHOSClusterizerv1::~AliPHOSClusterizerv1() { // dtor } //____________________________________________________________________________ void AliPHOSClusterizerv1::Digits2Clusters(Option_t *option) { // Steering method to perform clusterization for one event // The input is the tree with digits. // The output is the tree with clusters. if(strstr(option,"tim")) gBenchmark->Start("PHOSClusterizer"); if(strstr(option,"print")) { Print() ; return ; } MakeClusters() ; AliDebug(2,Form(" ---- Printing clusters (%d)\n", fEMCRecPoints->GetEntries())); if(AliLog::GetGlobalDebugLevel()>1) fEMCRecPoints->Print(); if(fToUnfold) MakeUnfolding(); WriteRecPoints(); if(strstr(option,"deb")) PrintRecPoints(option) ; if(strstr(option,"tim")){ gBenchmark->Stop("PHOSClusterizer"); AliInfo(Form("took %f seconds for Clusterizing\n", gBenchmark->GetCpuTime("PHOSClusterizer"))); } fEMCRecPoints->Clear("C"); fCPVRecPoints->Clear("C"); } //____________________________________________________________________________ Bool_t AliPHOSClusterizerv1::FindFit(AliPHOSEmcRecPoint * emcRP, AliPHOSDigit ** maxAt, Float_t * maxAtEnergy, Int_t nPar, Float_t * fitparameters) const { // Calls TMinuit to fit the energy distribution of a cluster with several maxima // The initial values for fitting procedure are set equal to the positions of local maxima. // Cluster will be fitted as a superposition of nPar/3 electromagnetic showers if(!gMinuit) //it was deleted by someone else gMinuit = new TMinuit(100) ; gMinuit->mncler(); // Reset Minuit's list of paramters gMinuit->SetPrintLevel(-1) ; // No Printout gMinuit->SetFCN(AliPHOSClusterizerv1::UnfoldingChiSquare) ; // To set the address of the minimization function TList * toMinuit = new TList(); toMinuit->AddAt(emcRP,0) ; toMinuit->AddAt(fDigitsArr,1) ; toMinuit->AddAt(fGeom,2) ; gMinuit->SetObjectFit(toMinuit) ; // To tranfer pointer to UnfoldingChiSquare // filling initial values for fit parameters AliPHOSDigit * digit ; Int_t ierflg = 0; Int_t index = 0 ; Int_t nDigits = (Int_t) nPar / 3 ; Int_t iDigit ; for(iDigit = 0; iDigit < nDigits; iDigit++){ digit = maxAt[iDigit]; Int_t relid[4] ; Float_t x = 0.; Float_t z = 0.; fGeom->AbsToRelNumbering(digit->GetId(), relid) ; fGeom->RelPosInModule(relid, x, z) ; Float_t energy = maxAtEnergy[iDigit] ; gMinuit->mnparm(index, "x", x, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ Warning("FindFit", "PHOS Unfolding unable to set initial value for fit procedure : x = %f\n", x ) ; return kFALSE; } gMinuit->mnparm(index, "z", z, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ Warning("FindFit", "PHOS Unfolding unable to set initial value for fit procedure : z =%f\n", z ) ; return kFALSE; } gMinuit->mnparm(index, "Energy", energy , 0.05*energy, 0., 4.*energy, ierflg) ; index++ ; if(ierflg != 0){ Warning("FindFit", "PHOS Unfolding unable to set initial value for fit procedure : energy = %f\n", energy ) ; return kFALSE; } } Double_t p0 = 0.1 ; // "Tolerance" Evaluation stops when EDM = 0.0001*p0 ; The number of function call slightly // depends on it. Double_t p1 = 1.0 ; Double_t p2 = 0.0 ; gMinuit->mnexcm("SET STR", &p2, 0, ierflg) ; // force TMinuit to reduce function calls gMinuit->mnexcm("SET GRA", &p1, 1, ierflg) ; // force TMinuit to use my gradient gMinuit->SetMaxIterations(5); gMinuit->mnexcm("SET NOW", &p2 , 0, ierflg) ; // No Warnings gMinuit->mnexcm("MIGRAD", &p0, 0, ierflg) ; // minimize if(ierflg == 4){ // Minimum not found Warning("FindFit", "PHOS Unfolding fit not converged, cluster abandoned\n" ); return kFALSE ; } for(index = 0; index < nPar; index++){ Double_t err ; Double_t val ; gMinuit->GetParameter(index, val, err) ; // Returns value and error of parameter index fitparameters[index] = val ; } delete toMinuit ; return kTRUE; } //____________________________________________________________________________ void AliPHOSClusterizerv1::Init() { // Make all memory allocations which can not be done in default constructor. // Attach the Clusterizer task to the list of PHOS tasks fEmcCrystals = fGeom->GetNModules() * fGeom->GetNCristalsInModule() ; if(!gMinuit) gMinuit = new TMinuit(100); if (!fgCalibData) fgCalibData = new AliPHOSCalibData(-1); //use AliCDBManager's run number if (fgCalibData->GetCalibDataEmc() == 0) AliFatal("Calibration parameters for PHOS EMC not found. Stop reconstruction.\n"); if (fgCalibData->GetCalibDataCpv() == 0) AliFatal("Calibration parameters for PHOS CPV not found. Stop reconstruction.\n"); } //____________________________________________________________________________ void AliPHOSClusterizerv1::InitParameters() { fNumberOfCpvClusters = 0 ; fNumberOfEmcClusters = 0 ; const AliPHOSRecoParam* recoParam = AliPHOSReconstructor::GetRecoParam(); if(!recoParam) AliFatal("Reconstruction parameters are not set!"); recoParam->Print(); fEmcClusteringThreshold = recoParam->GetEMCClusteringThreshold(); fCpvClusteringThreshold = recoParam->GetCPVClusteringThreshold(); fEmcLocMaxCut = recoParam->GetEMCLocalMaxCut(); fCpvLocMaxCut = recoParam->GetCPVLocalMaxCut(); fW0 = recoParam->GetEMCLogWeight(); fW0CPV = recoParam->GetCPVLogWeight(); fTimeGateLowAmp = recoParam->GetTimeGateAmpThresh() ; fTimeGateLow = recoParam->GetTimeGateLow() ; fTimeGateHigh = recoParam->GetTimeGateHigh() ; fEcoreRadius = recoParam->GetEMCEcoreRadius(); fToUnfold = recoParam->EMCToUnfold() ; fWrite = kTRUE ; } //____________________________________________________________________________ Int_t AliPHOSClusterizerv1::AreNeighbours(AliPHOSDigit * d1, AliPHOSDigit * d2)const { // Gives the neighbourness of two digits = 0 are not neighbour but continue searching // = 1 are neighbour // = 2 are not neighbour but do not continue searching // =-1 are not neighbour, continue searching, but do not look before d2 next time // neighbours are defined as digits having at least a common vertex // The order of d1 and d2 is important: first (d1) should be a digit already in a cluster // which is compared to a digit (d2) not yet in a cluster Int_t relid1[4] ; fGeom->AbsToRelNumbering(d1->GetId(), relid1) ; Int_t relid2[4] ; fGeom->AbsToRelNumbering(d2->GetId(), relid2) ; if ( (relid1[0] == relid2[0]) && (relid1[1]==relid2[1]) ) { // inside the same PHOS module Int_t rowdiff = TMath::Abs( relid1[2] - relid2[2] ) ; Int_t coldiff = TMath::Abs( relid1[3] - relid2[3] ) ; if (( coldiff <= 1 ) && ( rowdiff <= 1 )){ //At least common vertex // if (( relid1[2]==relid2[2] && coldiff <= 1 ) || ( relid1[3]==relid2[3] && rowdiff <= 1 )){ //common side if((relid1[1] != 0) || CheckTimeGate(d1->GetTime(),d1->GetEnergy(),d2->GetTime(),d2->GetEnergy())) return 1 ; } else { if((relid2[2] > relid1[2]) && (relid2[3] > relid1[3]+1)) return 2; // Difference in row numbers is too large to look further } return 0 ; } else { if(relid1[0] > relid2[0] && relid1[1]==relid2[1] ) //we switched to the next module return -1 ; if(relid1[1] < relid2[1]) //we switched from EMC(0) to CPV(-1) return -1 ; return 2 ; } return 0 ; } //____________________________________________________________________________ Bool_t AliPHOSClusterizerv1::CheckTimeGate(Float_t t1, Float_t amp1, Float_t t2, Float_t amp2)const{ //Check if two cells have reasonable time difference //Note that at low amplitude time is defined up to 1 tick == 100 ns. if(amp1GetNModules()*fGeom->GetNPhi()*fGeom->GetNZ(); if(digit->GetId() <= nEMC ) rv = kTRUE; return rv ; } //____________________________________________________________________________ Bool_t AliPHOSClusterizerv1::IsInCpv(AliPHOSDigit * digit) const { // Tells if (true) or not (false) the digit is in a PHOS-CPV module Bool_t rv = kFALSE ; Int_t nEMC = fGeom->GetNModules()*fGeom->GetNPhi()*fGeom->GetNZ(); if(digit->GetId() > nEMC ) rv = kTRUE; return rv ; } //____________________________________________________________________________ void AliPHOSClusterizerv1::WriteRecPoints() { // Creates new branches with given title // fills and writes into TreeR. Int_t index ; //Evaluate position, dispersion and other RecPoint properties.. Int_t nEmc = fEMCRecPoints->GetEntriesFast(); Float_t emcMinE= AliPHOSReconstructor::GetRecoParam()->GetEMCMinE(); //Minimal digit energy TVector3 fakeVtx(0.,0.,0.) ; for(index = 0; index < nEmc; index++){ AliPHOSEmcRecPoint * rp = static_cast( fEMCRecPoints->At(index) ); rp->Purify(emcMinE) ; if(rp->GetMultiplicity()==0){ fEMCRecPoints->RemoveAt(index) ; delete rp ; continue; } // No vertex is available now, calculate corrections in PID rp->EvalAll(fDigitsArr) ; rp->EvalCoreEnergy(fW0,fEcoreRadius,fDigitsArr) ; rp->EvalAll(fW0,fakeVtx,fDigitsArr) ; rp->EvalLocal2TrackingCSTransform(); } fEMCRecPoints->Compress() ; fEMCRecPoints->Sort() ; // fEMCRecPoints->Expand(fEMCRecPoints->GetEntriesFast()) ; for(index = 0; index < fEMCRecPoints->GetEntries(); index++){ static_cast( fEMCRecPoints->At(index) )->SetIndexInList(index) ; } //For each rec.point set the distance to the nearest bad crystal (BVP) SetDistancesToBadChannels(); //Now the same for CPV for(index = 0; index < fCPVRecPoints->GetEntries(); index++){ AliPHOSCpvRecPoint * rp = static_cast( fCPVRecPoints->At(index) ); rp->EvalAll(fDigitsArr) ; rp->EvalAll(fW0CPV,fakeVtx,fDigitsArr) ; rp->EvalLocal2TrackingCSTransform(); } fCPVRecPoints->Sort() ; for(index = 0; index < fCPVRecPoints->GetEntries(); index++) static_cast( fCPVRecPoints->At(index) )->SetIndexInList(index) ; fCPVRecPoints->Expand(fCPVRecPoints->GetEntriesFast()) ; if(fWrite){ //We write TreeR fTreeR->Fill(); } } //____________________________________________________________________________ void AliPHOSClusterizerv1::MakeClusters() { // Steering method to construct the clusters stored in a list of Reconstructed Points // A cluster is defined as a list of neighbour digits fNumberOfCpvClusters = 0 ; fNumberOfEmcClusters = 0 ; //Mark all digits as unused yet const Int_t maxNDigits = 3584; // There is no clusters larger than PHOS module ;) Int_t nDigits=fDigitsArr->GetEntriesFast() ; for(Int_t i=0; i(fDigitsArr->At(i)) ; clu=0 ; Int_t index ; //is this digit so energetic that start cluster? if (( IsInEmc(digit) && Calibrate(digit->GetEnergy(),digit->GetId()) > fEmcClusteringThreshold ) || ( IsInCpv(digit) && Calibrate(digit->GetEnergy(),digit->GetId()) > fCpvClusteringThreshold ) ) { Int_t iDigitInCluster = 0 ; if ( IsInEmc(digit) ) { // start a new EMC RecPoint if(fNumberOfEmcClusters >= fEMCRecPoints->GetSize()) fEMCRecPoints->Expand(2*fNumberOfEmcClusters+1) ; fEMCRecPoints->AddAt(new AliPHOSEmcRecPoint(""), fNumberOfEmcClusters) ; clu = static_cast( fEMCRecPoints->At(fNumberOfEmcClusters) ) ; fNumberOfEmcClusters++ ; clu->AddDigit(*digit, Calibrate(digit->GetEnergy(),digit->GetId()),CalibrateT(digit->GetTime(),digit->GetId())) ; clusterdigitslist[iDigitInCluster] = digit->GetIndexInList() ; iDigitInCluster++ ; fDigitsUsed[i]=kTRUE ; } else { // start a new CPV cluster if(fNumberOfCpvClusters >= fCPVRecPoints->GetSize()) fCPVRecPoints->Expand(2*fNumberOfCpvClusters+1); fCPVRecPoints->AddAt(new AliPHOSCpvRecPoint(""), fNumberOfCpvClusters) ; clu = static_cast( fCPVRecPoints->At(fNumberOfCpvClusters) ) ; fNumberOfCpvClusters++ ; clu->AddDigit(*digit, Calibrate(digit->GetEnergy(),digit->GetId()),0.) ; // no timing information in CPV clusterdigitslist[iDigitInCluster] = digit->GetIndexInList() ; iDigitInCluster++ ; fDigitsUsed[i]=kTRUE ; } // else //Now scan remaining digits in list to find neigbours of our seed AliPHOSDigit * digitN ; index = 0 ; while (index < iDigitInCluster){ // scan over digits already in cluster digit = static_cast( fDigitsArr->At(clusterdigitslist[index]) ) ; index++ ; for(Int_t j=iFirst; j= maxNDigits) { AliError(Form("The number of digits in cluster is more than %d, skip the rest of event", maxNDigits)); return; } if(fDigitsUsed[j]) continue ; //look through remaining digits digitN = static_cast( fDigitsArr->At(j) ) ; Int_t ineb = AreNeighbours(digit, digitN); // call (digit,digitN) in THAT oder !!!!! switch (ineb ) { case -1: //too early (e.g. previous module), do not look before j at subsequent passes iFirst=j ; break ; case 0 : // not a neighbour break ; case 1 : // are neighbours clu->AddDigit(*digitN, Calibrate(digitN->GetEnergy(),digitN->GetId()),CalibrateT(digitN->GetTime(),digitN->GetId())) ; clusterdigitslist[iDigitInCluster] = j ; iDigitInCluster++ ; fDigitsUsed[j]=kTRUE ; break ; case 2 : // too far from each other goto endOfLoop; } // switch } endOfLoop: ; //scanned all possible neighbours for this digit } // loop over cluster } // energy theshold } } //____________________________________________________________________________ void AliPHOSClusterizerv1::MakeUnfolding() { // Unfolds clusters using the shape of an ElectroMagnetic shower // Performs unfolding of all EMC/CPV clusters // Unfold first EMC clusters if(fNumberOfEmcClusters > 0){ Int_t nModulesToUnfold = fGeom->GetNModules() ; Int_t numberofNotUnfolded = fNumberOfEmcClusters ; Int_t index ; for(index = 0 ; index < numberofNotUnfolded ; index++){ AliPHOSEmcRecPoint * emcRecPoint = static_cast( fEMCRecPoints->At(index) ) ; if(emcRecPoint->GetPHOSMod()> nModulesToUnfold) break ; Int_t nMultipl = emcRecPoint->GetMultiplicity() ; AliPHOSDigit ** maxAt = new AliPHOSDigit*[nMultipl] ; Float_t * maxAtEnergy = new Float_t[nMultipl] ; Int_t nMax = emcRecPoint->GetNumberOfLocalMax(maxAt, maxAtEnergy,fEmcLocMaxCut,fDigitsArr) ; if( nMax > 1 ) { // if cluster is very flat (no pronounced maximum) then nMax = 0 UnfoldCluster(emcRecPoint, nMax, maxAt, maxAtEnergy) ; fEMCRecPoints->Remove(emcRecPoint); fEMCRecPoints->Compress() ; index-- ; fNumberOfEmcClusters -- ; numberofNotUnfolded-- ; } else{ emcRecPoint->SetNExMax(1) ; //Only one local maximum } delete[] maxAt ; delete[] maxAtEnergy ; } } // Unfolding of EMC clusters finished // Unfold now CPV clusters if(fNumberOfCpvClusters > 0){ Int_t nModulesToUnfold = fGeom->GetNModules() ; Int_t numberofCpvNotUnfolded = fNumberOfCpvClusters ; Int_t index ; for(index = 0 ; index < numberofCpvNotUnfolded ; index++){ AliPHOSRecPoint * recPoint = static_cast( fCPVRecPoints->At(index) ) ; if(recPoint->GetPHOSMod()> nModulesToUnfold) break ; AliPHOSEmcRecPoint * emcRecPoint = static_cast(recPoint) ; Int_t nMultipl = emcRecPoint->GetMultiplicity() ; AliPHOSDigit ** maxAt = new AliPHOSDigit*[nMultipl] ; Float_t * maxAtEnergy = new Float_t[nMultipl] ; Int_t nMax = emcRecPoint->GetNumberOfLocalMax(maxAt, maxAtEnergy,fCpvLocMaxCut,fDigitsArr) ; if( nMax > 1 ) { // if cluster is very flat (no pronounced maximum) then nMax = 0 UnfoldCluster(emcRecPoint, nMax, maxAt, maxAtEnergy) ; fCPVRecPoints->Remove(emcRecPoint); fCPVRecPoints->Compress() ; index-- ; numberofCpvNotUnfolded-- ; fNumberOfCpvClusters-- ; } delete[] maxAt ; delete[] maxAtEnergy ; } } //Unfolding of Cpv clusters finished } //____________________________________________________________________________ Double_t AliPHOSClusterizerv1::ShowerShape(Double_t x, Double_t z) { // Shape of the shower (see PHOS TDR) // If you change this function, change also the gradient evaluation in ChiSquare() //for the moment we neglect dependence on the incident angle. Double_t r2 = x*x + z*z ; Double_t r4 = r2*r2 ; Double_t r295 = TMath::Power(r2, 2.95/2.) ; Double_t shape = TMath::Exp( -r4 * (1. / (2.32 + 0.26 * r4) + 0.0316 / (1 + 0.0652 * r295) ) ) ; return shape ; } //____________________________________________________________________________ void AliPHOSClusterizerv1::UnfoldCluster(AliPHOSEmcRecPoint * iniEmc, Int_t nMax, AliPHOSDigit ** maxAt, Float_t * maxAtEnergy) { // Performs the unfolding of a cluster with nMax overlapping showers Int_t nPar = 3 * nMax ; Float_t * fitparameters = new Float_t[nPar] ; Bool_t rv = FindFit(iniEmc, maxAt, maxAtEnergy, nPar, fitparameters) ; if( !rv ) { // Fit failed, return and remove cluster iniEmc->SetNExMax(-1) ; delete[] fitparameters ; return ; } // create ufolded rec points and fill them with new energy lists // First calculate energy deposited in each sell in accordance with fit (without fluctuations): efit[] // and later correct this number in acordance with actual energy deposition Int_t nDigits = iniEmc->GetMultiplicity() ; Float_t * efit = new Float_t[nDigits] ; Float_t xDigit=0.,zDigit=0. ; Float_t xpar=0.,zpar=0.,epar=0. ; Int_t relid[4] ; AliPHOSDigit * digit = 0 ; Int_t * emcDigits = iniEmc->GetDigitsList() ; TVector3 vIncid ; Int_t iparam ; Int_t iDigit ; for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){ digit = static_cast( fDigitsArr->At(emcDigits[iDigit] ) ) ; fGeom->AbsToRelNumbering(digit->GetId(), relid) ; fGeom->RelPosInModule(relid, xDigit, zDigit) ; efit[iDigit] = 0; iparam = 0 ; while(iparam < nPar ){ xpar = fitparameters[iparam] ; zpar = fitparameters[iparam+1] ; epar = fitparameters[iparam+2] ; iparam += 3 ; // fGeom->GetIncidentVector(fVtx,relid[0],xpar,zpar,vIncid) ; // efit[iDigit] += epar * ShowerShape(xDigit - xpar,zDigit - zpar,vIncid) ; efit[iDigit] += epar * ShowerShape(xDigit - xpar,zDigit - zpar) ; } } // Now create new RecPoints and fill energy lists with efit corrected to fluctuations // so that energy deposited in each cell is distributed betwin new clusters proportionally // to its contribution to efit Float_t * emcEnergies = iniEmc->GetEnergiesList() ; Float_t ratio ; iparam = 0 ; while(iparam < nPar ){ xpar = fitparameters[iparam] ; zpar = fitparameters[iparam+1] ; epar = fitparameters[iparam+2] ; iparam += 3 ; // fGeom->GetIncidentVector(fVtx,iniEmc->GetPHOSMod(),xpar,zpar,vIncid) ; AliPHOSEmcRecPoint * emcRP = 0 ; if(iniEmc->IsEmc()){ //create new entries in fEMCRecPoints... if(fNumberOfEmcClusters >= fEMCRecPoints->GetSize()) fEMCRecPoints->Expand(2*fNumberOfEmcClusters) ; (*fEMCRecPoints)[fNumberOfEmcClusters] = new AliPHOSEmcRecPoint("") ; emcRP = static_cast( fEMCRecPoints->At(fNumberOfEmcClusters) ) ; fNumberOfEmcClusters++ ; emcRP->SetNExMax((Int_t)nPar/3) ; } else{//create new entries in fCPVRecPoints if(fNumberOfCpvClusters >= fCPVRecPoints->GetSize()) fCPVRecPoints->Expand(2*fNumberOfCpvClusters) ; (*fCPVRecPoints)[fNumberOfCpvClusters] = new AliPHOSCpvRecPoint("") ; emcRP = static_cast( fCPVRecPoints->At(fNumberOfCpvClusters) ) ; fNumberOfCpvClusters++ ; } Float_t eDigit ; for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){ digit = static_cast( fDigitsArr->At( emcDigits[iDigit] ) ) ; fGeom->AbsToRelNumbering(digit->GetId(), relid) ; fGeom->RelPosInModule(relid, xDigit, zDigit) ; // ratio = epar * ShowerShape(xDigit - xpar,zDigit - zpar,vIncid) / efit[iDigit] ; ratio = epar * ShowerShape(xDigit - xpar,zDigit - zpar) / efit[iDigit] ; eDigit = emcEnergies[iDigit] * ratio ; emcRP->AddDigit( *digit, eDigit,CalibrateT(digit->GetTime(),digit->GetId()) ) ; } } delete[] fitparameters ; delete[] efit ; } //_____________________________________________________________________________ void AliPHOSClusterizerv1::UnfoldingChiSquare(Int_t & nPar, Double_t * Grad, Double_t & fret, Double_t * x, Int_t iflag) { // Calculates the Chi square for the cluster unfolding minimization // Number of parameters, Gradient, Chi squared, parameters, what to do TList * toMinuit = static_cast( gMinuit->GetObjectFit() ) ; AliPHOSEmcRecPoint * emcRP = static_cast( toMinuit->At(0) ) ; TClonesArray * digits = static_cast( toMinuit->At(1) ) ; // A bit buggy way to get an access to the geometry // To be revised! AliPHOSGeometry *geom = static_cast(toMinuit->At(2)); // TVector3 * vtx = static_cast(toMinuit->At(3)) ; //Vertex position // AliPHOSEmcRecPoint * emcRP = static_cast( gMinuit->GetObjectFit() ) ; // EmcRecPoint to fit Int_t * emcDigits = emcRP->GetDigitsList() ; Int_t nOdigits = emcRP->GetDigitsMultiplicity() ; Float_t * emcEnergies = emcRP->GetEnergiesList() ; // TVector3 vInc ; fret = 0. ; Int_t iparam ; if(iflag == 2) for(iparam = 0 ; iparam < nPar ; iparam++) Grad[iparam] = 0 ; // Will evaluate gradient Double_t efit ; AliPHOSDigit * digit ; Int_t iDigit ; for( iDigit = 0 ; iDigit < nOdigits ; iDigit++) { digit = static_cast( digits->At( emcDigits[iDigit] ) ); Int_t relid[4] ; Float_t xDigit ; Float_t zDigit ; geom->AbsToRelNumbering(digit->GetId(), relid) ; geom->RelPosInModule(relid, xDigit, zDigit) ; if(iflag == 2){ // calculate gradient Int_t iParam = 0 ; efit = 0 ; while(iParam < nPar ){ Double_t dx = (xDigit - x[iParam]) ; iParam++ ; Double_t dz = (zDigit - x[iParam]) ; iParam++ ; // fGeom->GetIncidentVector(*vtx,emcRP->GetPHOSMod(),x[iParam-2],x[iParam-1],vInc) ; // efit += x[iParam] * ShowerShape(dx,dz,vInc) ; efit += x[iParam] * ShowerShape(dx,dz) ; iParam++ ; } Double_t sum = 2. * (efit - emcEnergies[iDigit]) / emcEnergies[iDigit] ; // Here we assume, that sigma = sqrt(E) iParam = 0 ; while(iParam < nPar ){ Double_t xpar = x[iParam] ; Double_t zpar = x[iParam+1] ; Double_t epar = x[iParam+2] ; // fGeom->GetIncidentVector(*vtx,emcRP->GetPHOSMod(),xpar,zpar,vInc) ; Double_t dr = TMath::Sqrt( (xDigit - xpar) * (xDigit - xpar) + (zDigit - zpar) * (zDigit - zpar) ); // Double_t shape = sum * ShowerShape(xDigit - xpar,zDigit - zpar,vInc) ; Double_t shape = sum * ShowerShape(xDigit - xpar,zDigit - zpar) ; //DP: No incident angle dependence in gradient yet!!!!!! Double_t r4 = dr*dr*dr*dr ; Double_t r295 = TMath::Power(dr,2.95) ; Double_t deriv =-4. * dr*dr * ( 2.32 / ( (2.32 + 0.26 * r4) * (2.32 + 0.26 * r4) ) + 0.0316 * (1. + 0.0171 * r295) / ( ( 1. + 0.0652 * r295) * (1. + 0.0652 * r295) ) ) ; Grad[iParam] += epar * shape * deriv * (xpar - xDigit) ; // Derivative over x iParam++ ; Grad[iParam] += epar * shape * deriv * (zpar - zDigit) ; // Derivative over z iParam++ ; Grad[iParam] += shape ; // Derivative over energy iParam++ ; } } efit = 0; iparam = 0 ; while(iparam < nPar ){ Double_t xpar = x[iparam] ; Double_t zpar = x[iparam+1] ; Double_t epar = x[iparam+2] ; iparam += 3 ; // fGeom->GetIncidentVector(*vtx,emcRP->GetPHOSMod(),xpar,zpar,vInc) ; // efit += epar * ShowerShape(xDigit - xpar,zDigit - zpar,vInc) ; efit += epar * ShowerShape(xDigit - xpar,zDigit - zpar) ; } fret += (efit-emcEnergies[iDigit])*(efit-emcEnergies[iDigit])/emcEnergies[iDigit] ; // Here we assume, that sigma = sqrt(E) } } //____________________________________________________________________________ void AliPHOSClusterizerv1::Print(const Option_t *)const { // Print clusterizer parameters TString message ; TString taskName(GetName()) ; taskName.ReplaceAll(Version(), "") ; if( strcmp(GetName(), "") !=0 ) { // Print parameters message = "\n--------------- %s %s -----------\n" ; message += "Clusterizing digits from the file: %s\n" ; message += " Branch: %s\n" ; message += " EMC Clustering threshold = %f\n" ; message += " EMC Local Maximum cut = %f\n" ; message += " EMC Logarothmic weight = %f\n" ; message += " CPV Clustering threshold = %f\n" ; message += " CPV Local Maximum cut = %f\n" ; message += " CPV Logarothmic weight = %f\n" ; if(fToUnfold) message += " Unfolding on\n" ; else message += " Unfolding off\n" ; message += "------------------------------------------------------------------" ; } else message = " AliPHOSClusterizerv1 not initialized " ; AliInfo(Form("%s, %s %s %s %s %f %f %f %f %f %f", message.Data(), taskName.Data(), GetTitle(), taskName.Data(), GetName(), fEmcClusteringThreshold, fEmcLocMaxCut, fW0, fCpvClusteringThreshold, fCpvLocMaxCut, fW0CPV )) ; } //____________________________________________________________________________ void AliPHOSClusterizerv1::PrintRecPoints(Option_t * option) { // Prints list of RecPoints produced at the current pass of AliPHOSClusterizer AliInfo(Form("\nFound %d EMC RecPoints and %d CPV RecPoints", fEMCRecPoints->GetEntriesFast(), fCPVRecPoints->GetEntriesFast() )) ; if(strstr(option,"all")) { printf("\n EMC clusters \n") ; printf("Index Ene(MeV) Multi Module X Y Z Lambdas_1 Lambda_2 # of prim Primaries list\n") ; Int_t index ; for (index = 0 ; index < fEMCRecPoints->GetEntries() ; index++) { AliPHOSEmcRecPoint * rp = (AliPHOSEmcRecPoint * )fEMCRecPoints->At(index) ; TVector3 locpos; rp->GetLocalPosition(locpos); Float_t lambda[2]; rp->GetElipsAxis(lambda); Int_t * primaries; Int_t nprimaries; primaries = rp->GetPrimaries(nprimaries); printf("\n%6d %8.2f %3d %2d %4.1f %4.1f %4.1f %4f %4f %2d : ", rp->GetIndexInList(), rp->GetEnergy(), rp->GetMultiplicity(), rp->GetPHOSMod(), locpos.X(), locpos.Y(), locpos.Z(), lambda[0], lambda[1], nprimaries) ; for (Int_t iprimary=0; iprimaryGetEntries() ; index++) { AliPHOSCpvRecPoint * rp = (AliPHOSCpvRecPoint * )fCPVRecPoints->At(index) ; TVector3 locpos; rp->GetLocalPosition(locpos); printf("\n%6d %8.2f %2d %4.1f %4.1f %4.1f \n", rp->GetIndexInList(), rp->GetEnergy(), rp->GetPHOSMod(), locpos.X(), locpos.Y(), locpos.Z()) ; } } } //____________________________________________________________________________ void AliPHOSClusterizerv1::SetDistancesToBadChannels() { //For each EMC rec. point set the distance to the nearest bad crystal. //Author: Boris Polichtchouk if(!fgCalibData->GetNumOfEmcBadChannels()) return; Int_t badIds[8000]; memset(badIds,0,8000*sizeof(Int_t)); fgCalibData->EmcBadChannelIds(badIds); AliPHOSEmcRecPoint* rp; TMatrixF gmat; TVector3 gposRecPoint; // global (in ALICE frame) position of rec. point TVector3 gposBadChannel; // global position of bad crystal TVector3 dR; Float_t dist,minDist; Int_t relid[4]={0,0,0,0} ; TVector3 lpos ; for(Int_t iRP=0; iRPGetEntries(); iRP++){ rp = (AliPHOSEmcRecPoint*)fEMCRecPoints->At(iRP); //evaluate distance to border relid[0]=rp->GetPHOSMod() ; relid[2]=1 ; relid[3]=1 ; Float_t xcorner,zcorner; fGeom->RelPosInModule(relid,xcorner,zcorner) ; //coordinate of the corner cell rp->GetLocalPosition(lpos) ; minDist = 2.2+TMath::Min(-xcorner-TMath::Abs(lpos.X()),-zcorner-TMath::Abs(lpos.Z())); //2.2 - crystal size for(Int_t iBad=0; iBadGetNumOfEmcBadChannels(); iBad++) { fGeom->AbsToRelNumbering(badIds[iBad],relid) ; if(relid[0]!=rp->GetPHOSMod()) //We can not evaluate global position directly since continue ; //bad channels can be in the module which does not exist in simulations. rp->GetGlobalPosition(gposRecPoint,gmat); fGeom->RelPosInAlice(badIds[iBad],gposBadChannel); AliDebug(2,Form("BC position:[%.3f,%.3f,%.3f], RP position:[%.3f,%.3f,%.3f]. E=%.3f\n", gposBadChannel.X(),gposBadChannel.Y(),gposBadChannel.Z(), gposRecPoint.X(),gposRecPoint.Y(),gposRecPoint.Z(),rp->GetEnergy())); dR = gposBadChannel-gposRecPoint; dist = dR.Mag(); if(distSetDistanceToBadCrystal(minDist); } } //================================================================================== Float_t AliPHOSClusterizerv1::Calibrate(Float_t amp, Int_t absId) const{ // Calibrate EMC digit, i.e. multiply its Amp by a factor read from CDB const AliPHOSGeometry *geom = AliPHOSGeometry::GetInstance() ; //Determine rel.position of the cell absolute ID Int_t relId[4]; geom->AbsToRelNumbering(absId,relId); Int_t module=relId[0]; Int_t row =relId[2]; Int_t column=relId[3]; if(relId[1]){ //CPV Float_t calibration = fgCalibData->GetADCchannelCpv(module,column,row); return amp*calibration ; } else{ //EMC Float_t calibration = fgCalibData->GetADCchannelEmc(module,column,row); return amp*calibration ; } } //================================================================================== Float_t AliPHOSClusterizerv1::CalibrateT(Float_t time, Int_t absId)const{ // Calibrate time in EMC digit const AliPHOSGeometry *geom = AliPHOSGeometry::GetInstance() ; //Determine rel.position of the cell absolute ID Int_t relId[4]; geom->AbsToRelNumbering(absId,relId); Int_t module=relId[0]; Int_t row =relId[2]; Int_t column=relId[3]; if(relId[1]){ //CPV return 0. ; } else{ //EMC time += fgCalibData->GetTimeShiftEmc(module,column,row); return time ; } }