/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //_________________________________________________________________________ // RecPoint implementation for PHOS-EMC // An EmcRecPoint is a cluster of digits //*-- //*-- Author: Dmitri Peressounko (RRC KI & SUBATECH) // --- ROOT system --- #include "TPad.h" #include "TH2.h" #include "TMath.h" #include "TCanvas.h" // --- Standard library --- #include // --- AliRoot header files --- #include "AliGenerator.h" #include "AliPHOSGeometry.h" #include "AliPHOSEmcRecPoint.h" #include "AliRun.h" #include "AliPHOSGetter.h" ClassImp(AliPHOSEmcRecPoint) //____________________________________________________________________________ AliPHOSEmcRecPoint::AliPHOSEmcRecPoint() : AliPHOSRecPoint() { // ctor fMulDigit = 0 ; fAmp = 0. ; fCoreEnergy = 0 ; fEnergyList = 0 ; fLocPos.SetX(1000000.) ; //Local position should be evaluated } //____________________________________________________________________________ AliPHOSEmcRecPoint::~AliPHOSEmcRecPoint() { // dtor if ( fEnergyList ) delete[] fEnergyList ; } //____________________________________________________________________________ void AliPHOSEmcRecPoint::AddDigit(AliPHOSDigit & digit, Float_t Energy) { // Adds a digit to the RecPoint // and accumulates the total amplitude and the multiplicity if(fEnergyList == 0) fEnergyList = new Float_t[fMaxDigit]; if ( fMulDigit >= fMaxDigit ) { // increase the size of the lists fMaxDigit*=2 ; Int_t * tempo = new ( Int_t[fMaxDigit] ) ; Float_t * tempoE = new ( Float_t[fMaxDigit] ) ; Int_t index ; for ( index = 0 ; index < fMulDigit ; index++ ){ tempo[index] = fDigitsList[index] ; tempoE[index] = fEnergyList[index] ; } delete [] fDigitsList ; fDigitsList = new ( Int_t[fMaxDigit] ) ; delete [] fEnergyList ; fEnergyList = new ( Float_t[fMaxDigit] ) ; for ( index = 0 ; index < fMulDigit ; index++ ){ fDigitsList[index] = tempo[index] ; fEnergyList[index] = tempoE[index] ; } delete [] tempo ; delete [] tempoE ; } // if fDigitsList[fMulDigit] = digit.GetIndexInList() ; fEnergyList[fMulDigit] = Energy ; fMulDigit++ ; fAmp += Energy ; EvalPHOSMod(&digit) ; } //____________________________________________________________________________ Bool_t AliPHOSEmcRecPoint::AreNeighbours(AliPHOSDigit * digit1, AliPHOSDigit * digit2 ) const { // Tells if (true) or not (false) two digits are neighbors Bool_t aren = kFALSE ; AliPHOSGetter * gime = AliPHOSGetter::GetInstance() ; AliPHOSGeometry * phosgeom = (AliPHOSGeometry*)gime->PHOSGeometry(); Int_t relid1[4] ; phosgeom->AbsToRelNumbering(digit1->GetId(), relid1) ; Int_t relid2[4] ; phosgeom->AbsToRelNumbering(digit2->GetId(), relid2) ; Int_t rowdiff = TMath::Abs( relid1[2] - relid2[2] ) ; Int_t coldiff = TMath::Abs( relid1[3] - relid2[3] ) ; if (( coldiff <= 1 ) && ( rowdiff <= 1 ) && (coldiff + rowdiff > 0)) aren = kTRUE ; return aren ; } //____________________________________________________________________________ Int_t AliPHOSEmcRecPoint::Compare(const TObject * obj) const { // Compares two RecPoints according to their position in the PHOS modules Float_t delta = 1 ; //Width of "Sorting row". If you changibg this //value (what is senseless) change as vell delta in //AliPHOSTrackSegmentMakerv* and other RecPoints... Int_t rv ; AliPHOSEmcRecPoint * clu = (AliPHOSEmcRecPoint *)obj ; Int_t phosmod1 = GetPHOSMod() ; Int_t phosmod2 = clu->GetPHOSMod() ; TVector3 locpos1; GetLocalPosition(locpos1) ; TVector3 locpos2; clu->GetLocalPosition(locpos2) ; if(phosmod1 == phosmod2 ) { Int_t rowdif = (Int_t)TMath::Ceil(locpos1.X()/delta)-(Int_t)TMath::Ceil(locpos2.X()/delta) ; if (rowdif> 0) rv = 1 ; else if(rowdif < 0) rv = -1 ; else if(locpos1.Z()>locpos2.Z()) rv = -1 ; else rv = 1 ; } else { if(phosmod1 < phosmod2 ) rv = -1 ; else rv = 1 ; } return rv ; } //______________________________________________________________________________ void AliPHOSEmcRecPoint::ExecuteEvent(Int_t event, Int_t px, Int_t py) const { // Commented by Dmitri Peressounko: there is no possibility to ensure, // that AliPHOSGetter keeps the correct information. // // Execute action corresponding to one event // // This member function is called when a AliPHOSRecPoint is clicked with the locator // // // // If Left button is clicked on AliPHOSRecPoint, the digits are switched on // // and switched off when the mouse button is released. // // // // static Int_t pxold, pyold; // AliPHOSGetter * gime = AliPHOSGetter::GetInstance() ; // static TGraph * digitgraph = 0 ; // if (!gPad->IsEditable()) return; // TH2F * histo = 0 ; // TCanvas * histocanvas ; // switch (event) { // case kButton1Down: { // AliPHOSDigit * digit ; // AliPHOSGetter * gime = AliPHOSGetter::GetInstance() ; // AliPHOSGeometry * phosgeom = (AliPHOSGeometry*)gime->PHOSGeometry(); // Int_t iDigit; // Int_t relid[4] ; // const Int_t kMulDigit = AliPHOSEmcRecPoint::GetDigitsMultiplicity() ; // Float_t * xi = new Float_t[kMulDigit] ; // Float_t * zi = new Float_t[kMulDigit] ; // // create the histogram for the single cluster // // 1. gets histogram boundaries // Float_t ximax = -999. ; // Float_t zimax = -999. ; // Float_t ximin = 999. ; // Float_t zimin = 999. ; // for(iDigit=0; iDigitDigit(fDigitsList[iDigit]) ) ; // phosgeom->AbsToRelNumbering(digit->GetId(), relid) ; // phosgeom->RelPosInModule(relid, xi[iDigit], zi[iDigit]); // if ( xi[iDigit] > ximax ) // ximax = xi[iDigit] ; // if ( xi[iDigit] < ximin ) // ximin = xi[iDigit] ; // if ( zi[iDigit] > zimax ) // zimax = zi[iDigit] ; // if ( zi[iDigit] < zimin ) // zimin = zi[iDigit] ; // } // ximax += phosgeom->GetCrystalSize(0) / 2. ; // zimax += phosgeom->GetCrystalSize(2) / 2. ; // ximin -= phosgeom->GetCrystalSize(0) / 2. ; // zimin -= phosgeom->GetCrystalSize(2) / 2. ; // Int_t xdim = (int)( (ximax - ximin ) / phosgeom->GetCrystalSize(0) + 0.5 ) ; // Int_t zdim = (int)( (zimax - zimin ) / phosgeom->GetCrystalSize(2) + 0.5 ) ; // // 2. gets the histogram title // Text_t title[100] ; // sprintf(title,"Energy=%1.2f GeV ; Digits ; %d ", GetEnergy(), GetDigitsMultiplicity()) ; // if (!histo) { // delete histo ; // histo = 0 ; // } // histo = new TH2F("cluster3D", title, xdim, ximin, ximax, zdim, zimin, zimax) ; // Float_t x, z ; // for(iDigit=0; iDigitDigit(fDigitsList[iDigit]) ) ; // phosgeom->AbsToRelNumbering(digit->GetId(), relid) ; // phosgeom->RelPosInModule(relid, x, z); // histo->Fill(x, z, fEnergyList[iDigit] ) ; // } // if (!digitgraph) { // digitgraph = new TGraph(kMulDigit,xi,zi); // digitgraph-> SetMarkerStyle(5) ; // digitgraph-> SetMarkerSize(1.) ; // digitgraph-> SetMarkerColor(1) ; // digitgraph-> Paint("P") ; // } // Print() ; // histocanvas = new TCanvas("cluster", "a single cluster", 600, 500) ; // histocanvas->Draw() ; // histo->Draw("lego1") ; // delete[] xi ; // delete[] zi ; // break; // } // case kButton1Up: // if (digitgraph) { // delete digitgraph ; // digitgraph = 0 ; // } // break; // } } //____________________________________________________________________________ void AliPHOSEmcRecPoint::EvalDispersion(Float_t logWeight,TClonesArray * digits) { // Calculates the dispersion of the shower at the origine of the RecPoint Float_t d = 0 ; Float_t wtot = 0 ; TVector3 locpos; GetLocalPosition(locpos); Float_t x = locpos.X() ; Float_t z = locpos.Z() ; AliPHOSDigit * digit ; AliPHOSGetter * gime = AliPHOSGetter::GetInstance() ; AliPHOSGeometry * phosgeom = (AliPHOSGeometry*)gime->PHOSGeometry(); Int_t iDigit; for(iDigit=0; iDigit < fMulDigit; iDigit++) { digit = (AliPHOSDigit *) digits->At(fDigitsList[iDigit]) ; Int_t relid[4] ; Float_t xi ; Float_t zi ; phosgeom->AbsToRelNumbering(digit->GetId(), relid) ; phosgeom->RelPosInModule(relid, xi, zi); Float_t w = TMath::Max(0.,logWeight+TMath::Log(fEnergyList[iDigit]/fAmp ) ) ; d += w*((xi-x)*(xi-x) + (zi-z)*(zi-z) ) ; wtot+=w ; } d /= wtot ; fDispersion = TMath::Sqrt(d) ; } //______________________________________________________________________________ void AliPHOSEmcRecPoint::EvalCoreEnergy(TClonesArray * digits) { // This function calculates energy in the core, // i.e. within a radius rad = 3cm around the center. Beyond this radius // in accordance with shower profile the energy deposition // should be less than 2% Float_t coreRadius = 3 ; TVector3 locpos; GetLocalPosition(locpos); Float_t x = locpos.X() ; Float_t z = locpos.Z() ; AliPHOSDigit * digit ; AliPHOSGetter * gime = AliPHOSGetter::GetInstance() ; AliPHOSGeometry * phosgeom = (AliPHOSGeometry*)gime->PHOSGeometry(); Int_t iDigit; for(iDigit=0; iDigit < fMulDigit; iDigit++) { digit = (AliPHOSDigit *) ( digits->At(fDigitsList[iDigit]) ) ; Int_t relid[4] ; Float_t xi ; Float_t zi ; phosgeom->AbsToRelNumbering(digit->GetId(), relid) ; phosgeom->RelPosInModule(relid, xi, zi); Float_t distance = TMath::Sqrt((xi-x)*(xi-x)+(zi-z)*(zi-z)) ; if(distance < coreRadius) fCoreEnergy += fEnergyList[iDigit] ; } } //____________________________________________________________________________ void AliPHOSEmcRecPoint::EvalElipsAxis(Float_t logWeight,TClonesArray * digits) { // Calculates the axis of the shower ellipsoid Double_t wtot = 0. ; Double_t x = 0.; Double_t z = 0.; Double_t dxx = 0.; Double_t dzz = 0.; Double_t dxz = 0.; AliPHOSDigit * digit ; AliPHOSGetter * gime = AliPHOSGetter::GetInstance() ; AliPHOSGeometry * phosgeom = (AliPHOSGeometry*)gime->PHOSGeometry(); Int_t iDigit; for(iDigit=0; iDigitAt(fDigitsList[iDigit]) ; Int_t relid[4] ; Float_t xi ; Float_t zi ; phosgeom->AbsToRelNumbering(digit->GetId(), relid) ; phosgeom->RelPosInModule(relid, xi, zi); Double_t w = TMath::Max(0.,logWeight+TMath::Log(fEnergyList[iDigit]/fAmp ) ) ; dxx += w * xi * xi ; x += w * xi ; dzz += w * zi * zi ; z += w * zi ; dxz += w * xi * zi ; wtot += w ; } dxx /= wtot ; x /= wtot ; dxx -= x * x ; dzz /= wtot ; z /= wtot ; dzz -= z * z ; dxz /= wtot ; dxz -= x * z ; // //Apply correction due to non-perpendicular incidence // Double_t CosX ; // Double_t CosZ ; // AliPHOSGetter * gime = AliPHOSGetter::GetInstance() ; // AliPHOSGeometry * phosgeom = (AliPHOSGeometry*)gime->PHOSGeometry(); // Double_t DistanceToIP= (Double_t ) phosgeom->GetIPtoCrystalSurface() ; // CosX = DistanceToIP/TMath::Sqrt(DistanceToIP*DistanceToIP+x*x) ; // CosZ = DistanceToIP/TMath::Sqrt(DistanceToIP*DistanceToIP+z*z) ; // dxx = dxx/(CosX*CosX) ; // dzz = dzz/(CosZ*CosZ) ; // dxz = dxz/(CosX*CosZ) ; fLambda[0] = 0.5 * (dxx + dzz) + TMath::Sqrt( 0.25 * (dxx - dzz) * (dxx - dzz) + dxz * dxz ) ; if(fLambda[0] > 0) fLambda[0] = TMath::Sqrt(fLambda[0]) ; fLambda[1] = 0.5 * (dxx + dzz) - TMath::Sqrt( 0.25 * (dxx - dzz) * (dxx - dzz) + dxz * dxz ) ; if(fLambda[1] > 0) //To avoid exception if numerical errors lead to negative lambda. fLambda[1] = TMath::Sqrt(fLambda[1]) ; else fLambda[1]= 0. ; } //____________________________________________________________________________ void AliPHOSEmcRecPoint::EvalAll(Float_t logWeight, TClonesArray * digits ) { // Evaluates all shower parameters AliPHOSRecPoint::EvalAll(logWeight,digits) ; EvalLocalPosition(logWeight, digits) ; EvalElipsAxis(logWeight, digits) ; EvalDispersion(logWeight, digits) ; EvalCoreEnergy(digits); } //____________________________________________________________________________ void AliPHOSEmcRecPoint::EvalLocalPosition(Float_t logWeight, TClonesArray * digits) { // Calculates the center of gravity in the local PHOS-module coordinates Float_t wtot = 0. ; Int_t relid[4] ; Float_t x = 0. ; Float_t z = 0. ; AliPHOSDigit * digit ; AliPHOSGetter * gime = AliPHOSGetter::GetInstance() ; AliPHOSGeometry * phosgeom = (AliPHOSGeometry*)gime->PHOSGeometry(); Int_t iDigit; for(iDigit=0; iDigitAt(fDigitsList[iDigit]) ; Float_t xi ; Float_t zi ; phosgeom->AbsToRelNumbering(digit->GetId(), relid) ; phosgeom->RelPosInModule(relid, xi, zi); Float_t w = TMath::Max( 0., logWeight + TMath::Log( fEnergyList[iDigit] / fAmp ) ) ; x += xi * w ; z += zi * w ; wtot += w ; } x /= wtot ; z /= wtot ; // Correction for the depth of the shower starting point (TDR p 127) Float_t para = 0.925 ; Float_t parb = 6.52 ; Float_t xo,yo,zo ; //Coordinates of the origin gAlice->Generator()->GetOrigin(xo,yo,zo) ; Float_t phi = phosgeom->GetPHOSAngle(relid[0]) ; //Transform to the local ref.frame Float_t xoL,yoL ; xoL = xo*TMath::Cos(phi)-yo*TMath::Sin(phi) ; yoL = xo*TMath::Sin(phi)+yo*TMath::Cos(phi) ; Float_t radius = TMath::Sqrt((xoL-x)*(xoL-x)+ (phosgeom->GetIPtoCrystalSurface()-yoL)*(phosgeom->GetIPtoCrystalSurface()-yoL)+ (zo-z)*(zo-z)); Float_t incidencephi = TMath::ATan((x-xoL ) / radius) ; Float_t incidencetheta = TMath::ATan((z-zo) / radius) ; Float_t depthx = ( para * TMath::Log(fAmp) + parb ) * TMath::Sin(incidencephi) ; Float_t depthz = ( para * TMath::Log(fAmp) + parb ) * TMath::Sin(incidencetheta) ; fLocPos.SetX(x - depthx) ; fLocPos.SetY(0.) ; fLocPos.SetZ(z - depthz) ; fLocPosM = 0 ; } //____________________________________________________________________________ Float_t AliPHOSEmcRecPoint::GetMaximalEnergy(void) const { // Finds the maximum energy in the cluster Float_t menergy = 0. ; Int_t iDigit; for(iDigit=0; iDigit menergy) menergy = fEnergyList[iDigit] ; } return menergy ; } //____________________________________________________________________________ Int_t AliPHOSEmcRecPoint::GetMultiplicityAtLevel(const Float_t H) const { // Calculates the multiplicity of digits with energy larger than H*energy Int_t multipl = 0 ; Int_t iDigit ; for(iDigit=0; iDigit H * fAmp) multipl++ ; } return multipl ; } //____________________________________________________________________________ Int_t AliPHOSEmcRecPoint::GetNumberOfLocalMax(Int_t * maxAt, Float_t * maxAtEnergy, Float_t locMaxCut,TClonesArray * digits) const { // Calculates the number of local maxima in the cluster using fLocalMaxCut as the minimum // energy difference between two local maxima AliPHOSDigit * digit ; AliPHOSDigit * digitN ; Int_t iDigitN ; Int_t iDigit ; for(iDigit = 0; iDigit < fMulDigit; iDigit++) maxAt[iDigit] = (Int_t) digits->At(fDigitsList[iDigit]) ; for(iDigit = 0 ; iDigit < fMulDigit; iDigit++) { if(maxAt[iDigit] != -1) { digit = (AliPHOSDigit *) maxAt[iDigit] ; for(iDigitN = 0; iDigitN < fMulDigit; iDigitN++) { digitN = (AliPHOSDigit *) digits->At(fDigitsList[iDigitN]) ; if ( AreNeighbours(digit, digitN) ) { if (fEnergyList[iDigit] > fEnergyList[iDigitN] ) { maxAt[iDigitN] = -1 ; // but may be digit too is not local max ? if(fEnergyList[iDigit] < fEnergyList[iDigitN] + locMaxCut) maxAt[iDigit] = -1 ; } else { maxAt[iDigit] = -1 ; // but may be digitN too is not local max ? if(fEnergyList[iDigit] > fEnergyList[iDigitN] - locMaxCut) maxAt[iDigitN] = -1 ; } } // if Areneighbours } // while digitN } // slot not empty } // while digit iDigitN = 0 ; for(iDigit = 0; iDigit < fMulDigit; iDigit++) { if(maxAt[iDigit] != -1){ maxAt[iDigitN] = maxAt[iDigit] ; maxAtEnergy[iDigitN] = fEnergyList[iDigit] ; iDigitN++ ; } } return iDigitN ; } //____________________________________________________________________________ void AliPHOSEmcRecPoint::Print(Option_t * option) { // Print the list of digits belonging to the cluster cout << "AliPHOSEmcRecPoint: " << endl ; Int_t iDigit; cout << " digits # = " ; for(iDigit=0; iDigit