/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /* $Log: 1 October 2000. Yuri Kharlov: AreNeighbours() PPSD upper layer is considered if number of layers>1 18 October 2000. Yuri Kharlov: AliPHOSClusterizerv1() CPV clusterizing parameters added MakeClusters() After first PPSD digit remove EMC digits only once */ //*-- Author: Yves Schutz (SUBATECH) & Dmitri Peressounko (SUBATECH & Kurchatov Institute) ////////////////////////////////////////////////////////////////////////////// // Clusterization class. Performs clusterization (collects neighbouring active cells) and // unfolding of the clusters with several local maxima. // results are stored in TreeR#, branches PHOSEmcRP (EMC recPoints), // PHOSCpvRP (CPV RecPoints) and AliPHOSClusterizer (Clusterizer with all // parameters including input digits branch file name thresholds etc.) // This TTask normally called from Reconstructioner, but as well can be used it in // standalone mode: // root [0] AliPHOSClusterizerv1 * cl = new AliPHOSClusterizerv1("galice.root") // Warning in : object already instantiated // //reads gAlice from header file "..." // root [1] cl->ExecuteTask() // //finds RecPoints in all events stored in galice.root // root [2] cl->SetDigitsBranch("digits2") // //sets another input file // root [3] cl->SetRecPointsBranch("recp2") // //sets another aouput file // root [4] cl->SetEmcLocalMaxCut(0.03) // //set clusterization parameters // root [5] cl->ExecuteTask("deb all time") // //once more finds RecPoints options are // // deb - print number of found rec points // // deb all - print number of found RecPoints and some their characteristics // // time - print benchmarking results // --- ROOT system --- #include "TROOT.h" #include "TFile.h" #include "TFolder.h" #include "TMath.h" #include "TMinuit.h" #include "TTree.h" #include "TSystem.h" #include "TBenchmark.h" // --- Standard library --- #include #include // --- AliRoot header files --- #include "AliPHOSClusterizerv1.h" #include "AliPHOSCpvRecPoint.h" #include "AliPHOSDigit.h" #include "AliPHOSDigitizer.h" #include "AliPHOSEmcRecPoint.h" #include "AliPHOS.h" #include "AliPHOSPpsdRecPoint.h" #include "AliRun.h" ClassImp(AliPHOSClusterizerv1) //____________________________________________________________________________ AliPHOSClusterizerv1::AliPHOSClusterizerv1():AliPHOSClusterizer() { // default ctor (to be used) SetName("AliPHOSClusterizer"); SetTitle("Version 1") ; fNumberOfCpvClusters = 0 ; fNumberOfEmcClusters = 0 ; fCpvClusteringThreshold = 0.0; fEmcClusteringThreshold = 0.2; fPpsdClusteringThreshold = 0.0000002 ; fEmcLocMaxCut = 0.03 ; fCpvLocMaxCut = 0.03 ; fW0 = 4.5 ; fW0CPV = 4.0 ; fGeom = 0 ; fDigits = 0 ; fDigitizer = 0 ; fEmcRecPoints = 0 ; fCpvRecPoints = 0 ; fIsInitialized = kFALSE ; } //____________________________________________________________________________ AliPHOSClusterizerv1::AliPHOSClusterizerv1(const char* headerFile,const char* digitsFile):AliPHOSClusterizer() { SetName("AliPHOSClusterizer"); SetTitle("Version 1") ; fNumberOfCpvClusters = 0 ; fNumberOfEmcClusters = 0 ; fCpvClusteringThreshold = 0.0; fEmcClusteringThreshold = 0.2; fPpsdClusteringThreshold = 0.0000002 ; fEmcLocMaxCut = 0.03 ; fCpvLocMaxCut = 0.03 ; fW0 = 4.5 ; fW0CPV = 4.0 ; fToUnfold = kTRUE ; fHeaderFileName = headerFile ; fDigitsBranchTitle = digitsFile ; TFile * file = (TFile*) gROOT->GetFile(fHeaderFileName.Data() ) ; if(file == 0){ file = new TFile(fHeaderFileName.Data(),"update") ; gAlice = (AliRun *) file->Get("gAlice") ; } AliPHOS * phos = (AliPHOS *) gAlice->GetDetector("PHOS") ; fGeom = AliPHOSGeometry::GetInstance(phos->GetGeometry()->GetName(),phos->GetGeometry()->GetTitle() ); fDigits = new TClonesArray("AliPHOSDigit",10) ; fDigitizer = new AliPHOSDigitizer() ; fEmcRecPoints = new TObjArray(200) ; fCpvRecPoints = new TObjArray(200) ; if(!gMinuit) gMinuit = new TMinuit(100) ; // add Task to //root/Tasks folder TTask * roottasks = (TTask*)gROOT->GetRootFolder()->FindObject("Tasks") ; roottasks->Add(this) ; fIsInitialized = kTRUE ; } //____________________________________________________________________________ void AliPHOSClusterizerv1::Exec(Option_t * option){ // Steerign function if(!fIsInitialized) Init() ; if(strstr(option,"tim")) gBenchmark->Start("PHOSClusterizer"); Int_t nEvents = (Int_t) gAlice->TreeE()->GetEntries() ; for(fEvent = 0;fEvent< nEvents; fEvent++){ if(!ReadDigits()) //reads digits for event fEvent return; MakeClusters() ; if(fToUnfold) MakeUnfolding() ; WriteRecPoints() ; if(strstr(option,"deb")) PrintRecPoints(option) ; } if(strstr(option,"tim")){ gBenchmark->Stop("PHOSClusterizer"); cout << "AliPHOSClusterizer:" << endl ; cout << " took " << gBenchmark->GetCpuTime("PHOSClusterizer") << " seconds for Clusterizing " << gBenchmark->GetCpuTime("PHOSClusterizer")/nEvents << " seconds per event " << endl ; cout << endl ; } } //____________________________________________________________________________ Bool_t AliPHOSClusterizerv1::FindFit(AliPHOSEmcRecPoint * emcRP, int * maxAt, Float_t * maxAtEnergy, Int_t nPar, Float_t * fitparameters) { // Calls TMinuit to fit the energy distribution of a cluster with several maxima gMinuit->mncler(); // Reset Minuit's list of paramters gMinuit->SetPrintLevel(-1) ; // No Printout gMinuit->SetFCN(AliPHOSClusterizerv1::UnfoldingChiSquare) ; // To set the address of the minimization function TList * toMinuit = new TList(); toMinuit->AddAt(emcRP,0) ; toMinuit->AddAt(fDigits,1) ; gMinuit->SetObjectFit(toMinuit) ; // To tranfer pointer to UnfoldingChiSquare // filling initial values for fit parameters AliPHOSDigit * digit ; Int_t ierflg = 0; Int_t index = 0 ; Int_t nDigits = (Int_t) nPar / 3 ; Int_t iDigit ; for(iDigit = 0; iDigit < nDigits; iDigit++){ digit = (AliPHOSDigit *) maxAt[iDigit]; Int_t relid[4] ; Float_t x ; Float_t z ; fGeom->AbsToRelNumbering(digit->GetId(), relid) ; fGeom->RelPosInModule(relid, x, z) ; Float_t energy = maxAtEnergy[iDigit] ; gMinuit->mnparm(index, "x", x, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ cout << "PHOS Unfolding> Unable to set initial value for fit procedure : x = " << x << endl ; return kFALSE; } gMinuit->mnparm(index, "z", z, 0.1, 0, 0, ierflg) ; index++ ; if(ierflg != 0){ cout << "PHOS Unfolding> Unable to set initial value for fit procedure : z = " << z << endl ; return kFALSE; } gMinuit->mnparm(index, "Energy", energy , 0.05*energy, 0., 4.*energy, ierflg) ; index++ ; if(ierflg != 0){ cout << "PHOS Unfolding> Unable to set initial value for fit procedure : energy = " << energy << endl ; return kFALSE; } } Double_t p0 = 0.1 ; // "Tolerance" Evaluation stops when EDM = 0.0001*p0 ; The number of function call slightly // depends on it. Double_t p1 = 1.0 ; Double_t p2 = 0.0 ; gMinuit->mnexcm("SET STR", &p2, 0, ierflg) ; // force TMinuit to reduce function calls gMinuit->mnexcm("SET GRA", &p1, 1, ierflg) ; // force TMinuit to use my gradient gMinuit->SetMaxIterations(5); gMinuit->mnexcm("SET NOW", &p2 , 0, ierflg) ; // No Warnings gMinuit->mnexcm("MIGRAD", &p0, 0, ierflg) ; // minimize if(ierflg == 4){ // Minimum not found cout << "PHOS Unfolding> Fit not converged, cluster abandoned "<< endl ; return kFALSE ; } for(index = 0; index < nPar; index++){ Double_t err ; Double_t val ; gMinuit->GetParameter(index, val, err) ; // Returns value and error of parameter index fitparameters[index] = val ; } delete toMinuit ; return kTRUE; } //____________________________________________________________________________ void AliPHOSClusterizerv1::Init(){ if(!fIsInitialized){ if(fHeaderFileName.IsNull()) fHeaderFileName = "galice.root" ; TFile * file = (TFile*) gROOT->GetFile(fHeaderFileName.Data() ) ; if(file == 0){ file = new TFile(fHeaderFileName.Data(),"update") ; gAlice = (AliRun *) file->Get("gAlice") ; } AliPHOS * phos = (AliPHOS *) gAlice->GetDetector("PHOS") ; fGeom = AliPHOSGeometry::GetInstance(phos->GetGeometry()->GetName(),phos->GetGeometry()->GetTitle() ); fDigits = new TClonesArray("AliPHOSDigit",10) ; fDigitizer = new AliPHOSDigitizer() ; fEmcRecPoints = new TObjArray(200) ; fCpvRecPoints = new TObjArray(200) ; if(!gMinuit) gMinuit = new TMinuit(100) ; // add Task to //root/Tasks folder TTask * roottasks = (TTask*)gROOT->GetRootFolder()->FindObject("Tasks") ; roottasks->Add(this) ; fIsInitialized = kTRUE ; } } //____________________________________________________________________________ Int_t AliPHOSClusterizerv1::AreNeighbours(AliPHOSDigit * d1, AliPHOSDigit * d2)const { // Gives the neighbourness of two digits = 0 are not neighbour but continue searching // = 1 are neighbour // = 2 are not neighbour but do not continue searching // neighbours are defined as digits having at least common vertex // The order of d1 and d2 is important: first (d1) should be a digit already in a cluster // which is compared to a digit (d2) not yet in a cluster Int_t rv = 0 ; Int_t relid1[4] ; fGeom->AbsToRelNumbering(d1->GetId(), relid1) ; Int_t relid2[4] ; fGeom->AbsToRelNumbering(d2->GetId(), relid2) ; if ( (relid1[0] == relid2[0]) && (relid1[1]==relid2[1]) ) { // inside the same PHOS module and the same PPSD Module Int_t rowdiff = TMath::Abs( relid1[2] - relid2[2] ) ; Int_t coldiff = TMath::Abs( relid1[3] - relid2[3] ) ; if (( coldiff <= 1 ) && ( rowdiff <= 1 )){ rv = 1 ; } else { if((relid2[2] > relid1[2]) && (relid2[3] > relid1[3]+1)) rv = 2; // Difference in row numbers is too large to look further } } else { if( (relid1[0] < relid2[0]) || (relid1[1] < relid2[1]) ) rv=2 ; } //Do NOT clusterize upper PPSD if( IsInPpsd(d1) && IsInPpsd(d2) && relid1[1] > 0 && relid1[1] < fGeom->GetNumberOfPadsPhi()*fGeom->GetNumberOfPadsPhi() ) rv = 2 ; return rv ; } //____________________________________________________________________________ Bool_t AliPHOSClusterizerv1::IsInEmc(AliPHOSDigit * digit) const { // Tells if (true) or not (false) the digit is in a PHOS-EMC module Bool_t rv = kFALSE ; Int_t relid[4] ; fGeom->AbsToRelNumbering(digit->GetId(), relid) ; if ( relid[1] == 0 ) rv = kTRUE; return rv ; } //____________________________________________________________________________ Bool_t AliPHOSClusterizerv1::IsInPpsd(AliPHOSDigit * digit) const { // Tells if (true) or not (false) the digit is in a PHOS-PPSD module Bool_t rv = kFALSE ; Int_t relid[4] ; fGeom->AbsToRelNumbering(digit->GetId(), relid) ; if ( relid[1] > 0 && relid[0] > fGeom->GetNCPVModules() ) rv = kTRUE; return rv ; } //____________________________________________________________________________ Bool_t AliPHOSClusterizerv1::IsInCpv(AliPHOSDigit * digit) const { // Tells if (true) or not (false) the digit is in a PHOS-CPV module Bool_t rv = kFALSE ; Int_t relid[4] ; fGeom->AbsToRelNumbering(digit->GetId(), relid) ; if ( relid[1] > 0 && relid[0] <= fGeom->GetNCPVModules() ) rv = kTRUE; return rv ; } //____________________________________________________________________________ Bool_t AliPHOSClusterizerv1::ReadDigits(){ fNumberOfEmcClusters = 0 ; fNumberOfCpvClusters = 0 ; // Get Digits Tree header from file char treeName[20]; sprintf(treeName,"TreeD%d",fEvent); gAlice->GetEvent(fEvent) ; gAlice->SetEvent(fEvent) ; TTree * treeD = gAlice->TreeD() ; // (TTree*)file->Get(treeName); if(treeD==0){ cout << "Error in AliPHOSClusterizerv1 : no "<GetListOfBranches() ; Int_t ibranch; Bool_t phosNotFound = kTRUE ; Bool_t digitizerNotFound = kTRUE ; for(ibranch = 0;ibranch GetEntries();ibranch++){ if(phosNotFound){ digitsBranch=(TBranch *) branches->At(ibranch) ; if( fDigitsBranchTitle.CompareTo(digitsBranch->GetTitle())==0 ) if( strcmp(digitsBranch->GetName(),"PHOS") == 0) phosNotFound = kFALSE ; } if(digitizerNotFound){ digitizerBranch = (TBranch *) branches->At(ibranch) ; if( fDigitsBranchTitle.CompareTo(digitizerBranch->GetTitle()) == 0) if( strcmp(digitizerBranch->GetName(),"AliPHOSDigitizer") == 0) digitizerNotFound = kFALSE ; } } if(digitizerNotFound || phosNotFound){ cout << "ERROR in AliPHOSClusterizerv1: " << endl ; cout << " Can't find Branch with digits or Digitizer "<< endl ; ; cout << " Do nothing" <SetAddress(&fDigits) ; digitizerBranch->SetAddress(&fDigitizer) ; treeD->GetEvent(0) ; fPedestal = fDigitizer->GetPedestal() ; fSlope = fDigitizer->GetSlope() ; return kTRUE ; } //____________________________________________________________________________ void AliPHOSClusterizerv1::WriteRecPoints(){ Int_t index ; //Evaluate poisition, dispersion and other RecPoint properties... for(index = 0; index < fEmcRecPoints->GetEntries(); index++) ((AliPHOSEmcRecPoint *)fEmcRecPoints->At(index))->EvalAll(fW0,fDigits) ; fEmcRecPoints->Sort() ; for(index = 0; index < fEmcRecPoints->GetEntries(); index++) ((AliPHOSEmcRecPoint *)fEmcRecPoints->At(index))->SetIndexInList(index) ; //Now the same for CPV for(index = 0; index < fCpvRecPoints->GetEntries(); index++) ((AliPHOSRecPoint *)fCpvRecPoints->At(index))->EvalAll(fW0CPV,fDigits) ; fCpvRecPoints->Sort() ; for(index = 0; index < fCpvRecPoints->GetEntries(); index++) ((AliPHOSRecPoint *)fCpvRecPoints->At(index))->SetIndexInList(index) ; if(gAlice->TreeR()==0) gAlice->MakeTree("R") ; //Check, if branches already exist TBranch * emcBranch = 0; TBranch * cpvBranch = 0; TBranch * clusterizerBranch = 0; TObjArray * branches = gAlice->TreeR()->GetListOfBranches() ; Int_t ibranch; Bool_t emcNotFound = kTRUE ; Bool_t cpvNotFound = kTRUE ; Bool_t clusterizerNotFound = kTRUE ; for(ibranch = 0;ibranch GetEntries();ibranch++){ if(emcNotFound){ emcBranch=(TBranch *) branches->At(ibranch) ; if( fRecPointsBranchTitle.CompareTo(emcBranch->GetTitle())==0 ){ if( strcmp(emcBranch->GetName(),"PHOSEmcRP") == 0) { emcNotFound = kFALSE ; } } } if(cpvNotFound){ cpvBranch=(TBranch *) branches->At(ibranch) ; if( fRecPointsBranchTitle.CompareTo(cpvBranch->GetTitle())==0 ){ if( strcmp(cpvBranch->GetName(),"PHOSCpvRP") == 0) { cpvNotFound = kFALSE ; } } } if(clusterizerNotFound){ clusterizerBranch = (TBranch *) branches->At(ibranch) ; if( fRecPointsBranchTitle.CompareTo(clusterizerBranch->GetTitle()) == 0){ if( strcmp(clusterizerBranch->GetName(),"AliPHOSClusterizer") == 0) { clusterizerNotFound = kFALSE ; } } } } if(!(clusterizerNotFound && emcNotFound && cpvNotFound)){ cout << "AliPHOSClusterizer error" << endl; cout << " Branches PHOSEmcRP, PHOSCpvRP and AliPHOSClusterizer " << endl ; cout << " with title '" << fRecPointsBranchTitle.Data() <<"' already exist" << endl ; cout << " can not overwrite " << endl ; return ; } //Make branches in TreeR for RecPoints and Clusterizer char * filename = 0; if(gSystem->Getenv("CONFIG_SPLIT_FILE")!=0){ //generating file name filename = new char[strlen(gAlice->GetBaseFile())+20] ; sprintf(filename,"%s/PHOS.Reco.root",gAlice->GetBaseFile()) ; } //Make new branches TDirectory *cwd = gDirectory; //First EMC Int_t bufferSize = 32000 ; Int_t splitlevel = 0 ; emcBranch = gAlice->TreeR()->Branch("PHOSEmcRP","TObjArray",&fEmcRecPoints,bufferSize,splitlevel); emcBranch->SetTitle(fRecPointsBranchTitle.Data()); if (filename) { emcBranch->SetFile(filename); TIter next( emcBranch->GetListOfBranches()); while ((emcBranch=(TBranch*)next())) { emcBranch->SetFile(filename); } cwd->cd(); } //Now CPV branch cpvBranch = gAlice->TreeR()->Branch("PHOSCpvRP","TObjArray",&fCpvRecPoints,bufferSize,splitlevel); cpvBranch->SetTitle(fRecPointsBranchTitle.Data()); if (filename) { cpvBranch->SetFile(filename); TIter next( cpvBranch->GetListOfBranches()); while ((cpvBranch=(TBranch*)next())) { cpvBranch->SetFile(filename); } cwd->cd(); } //And Finally clusterizer branch AliPHOSClusterizerv1 * cl = this ; clusterizerBranch = gAlice->TreeR()->Branch("AliPHOSClusterizer","AliPHOSClusterizerv1", &cl,bufferSize,splitlevel); clusterizerBranch->SetTitle(fRecPointsBranchTitle.Data()); if (filename) { clusterizerBranch->SetFile(filename); TIter next( clusterizerBranch->GetListOfBranches()); while ((clusterizerBranch=(TBranch*)next())) { clusterizerBranch->SetFile(filename); } cwd->cd(); } gAlice->TreeR()->Fill() ; gAlice->TreeR()->Write(0,kOverwrite) ; } //____________________________________________________________________________ void AliPHOSClusterizerv1::MakeClusters() { // Steering method to construct the clusters stored in a list of Reconstructed Points // A cluster is defined as a list of neighbour digits fEmcRecPoints->Clear() ; fCpvRecPoints->Clear() ; // Clusterization starts TClonesArray * digits = (TClonesArray*)fDigits->Clone() ; TIter nextdigit(digits) ; AliPHOSDigit * digit ; Bool_t notremoved = kTRUE ; while ( (digit = (AliPHOSDigit *)nextdigit()) ) { // scan over the list of digits AliPHOSRecPoint * clu = 0 ; TArrayI clusterdigitslist(1000) ; Int_t index ; if (( IsInEmc (digit) && Calibrate(digit->GetAmp()) > fEmcClusteringThreshold ) || ( IsInPpsd(digit) && Calibrate(digit->GetAmp()) > fPpsdClusteringThreshold ) || ( IsInCpv (digit) && Calibrate(digit->GetAmp()) > fCpvClusteringThreshold ) ) { Int_t iDigitInCluster = 0 ; if ( IsInEmc(digit) ) { // start a new EMC RecPoint if(fNumberOfEmcClusters >= fEmcRecPoints->GetSize()) fEmcRecPoints->Expand(2*fNumberOfEmcClusters+1) ; fEmcRecPoints->AddAt(new AliPHOSEmcRecPoint(), fNumberOfEmcClusters) ; clu = (AliPHOSEmcRecPoint *) fEmcRecPoints->At(fNumberOfEmcClusters) ; fNumberOfEmcClusters++ ; clu->AddDigit(*digit, Calibrate(digit->GetAmp())) ; clusterdigitslist[iDigitInCluster] = digit->GetIndexInList() ; iDigitInCluster++ ; digits->Remove(digit) ; } else { // start a new PPSD/CPV cluster if(fNumberOfCpvClusters >= fCpvRecPoints->GetSize()) fCpvRecPoints->Expand(2*fNumberOfCpvClusters+1); if(IsInPpsd(digit)) fCpvRecPoints->AddAt(new AliPHOSPpsdRecPoint(),fNumberOfCpvClusters) ; else fCpvRecPoints->AddAt(new AliPHOSCpvRecPoint(), fNumberOfCpvClusters) ; clu = (AliPHOSPpsdRecPoint *) fCpvRecPoints->At(fNumberOfCpvClusters) ; fNumberOfCpvClusters++ ; clu->AddDigit(*digit, Calibrate(digit->GetAmp()) ) ; clusterdigitslist[iDigitInCluster] = digit->GetIndexInList() ; iDigitInCluster++ ; digits->Remove(digit) ; nextdigit.Reset() ; // Here we remove resting EMC digits, which cannot make cluster if( notremoved ) { while( ( digit = (AliPHOSDigit *)nextdigit() ) ) { if( IsInEmc(digit) ) digits->Remove(digit) ; else break ; } notremoved = kFALSE ; } } // else nextdigit.Reset() ; AliPHOSDigit * digitN ; index = 0 ; while (index < iDigitInCluster){ // scan over digits already in cluster digit = (AliPHOSDigit*)fDigits->At(clusterdigitslist[index]) ; index++ ; while ( (digitN = (AliPHOSDigit *)nextdigit()) ) { // scan over the reduced list of digits Int_t ineb = AreNeighbours(digit, digitN); // call (digit,digitN) in THAT oder !!!!! switch (ineb ) { case 0 : // not a neighbour break ; case 1 : // are neighbours clu->AddDigit(*digitN, Calibrate( digitN->GetAmp() ) ) ; clusterdigitslist[iDigitInCluster] = digitN->GetIndexInList() ; iDigitInCluster++ ; digits->Remove(digitN) ; break ; case 2 : // too far from each other goto endofloop; } // switch } // while digitN endofloop: ; nextdigit.Reset() ; } // loop over cluster } // energy theshold } // while digit delete digits ; } //____________________________________________________________________________ void AliPHOSClusterizerv1::MakeUnfolding(){ //Unfolds clusters using the shape of ElectroMagnetic shower // Performs unfolding of all EMC/CPV but NOT ppsd clusters //Unfold first EMC clusters if(fNumberOfEmcClusters > 0){ Int_t nModulesToUnfold = fGeom->GetNModules() ; Int_t numberofNotUnfolded = fNumberOfEmcClusters ; Int_t index ; for(index = 0 ; index < numberofNotUnfolded ; index++){ AliPHOSEmcRecPoint * emcRecPoint = (AliPHOSEmcRecPoint *) fEmcRecPoints->At(index) ; if(emcRecPoint->GetPHOSMod()> nModulesToUnfold) break ; Int_t nMultipl = emcRecPoint->GetMultiplicity() ; Int_t * maxAt = new Int_t[nMultipl] ; Float_t * maxAtEnergy = new Float_t[nMultipl] ; Int_t nMax = emcRecPoint->GetNumberOfLocalMax(maxAt, maxAtEnergy,fEmcLocMaxCut,fDigits) ; if( nMax > 1 ) { // if cluster is very flat (no pronounced maximum) then nMax = 0 UnfoldCluster(emcRecPoint, nMax, maxAt, maxAtEnergy) ; fEmcRecPoints->Remove(emcRecPoint); fEmcRecPoints->Compress() ; index-- ; fNumberOfEmcClusters -- ; numberofNotUnfolded-- ; } delete[] maxAt ; delete[] maxAtEnergy ; } } //Unfolding of EMC clusters finished //Unfold now CPV clusters if(fNumberOfCpvClusters > 0){ Int_t nModulesToUnfold = fGeom->GetNCPVModules() ; Int_t numberofCpvNotUnfolded = fNumberOfCpvClusters ; Int_t index ; for(index = 0 ; index < numberofCpvNotUnfolded ; index++){ AliPHOSRecPoint * recPoint = (AliPHOSRecPoint *) fCpvRecPoints->At(index) ; if(recPoint->GetPHOSMod()> nModulesToUnfold) break ; AliPHOSEmcRecPoint * emcRecPoint = (AliPHOSEmcRecPoint*) recPoint ; Int_t nMultipl = emcRecPoint->GetMultiplicity() ; Int_t * maxAt = new Int_t[nMultipl] ; Float_t * maxAtEnergy = new Float_t[nMultipl] ; Int_t nMax = emcRecPoint->GetNumberOfLocalMax(maxAt, maxAtEnergy,fCpvLocMaxCut,fDigits) ; if( nMax > 1 ) { // if cluster is very flat (no pronounced maximum) then nMax = 0 UnfoldCluster(emcRecPoint, nMax, maxAt, maxAtEnergy) ; fCpvRecPoints->Remove(emcRecPoint); fCpvRecPoints->Compress() ; index-- ; numberofCpvNotUnfolded-- ; fNumberOfCpvClusters-- ; } delete[] maxAt ; delete[] maxAtEnergy ; } } //Unfolding of Cpv clusters finished } //____________________________________________________________________________ void AliPHOSClusterizerv1::SetDigitsBranch(const char * title){ fDigitsBranchTitle = title ; } //____________________________________________________________________________ void AliPHOSClusterizerv1::SetRecPointsBranch(const char * title){ fRecPointsBranchTitle = title; } //____________________________________________________________________________ Double_t AliPHOSClusterizerv1::ShowerShape(Double_t r) { // Shape of the shower (see PHOS TDR) // If you change this function, change also the gradien evaluation in ChiSquare() Double_t r4 = r*r*r*r ; Double_t r295 = TMath::Power(r, 2.95) ; Double_t shape = TMath::Exp( -r4 * (1. / (2.32 + 0.26 * r4) + 0.0316 / (1 + 0.0652 * r295) ) ) ; return shape ; } //____________________________________________________________________________ void AliPHOSClusterizerv1::UnfoldCluster(AliPHOSEmcRecPoint * iniEmc, Int_t nMax, int * maxAt, Float_t * maxAtEnergy) { // Performs the unfolding of a cluster with nMax overlapping showers Int_t nPar = 3 * nMax ; Float_t * fitparameters = new Float_t[nPar] ; Bool_t rv = FindFit(iniEmc, maxAt, maxAtEnergy, nPar, fitparameters) ; if( !rv ) { // Fit failed, return and remove cluster delete[] fitparameters ; return ; } // create ufolded rec points and fill them with new energy lists // First calculate energy deposited in each sell in accordance with fit (without fluctuations): efit[] // and later correct this number in acordance with actual energy deposition Int_t nDigits = iniEmc->GetMultiplicity() ; Float_t * efit = new Float_t[nDigits] ; Float_t xDigit,zDigit,distance ; Float_t xpar,zpar,epar ; Int_t relid[4] ; AliPHOSDigit * digit ; Int_t * emcDigits = iniEmc->GetDigitsList() ; Int_t iparam ; Int_t iDigit ; for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){ digit = (AliPHOSDigit*) fDigits->At(emcDigits[iDigit] ) ; fGeom->AbsToRelNumbering(digit->GetId(), relid) ; fGeom->RelPosInModule(relid, xDigit, zDigit) ; efit[iDigit] = 0; iparam = 0 ; while(iparam < nPar ){ xpar = fitparameters[iparam] ; zpar = fitparameters[iparam+1] ; epar = fitparameters[iparam+2] ; iparam += 3 ; distance = (xDigit - xpar) * (xDigit - xpar) + (zDigit - zpar) * (zDigit - zpar) ; distance = TMath::Sqrt(distance) ; efit[iDigit] += epar * ShowerShape(distance) ; } } // Now create new RecPoints and fill energy lists with efit corrected to fluctuations // so that energy deposited in each cell is distributed betwin new clusters proportionally // to its contribution to efit Float_t * emcEnergies = iniEmc->GetEnergiesList() ; Float_t ratio ; iparam = 0 ; while(iparam < nPar ){ xpar = fitparameters[iparam] ; zpar = fitparameters[iparam+1] ; epar = fitparameters[iparam+2] ; iparam += 3 ; AliPHOSEmcRecPoint * emcRP ; if(iniEmc->IsEmc()){ //create new entries in fEmcRecPoints... if(fNumberOfEmcClusters >= fEmcRecPoints->GetSize()) fEmcRecPoints->Expand(2*fNumberOfEmcClusters) ; (*fEmcRecPoints)[fNumberOfEmcClusters] = new AliPHOSEmcRecPoint() ; emcRP = (AliPHOSEmcRecPoint *) fEmcRecPoints->At(fNumberOfEmcClusters); fNumberOfEmcClusters++ ; } else{//create new entries in fCpvRecPoints if(fNumberOfCpvClusters >= fCpvRecPoints->GetSize()) fCpvRecPoints->Expand(2*fNumberOfCpvClusters) ; (*fCpvRecPoints)[fNumberOfCpvClusters] = new AliPHOSCpvRecPoint() ; emcRP = (AliPHOSEmcRecPoint *) fCpvRecPoints->At(fNumberOfCpvClusters); fNumberOfCpvClusters++ ; } Float_t eDigit ; for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){ digit = (AliPHOSDigit*) fDigits->At( emcDigits[iDigit] ) ; fGeom->AbsToRelNumbering(digit->GetId(), relid) ; fGeom->RelPosInModule(relid, xDigit, zDigit) ; distance = (xDigit - xpar) * (xDigit - xpar) + (zDigit - zpar) * (zDigit - zpar) ; distance = TMath::Sqrt(distance) ; ratio = epar * ShowerShape(distance) / efit[iDigit] ; eDigit = emcEnergies[iDigit] * ratio ; emcRP->AddDigit( *digit, eDigit ) ; } } delete[] fitparameters ; delete[] efit ; } //_____________________________________________________________________________ void AliPHOSClusterizerv1::UnfoldingChiSquare(Int_t & nPar, Double_t * Grad, Double_t & fret, Double_t * x, Int_t iflag) { // Calculates th Chi square for the cluster unfolding minimization // Number of parameters, Gradient, Chi squared, parameters, what to do TList * toMinuit = (TList*) gMinuit->GetObjectFit() ; AliPHOSEmcRecPoint * emcRP = (AliPHOSEmcRecPoint*) toMinuit->At(0) ; TClonesArray * digits = (TClonesArray*)toMinuit->At(1) ; // AliPHOSEmcRecPoint * emcRP = (AliPHOSEmcRecPoint *) gMinuit->GetObjectFit() ; // EmcRecPoint to fit Int_t * emcDigits = emcRP->GetDigitsList() ; Int_t nOfDigits = emcRP->GetDigitsMultiplicity() ; Float_t * emcEnergies = emcRP->GetEnergiesList() ; AliPHOSGeometry * geom = AliPHOSGeometry::GetInstance() ; fret = 0. ; Int_t iparam ; if(iflag == 2) for(iparam = 0 ; iparam < nPar ; iparam++) Grad[iparam] = 0 ; // Will evaluate gradient Double_t efit ; AliPHOSDigit * digit ; Int_t iDigit ; for( iDigit = 0 ; iDigit < nOfDigits ; iDigit++) { digit = (AliPHOSDigit*) digits->At( emcDigits[iDigit] ) ; Int_t relid[4] ; Float_t xDigit ; Float_t zDigit ; geom->AbsToRelNumbering(digit->GetId(), relid) ; geom->RelPosInModule(relid, xDigit, zDigit) ; if(iflag == 2){ // calculate gradient Int_t iParam = 0 ; efit = 0 ; while(iParam < nPar ){ Double_t distance = (xDigit - x[iParam]) * (xDigit - x[iParam]) ; iParam++ ; distance += (zDigit - x[iParam]) * (zDigit - x[iParam]) ; distance = TMath::Sqrt( distance ) ; iParam++ ; efit += x[iParam] * ShowerShape(distance) ; iParam++ ; } Double_t sum = 2. * (efit - emcEnergies[iDigit]) / emcEnergies[iDigit] ; // Here we assume, that sigma = sqrt(E) iParam = 0 ; while(iParam < nPar ){ Double_t xpar = x[iParam] ; Double_t zpar = x[iParam+1] ; Double_t epar = x[iParam+2] ; Double_t dr = TMath::Sqrt( (xDigit - xpar) * (xDigit - xpar) + (zDigit - zpar) * (zDigit - zpar) ); Double_t shape = sum * ShowerShape(dr) ; Double_t r4 = dr*dr*dr*dr ; Double_t r295 = TMath::Power(dr,2.95) ; Double_t deriv =-4. * dr*dr * ( 2.32 / ( (2.32 + 0.26 * r4) * (2.32 + 0.26 * r4) ) + 0.0316 * (1. + 0.0171 * r295) / ( ( 1. + 0.0652 * r295) * (1. + 0.0652 * r295) ) ) ; Grad[iParam] += epar * shape * deriv * (xpar - xDigit) ; // Derivative over x iParam++ ; Grad[iParam] += epar * shape * deriv * (zpar - zDigit) ; // Derivative over z iParam++ ; Grad[iParam] += shape ; // Derivative over energy iParam++ ; } } efit = 0; iparam = 0 ; while(iparam < nPar ){ Double_t xpar = x[iparam] ; Double_t zpar = x[iparam+1] ; Double_t epar = x[iparam+2] ; iparam += 3 ; Double_t distance = (xDigit - xpar) * (xDigit - xpar) + (zDigit - zpar) * (zDigit - zpar) ; distance = TMath::Sqrt(distance) ; efit += epar * ShowerShape(distance) ; } fret += (efit-emcEnergies[iDigit])*(efit-emcEnergies[iDigit])/emcEnergies[iDigit] ; // Here we assume, that sigma = sqrt(E) } } //____________________________________________________________________________ void AliPHOSClusterizerv1::Print(Option_t * option)const { if(fIsInitialized){ // Print parameters cout << "---------------"<< GetName() << " " << GetTitle()<< "-----------" << endl << "Clusterizing digits from the file: " << fHeaderFileName.Data() << endl << " Branch: " << fDigitsBranchTitle.Data() << endl << endl << " EMC Clustering threshold = " << fEmcClusteringThreshold << endl << " EMC Local Maximum cut = " << fEmcLocMaxCut << endl << " EMC Logarothmic weight = " << fW0 << endl << endl << " CPV Clustering threshold = " << fCpvClusteringThreshold << endl << " CPV Local Maximum cut = " << fCpvLocMaxCut << endl << " CPV Logarothmic weight = " << fW0CPV << endl << endl << " PPSD Clustering threshold = " << fPpsdClusteringThreshold << endl; if(fToUnfold) cout << " Unfolding on " << endl ; else cout << " Unfolding off " << endl ; cout << "------------------------------------------------------------------" <GetEntriesFast() << " EMC Rec Points and " << fCpvRecPoints->GetEntriesFast() << " CPV RecPoints" << endl ; if(strstr(option,"all")) { cout << "EMC clusters " << endl ; cout << " Index " << " Ene(MeV) " << " Multi " << " Module " << " X " << " Y " << " Z " << " Lambda 1 " << " Lambda 2 " << " MaxEnergy " << " # of prim " << " Primaries list " << endl; Int_t index ; for (index = 0 ; index < fEmcRecPoints->GetEntries() ; index++) { AliPHOSEmcRecPoint * rp = (AliPHOSEmcRecPoint * )fEmcRecPoints->At(index) ; cout << setw(6) << rp->GetIndexInList() << " "; cout << setw(6) << rp->GetEnergy() << " "; cout << setw(6) << rp->GetMultiplicity()<< " "; cout << setw(6) << rp->GetPHOSMod() << " "; TVector3 locpos; rp->GetLocalPosition(locpos); cout << setw(8) << locpos.X() << " "; cout << setw(8) << locpos.Y() << " "; cout << setw(8) << locpos.Z() << " "; Float_t lambda[2]; rp->GetElipsAxis(lambda); cout << setw(10)<< lambda[0] << " "; cout << setw(10)<< lambda[1] << " "; Int_t * primaries; Int_t nprimaries; primaries = rp->GetPrimaries(nprimaries); cout << setw(8) << primaries << " "; for (Int_t iprimary=0; iprimaryGetEntries() ; index++) { AliPHOSRecPoint * rp = (AliPHOSRecPoint * )fCpvRecPoints->At(index) ; cout << setw(6) << rp->GetIndexInList() << " "; cout << setw(6) << rp->GetPHOSMod() << " "; if( (strcmp(rp->ClassName() , "AliPHOSPpsdRecPoint" )) == 0){ AliPHOSPpsdRecPoint * ppsd = (AliPHOSPpsdRecPoint*) rp ; if(ppsd->GetUp()) cout <<" CPV "; else cout <<" PPSD "; } else cout <<" CPV "; TVector3 locpos; rp->GetLocalPosition(locpos); cout << setw(8) << locpos.X() << " "; cout << setw(8) << locpos.Y() << " "; cout << setw(8) << locpos.Z() << " "; Int_t * primaries; Int_t nprimaries; primaries = rp->GetPrimaries(nprimaries); cout << setw(8) << primaries << " "; for (Int_t iprimary=0; iprimary