/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /* History of cvs commits: * * $Log$ * Revision 1.90 2006/04/11 15:22:59 hristov * run number in query set to -1: forces AliCDBManager to use its run number (A.Colla) * * Revision 1.89 2006/03/13 14:05:42 kharlov * Calibration objects for EMC and CPV * * Revision 1.88 2006/01/11 08:54:52 hristov * Additional protection in case no calibration entry was found * * Revision 1.87 2005/11/22 08:46:43 kharlov * Updated to new CDB (Boris Polichtchouk) * * Revision 1.86 2005/11/14 21:52:43 hristov * Coding conventions * * Revision 1.85 2005/09/27 16:08:08 hristov * New version of CDB storage framework (A.Colla) * * Revision 1.84 2005/09/21 10:02:47 kharlov * Reading calibration from CDB (Boris Polichtchouk) * * Revision 1.82 2005/09/02 15:43:13 kharlov * Add comments in GetCalibrationParameters and Calibrate * * Revision 1.81 2005/09/02 14:32:07 kharlov * Calibration of raw data * * Revision 1.80 2005/08/24 15:31:36 kharlov * Setting raw digits flag * * Revision 1.79 2005/07/25 15:53:53 kharlov * Read raw data * * Revision 1.78 2005/05/28 14:19:04 schutz * Compilation warnings fixed by T.P. * */ //*-- Author: Yves Schutz (SUBATECH) & Dmitri Peressounko (SUBATECH & Kurchatov Institute) ////////////////////////////////////////////////////////////////////////////// // Clusterization class. Performs clusterization (collects neighbouring active cells) and // unfolds the clusters having several local maxima. // Results are stored in TreeR#, branches PHOSEmcRP (EMC recPoints), // PHOSCpvRP (CPV RecPoints) and AliPHOSClusterizer (Clusterizer with all // parameters including input digits branch title, thresholds etc.) // This TTask is normally called from Reconstructioner, but can as well be used in // standalone mode. // Use Case: // root [0] AliPHOSClusterizerv1 * cl = new AliPHOSClusterizerv1("galice.root", "recpointsname", "digitsname") // Warning in : object already instantiated // // reads gAlice from header file "galice.root", uses digits stored in the branch names "digitsname" (default = "Default") // // and saves recpoints in branch named "recpointsname" (default = "digitsname") // root [1] cl->ExecuteTask() // //finds RecPoints in all events stored in galice.root // root [2] cl->SetDigitsBranch("digits2") // //sets another title for Digitis (input) branch // root [3] cl->SetRecPointsBranch("recp2") // //sets another title four output branches // root [4] cl->SetEmcLocalMaxCut(0.03) // //set clusterization parameters // root [5] cl->ExecuteTask("deb all time") // //once more finds RecPoints options are // // deb - print number of found rec points // // deb all - print number of found RecPoints and some their characteristics // // time - print benchmarking results // --- ROOT system --- #include "TMath.h" #include "TMinuit.h" #include "TTree.h" #include "TBenchmark.h" // --- Standard library --- // --- AliRoot header files --- #include "AliLog.h" #include "AliPHOSGetter.h" #include "AliPHOSGeometry.h" #include "AliPHOSClusterizerv1.h" #include "AliPHOSEmcRecPoint.h" #include "AliPHOSCpvRecPoint.h" #include "AliPHOSDigit.h" #include "AliPHOSDigitizer.h" #include "AliPHOSCalibrationDB.h" #include "AliCDBManager.h" #include "AliCDBStorage.h" #include "AliCDBEntry.h" ClassImp(AliPHOSClusterizerv1) //____________________________________________________________________________ AliPHOSClusterizerv1::AliPHOSClusterizerv1() : AliPHOSClusterizer() { // default ctor (to be used mainly by Streamer) InitParameters() ; fDefaultInit = kTRUE ; } //____________________________________________________________________________ AliPHOSClusterizerv1::AliPHOSClusterizerv1(const TString alirunFileName, const TString eventFolderName) :AliPHOSClusterizer(alirunFileName, eventFolderName) { // ctor with the indication of the file where header Tree and digits Tree are stored InitParameters() ; Init() ; fDefaultInit = kFALSE ; } //____________________________________________________________________________ AliPHOSClusterizerv1::~AliPHOSClusterizerv1() { // dtor } //____________________________________________________________________________ const TString AliPHOSClusterizerv1::BranchName() const { return GetName(); } //____________________________________________________________________________ Float_t AliPHOSClusterizerv1::Calibrate(Int_t amp, Int_t absId) { // Convert digitized amplitude into energy. // Calibration parameters are taken from calibration data base for raw data, // or from digitizer parameters for simulated data. if(fCalibData){ Int_t relId[4]; AliPHOSGetter *gime = AliPHOSGetter::Instance(); gime->PHOSGeometry()->AbsToRelNumbering(absId,relId) ; Int_t module = relId[0]; Int_t column = relId[3]; Int_t row = relId[2]; if(absId <= fEmcCrystals) { //calibrate as EMC fADCchanelEmc = fCalibData->GetADCchannelEmc (module,column,row); fADCpedestalEmc = fCalibData->GetADCpedestalEmc(module,column,row); return fADCpedestalEmc + amp*fADCchanelEmc ; } else { //calibrate as CPV fADCchanelCpv = fCalibData->GetADCchannelCpv (module,column,row); fADCpedestalCpv = fCalibData->GetADCpedestalCpv(module,column,row); return fADCpedestalCpv + amp*fADCchanelCpv ; } } else{ //simulation if(absId <= fEmcCrystals) //calibrate as EMC return fADCpedestalEmc + amp*fADCchanelEmc ; else //calibrate as CPV return fADCpedestalCpv+ amp*fADCchanelCpv ; } } //____________________________________________________________________________ void AliPHOSClusterizerv1::Exec(Option_t *option) { // Steering method to perform clusterization for events // in the range from fFirstEvent to fLastEvent. // This range is optionally set by SetEventRange(). // if fLastEvent=-1 (by default), then process events until the end. if(strstr(option,"tim")) gBenchmark->Start("PHOSClusterizer"); if(strstr(option,"print")) { Print() ; return ; } GetCalibrationParameters() ; AliPHOSGetter * gime = AliPHOSGetter::Instance() ; if (fRawReader == 0) gime->SetRawDigits(kFALSE); else gime->SetRawDigits(kTRUE); if (fLastEvent == -1) fLastEvent = gime->MaxEvent() - 1 ; else fLastEvent = TMath::Min(fFirstEvent, gime->MaxEvent()); // one event at the time Int_t nEvents = fLastEvent - fFirstEvent + 1; Int_t ievent ; for (ievent = fFirstEvent; ievent <= fLastEvent; ievent++) { if (fRawReader == 0) gime->Event(ievent ,"D"); // Read digits from simulated data else gime->Event(fRawReader,"W"); // Read digits from raw data fNumberOfEmcClusters = fNumberOfCpvClusters = 0 ; MakeClusters() ; if(fToUnfold) MakeUnfolding() ; WriteRecPoints(); if(strstr(option,"deb")) PrintRecPoints(option) ; //increment the total number of recpoints per run fRecPointsInRun += gime->EmcRecPoints()->GetEntriesFast() ; fRecPointsInRun += gime->CpvRecPoints()->GetEntriesFast() ; if (fRawReader != 0) { AliRunLoader * rl = AliRunLoader::GetRunLoader(gime->PhosLoader()->GetTitle()); Int_t iEvent = ievent; rl->SetEventNumber(++iEvent); } } if(fWrite) //do not unload in "on flight" mode Unload(); if(strstr(option,"tim")){ gBenchmark->Stop("PHOSClusterizer"); AliInfo(Form("took %f seconds for Clusterizing %f seconds per event \n", gBenchmark->GetCpuTime("PHOSClusterizer"), gBenchmark->GetCpuTime("PHOSClusterizer")/nEvents )) ; } } //____________________________________________________________________________ Bool_t AliPHOSClusterizerv1::FindFit(AliPHOSEmcRecPoint * emcRP, AliPHOSDigit ** maxAt, Float_t * maxAtEnergy, Int_t nPar, Float_t * fitparameters) const { // Calls TMinuit to fit the energy distribution of a cluster with several maxima // The initial values for fitting procedure are set equal to the positions of local maxima. // Cluster will be fitted as a superposition of nPar/3 electromagnetic showers AliPHOSGetter * gime = AliPHOSGetter::Instance(); TClonesArray * digits = gime->Digits(); gMinuit->mncler(); // Reset Minuit's list of paramters gMinuit->SetPrintLevel(-1) ; // No Printout gMinuit->SetFCN(AliPHOSClusterizerv1::UnfoldingChiSquare) ; // To set the address of the minimization function TList * toMinuit = new TList(); toMinuit->AddAt(emcRP,0) ; toMinuit->AddAt(digits,1) ; gMinuit->SetObjectFit(toMinuit) ; // To tranfer pointer to UnfoldingChiSquare // filling initial values for fit parameters AliPHOSDigit * digit ; Int_t ierflg = 0; Int_t index = 0 ; Int_t nDigits = (Int_t) nPar / 3 ; Int_t iDigit ; const AliPHOSGeometry * geom = gime->PHOSGeometry() ; for(iDigit = 0; iDigit < nDigits; iDigit++){ digit = maxAt[iDigit]; Int_t relid[4] ; Float_t x = 0.; Float_t z = 0.; geom->AbsToRelNumbering(digit->GetId(), relid) ; geom->RelPosInModule(relid, x, z) ; Float_t energy = maxAtEnergy[iDigit] ; gMinuit->mnparm(index, "x", x, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ Warning("FindFit", "PHOS Unfolding unable to set initial value for fit procedure : x = %f\n", x ) ; return kFALSE; } gMinuit->mnparm(index, "z", z, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ Warning("FindFit", "PHOS Unfolding unable to set initial value for fit procedure : z =%f\n", z ) ; return kFALSE; } gMinuit->mnparm(index, "Energy", energy , 0.05*energy, 0., 4.*energy, ierflg) ; index++ ; if(ierflg != 0){ Warning("FindFit", "PHOS Unfolding unable to set initial value for fit procedure : energy = %f\n", energy ) ; return kFALSE; } } Double_t p0 = 0.1 ; // "Tolerance" Evaluation stops when EDM = 0.0001*p0 ; The number of function call slightly // depends on it. Double_t p1 = 1.0 ; Double_t p2 = 0.0 ; gMinuit->mnexcm("SET STR", &p2, 0, ierflg) ; // force TMinuit to reduce function calls gMinuit->mnexcm("SET GRA", &p1, 1, ierflg) ; // force TMinuit to use my gradient gMinuit->SetMaxIterations(5); gMinuit->mnexcm("SET NOW", &p2 , 0, ierflg) ; // No Warnings gMinuit->mnexcm("MIGRAD", &p0, 0, ierflg) ; // minimize if(ierflg == 4){ // Minimum not found Warning("FindFit", "PHOS Unfolding fit not converged, cluster abandoned\n" ); return kFALSE ; } for(index = 0; index < nPar; index++){ Double_t err ; Double_t val ; gMinuit->GetParameter(index, val, err) ; // Returns value and error of parameter index fitparameters[index] = val ; } delete toMinuit ; return kTRUE; } //____________________________________________________________________________ void AliPHOSClusterizerv1::GetCalibrationParameters() { // Set calibration parameters: // if calibration database exists, they are read from database, // otherwise, they are taken from digitizer. // // It is a user responsilibity to open CDB before reconstruction, for example: // AliCDBStorage* storage = AliCDBManager::Instance()->GetStorage("local://CalibDB"); AliPHOSGetter * gime = AliPHOSGetter::Instance(); // fCalibData = new AliPHOSCalibData(gAlice->GetRunNumber()); //original fCalibData = new AliPHOSCalibData(-1); //use AliCDBManager's run number if(!fCalibData) { if ( !gime->Digitizer() ) gime->LoadDigitizer(); AliPHOSDigitizer * dig = gime->Digitizer(); fADCchanelEmc = dig->GetEMCchannel() ; fADCpedestalEmc = dig->GetEMCpedestal(); fADCchanelCpv = dig->GetCPVchannel() ; fADCpedestalCpv = dig->GetCPVpedestal() ; } } //____________________________________________________________________________ void AliPHOSClusterizerv1::Init() { // Make all memory allocations which can not be done in default constructor. // Attach the Clusterizer task to the list of PHOS tasks AliPHOSGetter* gime = AliPHOSGetter::Instance() ; if(!gime) gime = AliPHOSGetter::Instance(GetTitle(), fEventFolderName.Data()); AliPHOSGeometry * geom = gime->PHOSGeometry(); fEmcCrystals = geom->GetNModules() * geom->GetNCristalsInModule() ; if(!gMinuit) gMinuit = new TMinuit(100); if ( !gime->Clusterizer() ) { gime->PostClusterizer(this); } } //____________________________________________________________________________ void AliPHOSClusterizerv1::InitParameters() { fNumberOfCpvClusters = 0 ; fNumberOfEmcClusters = 0 ; fCpvClusteringThreshold = 0.0; fEmcClusteringThreshold = 0.2; fEmcLocMaxCut = 0.03 ; fCpvLocMaxCut = 0.03 ; fEmcMinE = 0.01 ; fCpvMinE = 0.0 ; fW0 = 4.5 ; fW0CPV = 4.0 ; fEmcTimeGate = 1.e-8 ; fToUnfold = kTRUE ; fRecPointsInRun = 0 ; fWrite = kTRUE ; fCalibData = 0 ; SetEventRange(0,-1) ; } //____________________________________________________________________________ Int_t AliPHOSClusterizerv1::AreNeighbours(AliPHOSDigit * d1, AliPHOSDigit * d2)const { // Gives the neighbourness of two digits = 0 are not neighbour but continue searching // = 1 are neighbour // = 2 are not neighbour but do not continue searching // neighbours are defined as digits having at least a common vertex // The order of d1 and d2 is important: first (d1) should be a digit already in a cluster // which is compared to a digit (d2) not yet in a cluster AliPHOSGeometry * geom = AliPHOSGetter::Instance()->PHOSGeometry() ; Int_t rv = 0 ; Int_t relid1[4] ; geom->AbsToRelNumbering(d1->GetId(), relid1) ; Int_t relid2[4] ; geom->AbsToRelNumbering(d2->GetId(), relid2) ; if ( (relid1[0] == relid2[0]) && (relid1[1]==relid2[1]) ) { // inside the same PHOS module Int_t rowdiff = TMath::Abs( relid1[2] - relid2[2] ) ; Int_t coldiff = TMath::Abs( relid1[3] - relid2[3] ) ; if (( coldiff <= 1 ) && ( rowdiff <= 1 )){ if((relid1[1] != 0) || (TMath::Abs(d1->GetTime() - d2->GetTime() ) < fEmcTimeGate)) rv = 1 ; } else { if((relid2[2] > relid1[2]) && (relid2[3] > relid1[3]+1)) rv = 2; // Difference in row numbers is too large to look further } } else { if( (relid1[0] < relid2[0]) || (relid1[1] != relid2[1]) ) rv=2 ; } return rv ; } //____________________________________________________________________________ void AliPHOSClusterizerv1::CleanDigits(TClonesArray * digits){ for(Int_t i=0; iGetEntriesFast(); i++){ AliPHOSDigit * digit = static_cast(digits->At(i)) ; Float_t cut = IsInEmc(digit) ? fEmcMinE : fCpvMinE ; // if(Calibrate(digit->GetAmp(),digit->GetId()) < cut) //YVK if(digit->GetEnergy() < cut) digits->RemoveAt(i) ; } digits->Compress() ; for (Int_t i = 0 ; i < digits->GetEntriesFast() ; i++) { AliPHOSDigit *digit = static_cast( digits->At(i) ) ; digit->SetIndexInList(i) ; } } //____________________________________________________________________________ Bool_t AliPHOSClusterizerv1::IsInEmc(AliPHOSDigit * digit) const { // Tells if (true) or not (false) the digit is in a PHOS-EMC module Bool_t rv = kFALSE ; AliPHOSGeometry * geom = AliPHOSGetter::Instance()->PHOSGeometry() ; Int_t nEMC = geom->GetNModules()*geom->GetNPhi()*geom->GetNZ(); if(digit->GetId() <= nEMC ) rv = kTRUE; return rv ; } //____________________________________________________________________________ Bool_t AliPHOSClusterizerv1::IsInCpv(AliPHOSDigit * digit) const { // Tells if (true) or not (false) the digit is in a PHOS-CPV module Bool_t rv = kFALSE ; AliPHOSGeometry * geom = AliPHOSGetter::Instance()->PHOSGeometry() ; Int_t nEMC = geom->GetNModules()*geom->GetNPhi()*geom->GetNZ(); if(digit->GetId() > nEMC ) rv = kTRUE; return rv ; } //____________________________________________________________________________ void AliPHOSClusterizerv1::Unload() { AliPHOSGetter * gime = AliPHOSGetter::Instance() ; gime->PhosLoader()->UnloadDigits() ; gime->PhosLoader()->UnloadRecPoints() ; } //____________________________________________________________________________ void AliPHOSClusterizerv1::WriteRecPoints() { // Creates new branches with given title // fills and writes into TreeR. AliPHOSGetter * gime = AliPHOSGetter::Instance(); TObjArray * emcRecPoints = gime->EmcRecPoints() ; TObjArray * cpvRecPoints = gime->CpvRecPoints() ; TClonesArray * digits = gime->Digits() ; Int_t index ; //Evaluate position, dispersion and other RecPoint properties.. Int_t nEmc = emcRecPoints->GetEntriesFast(); for(index = 0; index < nEmc; index++){ AliPHOSEmcRecPoint * rp = dynamic_cast( emcRecPoints->At(index) ); rp->Purify(fEmcMinE) ; if(rp->GetMultiplicity()>0.) //If this RP is not empty rp->EvalAll(fW0,digits) ; else{ emcRecPoints->RemoveAt(index) ; delete rp ; } } emcRecPoints->Compress() ; emcRecPoints->Sort() ; // emcRecPoints->Expand(emcRecPoints->GetEntriesFast()) ; for(index = 0; index < emcRecPoints->GetEntries(); index++){ dynamic_cast( emcRecPoints->At(index) )->SetIndexInList(index) ; } //Now the same for CPV for(index = 0; index < cpvRecPoints->GetEntries(); index++){ AliPHOSCpvRecPoint * rp = dynamic_cast( cpvRecPoints->At(index) ); rp->EvalAll(fW0CPV,digits) ; } cpvRecPoints->Sort() ; for(index = 0; index < cpvRecPoints->GetEntries(); index++) dynamic_cast( cpvRecPoints->At(index) )->SetIndexInList(index) ; cpvRecPoints->Expand(cpvRecPoints->GetEntriesFast()) ; if(fWrite){ //We write TreeR TTree * treeR = gime->TreeR(); Int_t bufferSize = 32000 ; Int_t splitlevel = 0 ; //First EMC TBranch * emcBranch = treeR->Branch("PHOSEmcRP","TObjArray",&emcRecPoints,bufferSize,splitlevel); emcBranch->SetTitle(BranchName()); //Now CPV branch TBranch * cpvBranch = treeR->Branch("PHOSCpvRP","TObjArray",&cpvRecPoints,bufferSize,splitlevel); cpvBranch->SetTitle(BranchName()); emcBranch ->Fill() ; cpvBranch ->Fill() ; gime->WriteRecPoints("OVERWRITE"); gime->WriteClusterizer("OVERWRITE"); } } //____________________________________________________________________________ void AliPHOSClusterizerv1::MakeClusters() { // Steering method to construct the clusters stored in a list of Reconstructed Points // A cluster is defined as a list of neighbour digits AliPHOSGetter * gime = AliPHOSGetter::Instance(); TObjArray * emcRecPoints = gime->EmcRecPoints() ; TObjArray * cpvRecPoints = gime->CpvRecPoints() ; emcRecPoints->Delete() ; cpvRecPoints->Delete() ; TClonesArray * digits = gime->Digits() ; //Remove digits below threshold CleanDigits(digits) ; TClonesArray * digitsC = static_cast( digits->Clone() ) ; // Clusterization starts TIter nextdigit(digitsC) ; AliPHOSDigit * digit ; Bool_t notremoved = kTRUE ; while ( (digit = dynamic_cast( nextdigit()) ) ) { // scan over the list of digitsC AliPHOSRecPoint * clu = 0 ; TArrayI clusterdigitslist(1500) ; Int_t index ; if (( IsInEmc (digit) && digit->GetEnergy() > fEmcClusteringThreshold ) || ( IsInCpv (digit) && Calibrate(digit->GetAmp(),digit->GetId()) > fCpvClusteringThreshold ) ) { Int_t iDigitInCluster = 0 ; if ( IsInEmc(digit) ) { // start a new EMC RecPoint if(fNumberOfEmcClusters >= emcRecPoints->GetSize()) emcRecPoints->Expand(2*fNumberOfEmcClusters+1) ; emcRecPoints->AddAt(new AliPHOSEmcRecPoint(""), fNumberOfEmcClusters) ; clu = dynamic_cast( emcRecPoints->At(fNumberOfEmcClusters) ) ; fNumberOfEmcClusters++ ; // clu->AddDigit(*digit, Calibrate(digit->GetAmp(),digit->GetId())) ; // YVK clu->AddDigit(*digit, digit->GetEnergy()) ; clusterdigitslist[iDigitInCluster] = digit->GetIndexInList() ; iDigitInCluster++ ; digitsC->Remove(digit) ; } else { // start a new CPV cluster if(fNumberOfCpvClusters >= cpvRecPoints->GetSize()) cpvRecPoints->Expand(2*fNumberOfCpvClusters+1); cpvRecPoints->AddAt(new AliPHOSCpvRecPoint(""), fNumberOfCpvClusters) ; clu = dynamic_cast( cpvRecPoints->At(fNumberOfCpvClusters) ) ; fNumberOfCpvClusters++ ; clu->AddDigit(*digit, Calibrate(digit->GetAmp(),digit->GetId()) ) ; clusterdigitslist[iDigitInCluster] = digit->GetIndexInList() ; iDigitInCluster++ ; digitsC->Remove(digit) ; nextdigit.Reset() ; // Here we remove remaining EMC digits, which cannot make a cluster if( notremoved ) { while( ( digit = dynamic_cast( nextdigit() ) ) ) { if( IsInEmc(digit) ) digitsC->Remove(digit) ; else break ; } notremoved = kFALSE ; } } // else nextdigit.Reset() ; AliPHOSDigit * digitN ; index = 0 ; while (index < iDigitInCluster){ // scan over digits already in cluster digit = dynamic_cast( digits->At(clusterdigitslist[index]) ) ; index++ ; while ( (digitN = dynamic_cast( nextdigit() ) ) ) { // scan over the reduced list of digits Int_t ineb = AreNeighbours(digit, digitN); // call (digit,digitN) in THAT oder !!!!! switch (ineb ) { case 0 : // not a neighbour break ; case 1 : // are neighbours // clu->AddDigit(*digitN, Calibrate( digitN->GetAmp(), digitN->GetId() ) ) ; // YVK: distinguish EMC and CPV!!! clu->AddDigit(*digitN, digitN->GetEnergy()) ; clusterdigitslist[iDigitInCluster] = digitN->GetIndexInList() ; iDigitInCluster++ ; digitsC->Remove(digitN) ; break ; case 2 : // too far from each other goto endofloop; } // switch } // while digitN endofloop: ; nextdigit.Reset() ; } // loop over cluster } // energy theshold } // while digit delete digitsC ; } //____________________________________________________________________________ void AliPHOSClusterizerv1::MakeUnfolding() { // Unfolds clusters using the shape of an ElectroMagnetic shower // Performs unfolding of all EMC/CPV clusters AliPHOSGetter * gime = AliPHOSGetter::Instance(); const AliPHOSGeometry * geom = gime->PHOSGeometry() ; TObjArray * emcRecPoints = gime->EmcRecPoints() ; TObjArray * cpvRecPoints = gime->CpvRecPoints() ; TClonesArray * digits = gime->Digits() ; // Unfold first EMC clusters if(fNumberOfEmcClusters > 0){ Int_t nModulesToUnfold = geom->GetNModules() ; Int_t numberofNotUnfolded = fNumberOfEmcClusters ; Int_t index ; for(index = 0 ; index < numberofNotUnfolded ; index++){ AliPHOSEmcRecPoint * emcRecPoint = dynamic_cast( emcRecPoints->At(index) ) ; if(emcRecPoint->GetPHOSMod()> nModulesToUnfold) break ; Int_t nMultipl = emcRecPoint->GetMultiplicity() ; AliPHOSDigit ** maxAt = new AliPHOSDigit*[nMultipl] ; Float_t * maxAtEnergy = new Float_t[nMultipl] ; Int_t nMax = emcRecPoint->GetNumberOfLocalMax(maxAt, maxAtEnergy,fEmcLocMaxCut,digits) ; if( nMax > 1 ) { // if cluster is very flat (no pronounced maximum) then nMax = 0 UnfoldCluster(emcRecPoint, nMax, maxAt, maxAtEnergy) ; emcRecPoints->Remove(emcRecPoint); emcRecPoints->Compress() ; index-- ; fNumberOfEmcClusters -- ; numberofNotUnfolded-- ; } else{ emcRecPoint->SetNExMax(1) ; //Only one local maximum } delete[] maxAt ; delete[] maxAtEnergy ; } } // Unfolding of EMC clusters finished // Unfold now CPV clusters if(fNumberOfCpvClusters > 0){ Int_t nModulesToUnfold = geom->GetNModules() ; Int_t numberofCpvNotUnfolded = fNumberOfCpvClusters ; Int_t index ; for(index = 0 ; index < numberofCpvNotUnfolded ; index++){ AliPHOSRecPoint * recPoint = dynamic_cast( cpvRecPoints->At(index) ) ; if(recPoint->GetPHOSMod()> nModulesToUnfold) break ; AliPHOSEmcRecPoint * emcRecPoint = dynamic_cast(recPoint) ; Int_t nMultipl = emcRecPoint->GetMultiplicity() ; AliPHOSDigit ** maxAt = new AliPHOSDigit*[nMultipl] ; Float_t * maxAtEnergy = new Float_t[nMultipl] ; Int_t nMax = emcRecPoint->GetNumberOfLocalMax(maxAt, maxAtEnergy,fCpvLocMaxCut,digits) ; if( nMax > 1 ) { // if cluster is very flat (no pronounced maximum) then nMax = 0 UnfoldCluster(emcRecPoint, nMax, maxAt, maxAtEnergy) ; cpvRecPoints->Remove(emcRecPoint); cpvRecPoints->Compress() ; index-- ; numberofCpvNotUnfolded-- ; fNumberOfCpvClusters-- ; } delete[] maxAt ; delete[] maxAtEnergy ; } } //Unfolding of Cpv clusters finished } //____________________________________________________________________________ Double_t AliPHOSClusterizerv1::ShowerShape(Double_t r) { // Shape of the shower (see PHOS TDR) // If you change this function, change also the gradient evaluation in ChiSquare() Double_t r4 = r*r*r*r ; Double_t r295 = TMath::Power(r, 2.95) ; Double_t shape = TMath::Exp( -r4 * (1. / (2.32 + 0.26 * r4) + 0.0316 / (1 + 0.0652 * r295) ) ) ; return shape ; } //____________________________________________________________________________ void AliPHOSClusterizerv1::UnfoldCluster(AliPHOSEmcRecPoint * iniEmc, Int_t nMax, AliPHOSDigit ** maxAt, Float_t * maxAtEnergy) { // Performs the unfolding of a cluster with nMax overlapping showers AliPHOSGetter * gime = AliPHOSGetter::Instance(); const AliPHOSGeometry * geom = gime->PHOSGeometry() ; const TClonesArray * digits = gime->Digits() ; TObjArray * emcRecPoints = gime->EmcRecPoints() ; TObjArray * cpvRecPoints = gime->CpvRecPoints() ; Int_t nPar = 3 * nMax ; Float_t * fitparameters = new Float_t[nPar] ; Bool_t rv = FindFit(iniEmc, maxAt, maxAtEnergy, nPar, fitparameters) ; if( !rv ) { // Fit failed, return and remove cluster iniEmc->SetNExMax(-1) ; delete[] fitparameters ; return ; } // create ufolded rec points and fill them with new energy lists // First calculate energy deposited in each sell in accordance with fit (without fluctuations): efit[] // and later correct this number in acordance with actual energy deposition Int_t nDigits = iniEmc->GetMultiplicity() ; Float_t * efit = new Float_t[nDigits] ; Float_t xDigit=0.,zDigit=0.,distance=0. ; Float_t xpar=0.,zpar=0.,epar=0. ; Int_t relid[4] ; AliPHOSDigit * digit = 0 ; Int_t * emcDigits = iniEmc->GetDigitsList() ; Int_t iparam ; Int_t iDigit ; for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){ digit = dynamic_cast( digits->At(emcDigits[iDigit] ) ) ; geom->AbsToRelNumbering(digit->GetId(), relid) ; geom->RelPosInModule(relid, xDigit, zDigit) ; efit[iDigit] = 0; iparam = 0 ; while(iparam < nPar ){ xpar = fitparameters[iparam] ; zpar = fitparameters[iparam+1] ; epar = fitparameters[iparam+2] ; iparam += 3 ; distance = (xDigit - xpar) * (xDigit - xpar) + (zDigit - zpar) * (zDigit - zpar) ; distance = TMath::Sqrt(distance) ; efit[iDigit] += epar * ShowerShape(distance) ; } } // Now create new RecPoints and fill energy lists with efit corrected to fluctuations // so that energy deposited in each cell is distributed betwin new clusters proportionally // to its contribution to efit Float_t * emcEnergies = iniEmc->GetEnergiesList() ; Float_t ratio ; iparam = 0 ; while(iparam < nPar ){ xpar = fitparameters[iparam] ; zpar = fitparameters[iparam+1] ; epar = fitparameters[iparam+2] ; iparam += 3 ; AliPHOSEmcRecPoint * emcRP = 0 ; if(iniEmc->IsEmc()){ //create new entries in fEmcRecPoints... if(fNumberOfEmcClusters >= emcRecPoints->GetSize()) emcRecPoints->Expand(2*fNumberOfEmcClusters) ; (*emcRecPoints)[fNumberOfEmcClusters] = new AliPHOSEmcRecPoint("") ; emcRP = dynamic_cast( emcRecPoints->At(fNumberOfEmcClusters) ) ; fNumberOfEmcClusters++ ; emcRP->SetNExMax((Int_t)nPar/3) ; } else{//create new entries in fCpvRecPoints if(fNumberOfCpvClusters >= cpvRecPoints->GetSize()) cpvRecPoints->Expand(2*fNumberOfCpvClusters) ; (*cpvRecPoints)[fNumberOfCpvClusters] = new AliPHOSCpvRecPoint("") ; emcRP = dynamic_cast( cpvRecPoints->At(fNumberOfCpvClusters) ) ; fNumberOfCpvClusters++ ; } Float_t eDigit ; for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){ digit = dynamic_cast( digits->At( emcDigits[iDigit] ) ) ; geom->AbsToRelNumbering(digit->GetId(), relid) ; geom->RelPosInModule(relid, xDigit, zDigit) ; distance = (xDigit - xpar) * (xDigit - xpar) + (zDigit - zpar) * (zDigit - zpar) ; distance = TMath::Sqrt(distance) ; ratio = epar * ShowerShape(distance) / efit[iDigit] ; eDigit = emcEnergies[iDigit] * ratio ; emcRP->AddDigit( *digit, eDigit ) ; } } delete[] fitparameters ; delete[] efit ; } //_____________________________________________________________________________ void AliPHOSClusterizerv1::UnfoldingChiSquare(Int_t & nPar, Double_t * Grad, Double_t & fret, Double_t * x, Int_t iflag) { // Calculates the Chi square for the cluster unfolding minimization // Number of parameters, Gradient, Chi squared, parameters, what to do TList * toMinuit = dynamic_cast( gMinuit->GetObjectFit() ) ; AliPHOSEmcRecPoint * emcRP = dynamic_cast( toMinuit->At(0) ) ; TClonesArray * digits = dynamic_cast( toMinuit->At(1) ) ; // AliPHOSEmcRecPoint * emcRP = dynamic_cast( gMinuit->GetObjectFit() ) ; // EmcRecPoint to fit Int_t * emcDigits = emcRP->GetDigitsList() ; Int_t nOdigits = emcRP->GetDigitsMultiplicity() ; Float_t * emcEnergies = emcRP->GetEnergiesList() ; const AliPHOSGeometry * geom = AliPHOSGetter::Instance()->PHOSGeometry() ; fret = 0. ; Int_t iparam ; if(iflag == 2) for(iparam = 0 ; iparam < nPar ; iparam++) Grad[iparam] = 0 ; // Will evaluate gradient Double_t efit ; AliPHOSDigit * digit ; Int_t iDigit ; for( iDigit = 0 ; iDigit < nOdigits ; iDigit++) { digit = dynamic_cast( digits->At( emcDigits[iDigit] ) ); Int_t relid[4] ; Float_t xDigit ; Float_t zDigit ; geom->AbsToRelNumbering(digit->GetId(), relid) ; geom->RelPosInModule(relid, xDigit, zDigit) ; if(iflag == 2){ // calculate gradient Int_t iParam = 0 ; efit = 0 ; while(iParam < nPar ){ Double_t distance = (xDigit - x[iParam]) * (xDigit - x[iParam]) ; iParam++ ; distance += (zDigit - x[iParam]) * (zDigit - x[iParam]) ; distance = TMath::Sqrt( distance ) ; iParam++ ; efit += x[iParam] * ShowerShape(distance) ; iParam++ ; } Double_t sum = 2. * (efit - emcEnergies[iDigit]) / emcEnergies[iDigit] ; // Here we assume, that sigma = sqrt(E) iParam = 0 ; while(iParam < nPar ){ Double_t xpar = x[iParam] ; Double_t zpar = x[iParam+1] ; Double_t epar = x[iParam+2] ; Double_t dr = TMath::Sqrt( (xDigit - xpar) * (xDigit - xpar) + (zDigit - zpar) * (zDigit - zpar) ); Double_t shape = sum * ShowerShape(dr) ; Double_t r4 = dr*dr*dr*dr ; Double_t r295 = TMath::Power(dr,2.95) ; Double_t deriv =-4. * dr*dr * ( 2.32 / ( (2.32 + 0.26 * r4) * (2.32 + 0.26 * r4) ) + 0.0316 * (1. + 0.0171 * r295) / ( ( 1. + 0.0652 * r295) * (1. + 0.0652 * r295) ) ) ; Grad[iParam] += epar * shape * deriv * (xpar - xDigit) ; // Derivative over x iParam++ ; Grad[iParam] += epar * shape * deriv * (zpar - zDigit) ; // Derivative over z iParam++ ; Grad[iParam] += shape ; // Derivative over energy iParam++ ; } } efit = 0; iparam = 0 ; while(iparam < nPar ){ Double_t xpar = x[iparam] ; Double_t zpar = x[iparam+1] ; Double_t epar = x[iparam+2] ; iparam += 3 ; Double_t distance = (xDigit - xpar) * (xDigit - xpar) + (zDigit - zpar) * (zDigit - zpar) ; distance = TMath::Sqrt(distance) ; efit += epar * ShowerShape(distance) ; } fret += (efit-emcEnergies[iDigit])*(efit-emcEnergies[iDigit])/emcEnergies[iDigit] ; // Here we assume, that sigma = sqrt(E) } } //____________________________________________________________________________ void AliPHOSClusterizerv1::Print(const Option_t *)const { // Print clusterizer parameters TString message ; TString taskName(GetName()) ; taskName.ReplaceAll(Version(), "") ; if( strcmp(GetName(), "") !=0 ) { // Print parameters message = "\n--------------- %s %s -----------\n" ; message += "Clusterizing digits from the file: %s\n" ; message += " Branch: %s\n" ; message += " EMC Clustering threshold = %f\n" ; message += " EMC Local Maximum cut = %f\n" ; message += " EMC Logarothmic weight = %f\n" ; message += " CPV Clustering threshold = %f\n" ; message += " CPV Local Maximum cut = %f\n" ; message += " CPV Logarothmic weight = %f\n" ; if(fToUnfold) message += " Unfolding on\n" ; else message += " Unfolding off\n" ; message += "------------------------------------------------------------------" ; } else message = " AliPHOSClusterizerv1 not initialized " ; AliInfo(Form("%s, %s %s %s %s %s %s %s %s %s %s", message.Data(), taskName.Data(), GetTitle(), taskName.Data(), GetName(), fEmcClusteringThreshold, fEmcLocMaxCut, fW0, fCpvClusteringThreshold, fCpvLocMaxCut, fW0CPV )) ; } //____________________________________________________________________________ void AliPHOSClusterizerv1::PrintRecPoints(Option_t * option) { // Prints list of RecPoints produced at the current pass of AliPHOSClusterizer AliPHOSGetter * gime = AliPHOSGetter::Instance(); TObjArray * emcRecPoints = gime->EmcRecPoints() ; TObjArray * cpvRecPoints = gime->CpvRecPoints() ; AliInfo(Form("\nevent %d \n Found %d EMC RecPoints and %d CPV RecPoints", gAlice->GetEvNumber(), emcRecPoints->GetEntriesFast(), cpvRecPoints->GetEntriesFast() )) ; fRecPointsInRun += emcRecPoints->GetEntriesFast() ; fRecPointsInRun += cpvRecPoints->GetEntriesFast() ; if(strstr(option,"all")) { printf("\n EMC clusters \n") ; printf("Index Ene(MeV) Multi Module X Y Z Lambdas_1 Lambda_2 # of prim Primaries list\n") ; Int_t index ; for (index = 0 ; index < emcRecPoints->GetEntries() ; index++) { AliPHOSEmcRecPoint * rp = (AliPHOSEmcRecPoint * )emcRecPoints->At(index) ; TVector3 locpos; rp->GetLocalPosition(locpos); Float_t lambda[2]; rp->GetElipsAxis(lambda); Int_t * primaries; Int_t nprimaries; primaries = rp->GetPrimaries(nprimaries); printf("\n%6d %8.2f %3d %2d %4.1f %4.1f %4.1f %4f %4f %2d : ", rp->GetIndexInList(), rp->GetEnergy(), rp->GetMultiplicity(), rp->GetPHOSMod(), locpos.X(), locpos.Y(), locpos.Z(), lambda[0], lambda[1], nprimaries) ; for (Int_t iprimary=0; iprimaryGetEntries() ; index++) { AliPHOSCpvRecPoint * rp = (AliPHOSCpvRecPoint * )cpvRecPoints->At(index) ; TVector3 locpos; rp->GetLocalPosition(locpos); printf("\n%6d %8.2f %2d %4.1f %4.1f %4.1f \n", rp->GetIndexInList(), rp->GetEnergy(), rp->GetPHOSMod(), locpos.X(), locpos.Y(), locpos.Z()) ; } } }