/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //_________________________________________________________________________ // Geometry class for PHOS : singleton // The EMC modules are parametrized so that any configuration can be easily implemented // The title is used to identify the type of CPV used. So far only PPSD implemented // //*-- Author: Yves Schutz (SUBATECH) // --- ROOT system --- #include "TVector3.h" #include "TRotation.h" // --- Standard library --- #include // --- AliRoot header files --- #include "AliPHOSGeometry.h" #include "AliPHOSPpsdRecPoint.h" #include "AliConst.h" ClassImp(AliPHOSGeometry) ; AliPHOSGeometry * AliPHOSGeometry::fgGeom = 0 ; //____________________________________________________________________________ AliPHOSGeometry::~AliPHOSGeometry(void) { // dtor fRotMatrixArray->Delete() ; delete fRotMatrixArray ; delete fPHOSAngle ; } //____________________________________________________________________________ Bool_t AliPHOSGeometry::AbsToRelNumbering(const Int_t AbsId, Int_t * relid) { // Converts the absolute numbering into the following array/ // relid[0] = PHOS Module number 1:fNModules // relid[1] = 0 if PbW04 // = PPSD Module number 1:fNumberOfModulesPhi*fNumberOfModulesZ*2 (2->up and bottom level) // relid[2] = Row number inside a PHOS or PPSD module // relid[3] = Column number inside a PHOS or PPSD module Bool_t rv = kTRUE ; Float_t id = AbsId ; Int_t phosmodulenumber = (Int_t)TMath:: Ceil( id / ( GetNPhi() * GetNZ() ) ) ; if ( phosmodulenumber > GetNModules() ) { // its a PPSD pad id -= GetNPhi() * GetNZ() * GetNModules() ; Float_t tempo = 2 * GetNumberOfModulesPhi() * GetNumberOfModulesZ() * GetNumberOfPadsPhi() * GetNumberOfPadsZ() ; relid[0] = (Int_t)TMath::Ceil( id / tempo ) ; id -= ( relid[0] - 1 ) * tempo ; relid[1] = (Int_t)TMath::Ceil( id / ( GetNumberOfPadsPhi() * GetNumberOfPadsZ() ) ) ; id -= ( relid[1] - 1 ) * GetNumberOfPadsPhi() * GetNumberOfPadsZ() ; relid[2] = (Int_t)TMath::Ceil( id / GetNumberOfPadsPhi() ) ; relid[3] = (Int_t) ( id - ( relid[2] - 1 ) * GetNumberOfPadsPhi() ) ; } else { // its a PW04 crystal relid[0] = phosmodulenumber ; relid[1] = 0 ; id -= ( phosmodulenumber - 1 ) * GetNPhi() * GetNZ() ; relid[2] = (Int_t)TMath::Ceil( id / GetNPhi() ) ; relid[3] = (Int_t)( id - ( relid[2] - 1 ) * GetNPhi() ) ; } return rv ; } //____________________________________________________________________________ void AliPHOSGeometry::EmcModuleCoverage(const Int_t mod, Double_t & tm, Double_t & tM, Double_t & pm, Double_t & pM, Option_t * opt) { // calculates the angular coverage in theta and phi of a EMC module Double_t conv ; if ( opt == Radian() ) conv = 1. ; else if ( opt == Degre() ) conv = 180. / TMath::Pi() ; else { cout << " AliPHOSGeometry::EmcXtalCoverage : " << opt << " unknown option; result in radian " << endl ; conv = 1. ; } Float_t phi = GetPHOSAngle(mod) * (TMath::Pi() / 180.) ; Float_t y0 = GetIPtoOuterCoverDistance() + GetUpperPlateThickness() + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness() ; Double_t angle = TMath::ATan( GetCrystalSize(0)*GetNPhi() / (2 * y0) ) ; phi = phi + 1.5 * TMath::Pi() ; // to follow the convention of the particle generator(PHOS is between 230 and 310 deg.) Double_t max = phi - angle ; Double_t min = phi + angle ; pM = TMath::Max(max, min) * conv ; pm = TMath::Min(max, min) * conv ; angle = TMath::ATan( GetCrystalSize(2)*GetNZ() / (2 * y0) ) ; max = TMath::Pi() / 2. + angle ; // to follow the convention of the particle generator(PHOS is at 90 deg.) min = TMath::Pi() / 2. - angle ; tM = TMath::Max(max, min) * conv ; tm = TMath::Min(max, min) * conv ; } //____________________________________________________________________________ void AliPHOSGeometry::EmcXtalCoverage(Double_t & theta, Double_t & phi, Option_t * opt) { // calculates the angular coverage in theta and phi of a single crystal in a EMC module Double_t conv ; if ( opt == Radian() ) conv = 1. ; else if ( opt == Degre() ) conv = 180. / TMath::Pi() ; else { cout << " AliPHOSGeometry::EmcXtalCoverage : " << opt << " unknown option; result in radian " << endl ; conv = 1. ; } Float_t y0 = GetIPtoOuterCoverDistance() + GetUpperPlateThickness() + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness() ; theta = 2 * TMath::ATan( GetCrystalSize(2) / (2 * y0) ) * conv ; phi = 2 * TMath::ATan( GetCrystalSize(0) / (2 * y0) ) * conv ; } //____________________________________________________________________________ void AliPHOSGeometry::ImpactOnEmc(const Double_t theta, const Double_t phi, Int_t & ModuleNumber, Double_t & z, Double_t & x) { // calculates the impact coordinates of a neutral particle // emitted in direction theta and phi in ALICE // searches for the PHOS EMC module ModuleNumber = 0 ; Double_t tm, tM, pm, pM ; Int_t index = 1 ; while ( ModuleNumber == 0 && index <= GetNModules() ) { EmcModuleCoverage(index, tm, tM, pm, pM) ; if ( (theta >= tm && theta <= tM) && (phi >= pm && phi <= pM ) ) ModuleNumber = index ; index++ ; } if ( ModuleNumber != 0 ) { Float_t phi0 = GetPHOSAngle(ModuleNumber) * (TMath::Pi() / 180.) + 1.5 * TMath::Pi() ; Float_t y0 = GetIPtoOuterCoverDistance() + GetUpperPlateThickness() + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness() ; Double_t angle = phi - phi0; x = y0 * TMath::Tan(angle) ; angle = theta - TMath::Pi() / 2 ; z = y0 * TMath::Tan(angle) ; } } //____________________________________________________________________________ void AliPHOSGeometry::GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos, TMatrix & gmat) { // Calculates the ALICE global coordinates of a RecPoint and the error matrix AliPHOSRecPoint * tmpPHOS = (AliPHOSRecPoint *) RecPoint ; TVector3 localposition ; tmpPHOS->GetLocalPosition(gpos) ; if ( tmpPHOS->IsEmc() ) // it is a EMC crystal { gpos.SetY( -(GetIPtoOuterCoverDistance() + GetUpperPlateThickness() + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()) ) ; } else { // it is a PPSD pad AliPHOSPpsdRecPoint * tmpPpsd = (AliPHOSPpsdRecPoint *) RecPoint ; if (tmpPpsd->GetUp() ) // it is an upper module { gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() - GetLeadToMicro2Gap() - GetLeadConverterThickness() - GetMicro1ToLeadGap() - GetMicromegas1Thickness() / 2.0 ) ) ; } else // it is a lower module gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() / 2.0) ) ; } Float_t phi = GetPHOSAngle( tmpPHOS->GetPHOSMod()) ; Double_t const kRADDEG = 180.0 / kPI ; Float_t rphi = phi / kRADDEG ; TRotation rot ; rot.RotateZ(-rphi) ; // a rotation around Z by angle TRotation dummy = rot.Invert() ; // to transform from original frame to rotate frame gpos.Transform(rot) ; // rotate the baby } //____________________________________________________________________________ void AliPHOSGeometry::GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos) { // Calculates the ALICE global coordinates of a RecPoint AliPHOSRecPoint * tmpPHOS = (AliPHOSRecPoint *) RecPoint ; TVector3 localposition ; tmpPHOS->GetLocalPosition(gpos) ; if ( tmpPHOS->IsEmc() ) // it is a EMC crystal { gpos.SetY( -(GetIPtoOuterCoverDistance() + GetUpperPlateThickness() + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()) ) ; } else { // it is a PPSD pad AliPHOSPpsdRecPoint * tmpPpsd = (AliPHOSPpsdRecPoint *) RecPoint ; if (tmpPpsd->GetUp() ) // it is an upper module { gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() - GetLeadToMicro2Gap() - GetLeadConverterThickness() - GetMicro1ToLeadGap() - GetMicromegas1Thickness() / 2.0 ) ) ; } else // it is a lower module gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() / 2.0) ) ; } Float_t phi = GetPHOSAngle( tmpPHOS->GetPHOSMod()) ; Double_t const kRADDEG = 180.0 / kPI ; Float_t rphi = phi / kRADDEG ; TRotation rot ; rot.RotateZ(-rphi) ; // a rotation around Z by angle TRotation dummy = rot.Invert() ; // to transform from original frame to rotate frame gpos.Transform(rot) ; // rotate the baby } //____________________________________________________________________________ void AliPHOSGeometry::Init(void) { // Initializes the PHOS parameters fRotMatrixArray = new TObjArray(fNModules) ; cout << "PHOS geometry setup: parameters for option " << fName << " " << fTitle << endl ; if ( ((strcmp( fName, "default" )) == 0) || ((strcmp( fName, "GPS2" )) == 0) ) { fInit = kTRUE ; this->InitPHOS() ; this->InitPPSD() ; this->SetPHOSAngles() ; } else { fInit = kFALSE ; cout << "PHOS Geometry setup: option not defined " << fName << endl ; } } //____________________________________________________________________________ void AliPHOSGeometry::InitPHOS(void) { // Initializes the EMC parameters fNPhi = 64 ; fNZ = 64 ; fNModules = 5 ; fPHOSAngle = new Float_t[fNModules] ; Int_t index ; for ( index = 0; index < fNModules; index++ ) fPHOSAngle[index] = 0.0 ; // Module position angles are set in CreateGeometry() fXtlSize[0] = 2.2 ; fXtlSize[1] = 18.0 ; fXtlSize[2] = 2.2 ; // all these numbers coming next are subject to changes fOuterBoxThickness[0] = 2.8 ; fOuterBoxThickness[1] = 5.0 ; fOuterBoxThickness[2] = 5.0 ; fUpperPlateThickness = 4.0 ; fSecondUpperPlateThickness = 5.0 ; fCrystalSupportHeight = 6.95 ; fCrystalWrapThickness = 0.01 ; fCrystalHolderThickness = 0.005 ; fModuleBoxThickness = 2.0 ; fIPtoOuterCoverDistance = 447.0 ; fIPtoCrystalSurface = 460.0 ; fPinDiodeSize[0] = 1.71 ; //Values given by Odd Harald feb 2000 fPinDiodeSize[1] = 0.0280 ; // 0.0280 is the depth of active layer in the silicon fPinDiodeSize[2] = 1.61 ; fUpperCoolingPlateThickness = 0.06 ; fSupportPlateThickness = 10.0 ; fLowerThermoPlateThickness = 3.0 ; fLowerTextolitPlateThickness = 1.0 ; fGapBetweenCrystals = 0.03 ; fTextolitBoxThickness[0] = 1.5 ; fTextolitBoxThickness[1] = 0.0 ; fTextolitBoxThickness[2] = 3.0 ; fAirThickness[0] = 1.56 ; fAirThickness[1] = 20.5175 ; fAirThickness[2] = 2.48 ; Float_t xtalModulePhiSize = fNPhi * ( fXtlSize[0] + 2 * fGapBetweenCrystals ) ; Float_t xtalModuleZSize = fNZ * ( fXtlSize[2] + 2 * fGapBetweenCrystals ) ; // The next dimensions are calculated from the above parameters fOuterBoxSize[0] = xtalModulePhiSize + 2 * ( fAirThickness[0] + fModuleBoxThickness + fTextolitBoxThickness[0] + fOuterBoxThickness[0] ) ; fOuterBoxSize[1] = ( fXtlSize[1] + fCrystalSupportHeight + fCrystalWrapThickness + fCrystalHolderThickness ) + 2 * (fAirThickness[1] + fModuleBoxThickness + fTextolitBoxThickness[1] + fOuterBoxThickness[1] ) ; fOuterBoxSize[2] = xtalModuleZSize + 2 * ( fAirThickness[2] + fModuleBoxThickness + fTextolitBoxThickness[2] + fOuterBoxThickness[2] ) ; fTextolitBoxSize[0] = fOuterBoxSize[0] - 2 * fOuterBoxThickness[0] ; fTextolitBoxSize[1] = fOuterBoxSize[1] - fOuterBoxThickness[1] - fUpperPlateThickness ; fTextolitBoxSize[2] = fOuterBoxSize[2] - 2 * fOuterBoxThickness[2] ; fAirFilledBoxSize[0] = fTextolitBoxSize[0] - 2 * fTextolitBoxThickness[0] ; fAirFilledBoxSize[1] = fTextolitBoxSize[1] - fSecondUpperPlateThickness ; fAirFilledBoxSize[2] = fTextolitBoxSize[2] - 2 * fTextolitBoxThickness[2] ; } //____________________________________________________________________________ void AliPHOSGeometry::InitPPSD(void) { // Initializes the PPSD parameters fAnodeThickness = 0.0009 ; fAvalancheGap = 0.01 ; fCathodeThickness = 0.0009 ; fCompositeThickness = 0.3 ; fConversionGap = 0.6 ; fLeadConverterThickness = 0.56 ; fLeadToMicro2Gap = 0.1 ; fLidThickness = 0.2 ; fMicro1ToLeadGap = 0.1 ; fMicromegasWallThickness = 0.6 ; fNumberOfModulesPhi = 4 ; fNumberOfModulesZ = 4 ; fNumberOfPadsPhi = 24 ; fNumberOfPadsZ = 24 ; fPCThickness = 0.1 ; fPhiDisplacement = 0.8 ; fZDisplacement = 0.8 ; fMicromegas1Thickness = fLidThickness + 2 * fCompositeThickness + fCathodeThickness + fPCThickness + fAnodeThickness + fConversionGap + fAvalancheGap ; fMicromegas2Thickness = fMicromegas1Thickness ; fPPSDModuleSize[0] = 38.0 ; fPPSDModuleSize[1] = fMicromegas1Thickness ; fPPSDModuleSize[2] = 38.0 ; fPPSDBoxSize[0] = fNumberOfModulesPhi * fPPSDModuleSize[0] + 2 * fPhiDisplacement ; fPPSDBoxSize[1] = fMicromegas2Thickness + fMicromegas2Thickness + fLeadConverterThickness + fMicro1ToLeadGap + fLeadToMicro2Gap ; fPPSDBoxSize[2] = fNumberOfModulesZ * fPPSDModuleSize[2] + 2 * fZDisplacement ; fIPtoTopLidDistance = fIPtoOuterCoverDistance - fPPSDBoxSize[1] - 1. ; } //____________________________________________________________________________ AliPHOSGeometry * AliPHOSGeometry::GetInstance() { // Returns the pointer of the unique instance return (AliPHOSGeometry *) fgGeom ; } //____________________________________________________________________________ AliPHOSGeometry * AliPHOSGeometry::GetInstance(const Text_t* name, const Text_t* title) { // Returns the pointer of the unique instance AliPHOSGeometry * rv = 0 ; if ( fgGeom == 0 ) { fgGeom = new AliPHOSGeometry(name, title) ; rv = (AliPHOSGeometry * ) fgGeom ; } else { if ( strcmp(fgGeom->GetName(), name) != 0 ) { cout << "AliPHOSGeometry : current geometry is " << fgGeom->GetName() << endl << " you cannot call " << name << endl ; } else rv = (AliPHOSGeometry *) fgGeom ; } return rv ; } //____________________________________________________________________________ Bool_t AliPHOSGeometry::RelToAbsNumbering(const Int_t * relid, Int_t & AbsId) { // Converts the relative numbering into the absolute numbering // AbsId = 1:fNModules * fNPhi * fNZ -> PbWO4 // AbsId = 1:fNModules * 2 * (fNumberOfModulesPhi * fNumberOfModulesZ) * fNumberOfPadsPhi * fNumberOfPadsZ -> PPSD Bool_t rv = kTRUE ; if ( relid[1] > 0 ) { // its a PPSD pad AbsId = GetNPhi() * GetNZ() * GetNModules() // the offset to separate emcal crystals from PPSD pads + ( relid[0] - 1 ) * GetNumberOfModulesPhi() * GetNumberOfModulesZ() // the pads offset of PHOS modules * GetNumberOfPadsPhi() * GetNumberOfPadsZ() * 2 + ( relid[1] - 1 ) * GetNumberOfPadsPhi() * GetNumberOfPadsZ() // the pads offset of PPSD modules + ( relid[2] - 1 ) * GetNumberOfPadsPhi() // the pads offset of a PPSD row + relid[3] ; // the column number } else { if ( relid[1] == 0 ) { // its a Phos crystal AbsId = ( relid[0] - 1 ) * GetNPhi() * GetNZ() // the offset of PHOS modules + ( relid[2] - 1 ) * GetNPhi() // the offset of a xtal row + relid[3] ; // the column number } } return rv ; } //____________________________________________________________________________ void AliPHOSGeometry::RelPosInAlice(const Int_t id, TVector3 & pos ) { // Converts the absolute numbering into the global ALICE coordinates if (id > 0) { Int_t relid[4] ; AbsToRelNumbering(id , relid) ; Int_t phosmodule = relid[0] ; Float_t y0 = 0 ; if ( relid[1] == 0 ) // it is a PbW04 crystal { y0 = -(GetIPtoOuterCoverDistance() + GetUpperPlateThickness() + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()) ; } if ( relid[1] > 0 ) { // its a PPSD pad if ( relid[1] > GetNumberOfModulesPhi() * GetNumberOfModulesZ() ) // its an bottom module { y0 = -( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() / 2.0) ; } else // its an upper module y0 = -( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() - GetLeadToMicro2Gap() - GetLeadConverterThickness() - GetMicro1ToLeadGap() - GetMicromegas1Thickness() / 2.0) ; } Float_t x, z ; RelPosInModule(relid, x, z) ; pos.SetX(x) ; pos.SetZ(z) ; pos.SetY( TMath::Sqrt(x*x + z*z + y0*y0) ) ; Float_t phi = GetPHOSAngle( phosmodule) ; Double_t const kRADDEG = 180.0 / kPI ; Float_t rphi = phi / kRADDEG ; TRotation rot ; rot.RotateZ(-rphi) ; // a rotation around Z by angle TRotation dummy = rot.Invert() ; // to transform from original frame to rotate frame pos.Transform(rot) ; // rotate the baby } else { pos.SetX(0.); pos.SetY(0.); pos.SetZ(0.); } } //____________________________________________________________________________ void AliPHOSGeometry::RelPosInModule(const Int_t * relid, Float_t & x, Float_t & z) { // Converts the relative numbering into the local PHOS-module (x, z) coordinates Int_t ppsdmodule ; Int_t row = relid[2] ; //offset along z axiz Int_t column = relid[3] ; //offset along x axiz Float_t padsizeZ = GetPPSDModuleSize(2)/ GetNumberOfPadsZ(); Float_t padsizeX = GetPPSDModuleSize(0)/ GetNumberOfPadsPhi(); if ( relid[1] == 0 ) { // its a PbW04 crystal x = -( GetNPhi()/2. - row + 0.5 ) * GetCrystalSize(0) ; // position ox Xtal with respect z = ( GetNZ() /2. - column + 0.5 ) * GetCrystalSize(2) ; // of center of PHOS module } else { if ( relid[1] > GetNumberOfModulesPhi() * GetNumberOfModulesZ() ) ppsdmodule = relid[1]-GetNumberOfModulesPhi() * GetNumberOfModulesZ(); else ppsdmodule = relid[1] ; Int_t modrow = 1+(Int_t)TMath::Ceil( (Float_t)ppsdmodule / GetNumberOfModulesPhi()-1. ) ; Int_t modcol = ppsdmodule - ( modrow - 1 ) * GetNumberOfModulesPhi() ; Float_t x0 = ( GetNumberOfModulesPhi() / 2. - modrow + 0.5 ) * GetPPSDModuleSize(0) ; Float_t z0 = ( GetNumberOfModulesZ() / 2. - modcol + 0.5 ) * GetPPSDModuleSize(2) ; x = - ( GetNumberOfPadsPhi()/2. - row - 0.5 ) * padsizeX + x0 ; // position of pad with respect z = ( GetNumberOfPadsZ()/2. - column - 0.5 ) * padsizeZ - z0 ; // of center of PHOS module } } //____________________________________________________________________________ void AliPHOSGeometry::SetPHOSAngles() { // Calculates the position in ALICE of the PHOS modules Double_t const kRADDEG = 180.0 / kPI ; Float_t pphi = TMath::ATan( fOuterBoxSize[0] / ( 2.0 * fIPtoOuterCoverDistance ) ) ; pphi *= kRADDEG ; for( Int_t i = 1; i <= fNModules ; i++ ) { Float_t angle = pphi * 2 * ( i - fNModules / 2.0 - 0.5 ) ; fPHOSAngle[i-1] = - angle ; } } //____________________________________________________________________________ void AliPHOSGeometry::SetLeadConverterThickness(Float_t e) { // should ultimately disappear cout << " AliPHOSGeometry WARNING : You have changed LeadConverterThickness from " << fLeadConverterThickness << " to " << e << endl ; fLeadConverterThickness = e ; }