#ifndef ALIPHOSGEOMETRY_H #define ALIPHOSGEOMETRY_H /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ /* $Id$ */ //_________________________________________________________________________ // Geometry class for PHOS : singleton // PHOS consists of the electromagnetic calorimeter (EMCA) // and a charged particle veto either in the Subatech's version (PPSD) // or in the IHEP's one (CPV). // The EMCA/PPSD/CPV modules are parametrized so that any configuration // can be easily implemented // The title is used to identify the version of CPV used. // //*-- Author: Yves Schutz (SUBATECH) // --- ROOT system --- // --- AliRoot header files --- #include "AliGeometry.h" #include "AliPHOSEMCAGeometry.h" #include "AliPHOSCPVGeometry.h" #include "AliPHOSSupportGeometry.h" class AliPHOSRecPoint; class TVector3; class AliPHOSGeometry : public AliGeometry { public: AliPHOSGeometry() ; AliPHOSGeometry(const AliPHOSGeometry & geom) ; virtual ~AliPHOSGeometry(void) ; static AliPHOSGeometry * GetInstance(const Text_t* name, const Text_t* title="") ; static AliPHOSGeometry * GetInstance() ; virtual void GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos, TMatrixF & /* gmat */) const {GetGlobal(RecPoint,gpos); } virtual void GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos) const ; virtual void GetGlobalPHOS(const AliPHOSRecPoint* RecPoint, TVector3 & gpos) const ; virtual void GetGlobalPHOS(const AliPHOSRecPoint* RecPoint, TVector3 & gpos, TMatrixF & /* gmat */) const {GetGlobalPHOS(RecPoint,gpos); } virtual Bool_t Impact(const TParticle * particle) const ; AliPHOSGeometry & operator = (const AliPHOSGeometry & /*rvalue*/) { Fatal("operator =", "not implemented") ; return *this ; } // General static TString Degre(void) { return TString("deg") ; } // a global for degree (deg) static TString Radian(void){ return TString("rad") ; } // a global for radian (rad) Bool_t AbsToRelNumbering(Int_t AbsId, Int_t * RelId) const ; // converts the absolute PHOS numbering to a relative // void EmcModuleCoverage(Int_t m, Double_t & tm, Double_t & tM, Double_t & pm, // Double_t & pM, Option_t * opt = Radian() ) const ; // // calculates the angular coverage in theta and phi of a EMC module // void EmcXtalCoverage(Double_t & theta, Double_t & phi, Option_t * opt = Radian() ) const ; // // calculates the angular coverage in theta and phi of a // // single crystal in a EMC module void ImpactOnEmc(Double_t * vtx, Double_t theta, Double_t phi, Int_t & ModuleNumber, Double_t & z, Double_t & x) const ; // void ImpactOnEmc(const TVector3& vec, Int_t & ModuleNumber, // Double_t & z, Double_t & x) const ; // void ImpactOnEmc(const TParticle& p, Int_t & ModuleNumber, // Double_t & z, Double_t & x) const ; // // calculates the impact coordinates of a neutral particle // // emitted in direction theta and phi in ALICE Bool_t IsInEMC(Int_t id) const { if (id > GetNModules() * GetNCristalsInModule() ) return kFALSE; return kTRUE; } void RelPosInModule(const Int_t * RelId, Float_t & y, Float_t & z) const ; // gets the position of element (pad or Xtal) relative to // center of PHOS module void RelPosInAlice(Int_t AbsId, TVector3 & pos) const ; // gets the position of element (pad or Xtal) relative to Alice Bool_t RelToAbsNumbering(const Int_t * RelId, Int_t & AbsId) const ; // converts the absolute PHOS numbering to a relative void RelPosToAbsId(Int_t module, Double_t x, Double_t z, Int_t & AbsId) const; // converts local PHOS-module (x, z) coordinates to absId void GetIncidentVector(const TVector3 &vtx, Int_t module, Float_t x, Float_t z, TVector3& vInc) const ; //calculates vector from vertex to current point in module local frame void Local2Global(Int_t module, Float_t x, Float_t z, TVector3 &globaPos) const ; Bool_t IsInitialized(void) const { return fgInit ; } // Return general PHOS parameters Int_t GetNModules(void) const { return fNModules ; } Float_t GetPHOSAngle(Int_t index) const { return fPHOSAngle[index-1] ; } Float_t* GetPHOSParams(void) { return fPHOSParams;} //Half-sizes of PHOS trapecoid Float_t GetIPtoUpperCPVsurface(void) const { return fIPtoUpperCPVsurface ; } Float_t GetOuterBoxSize(Int_t index) const { return 2.*fPHOSParams[index]; } Float_t GetCrystalSize(Int_t index) const { return fGeometryEMCA->GetCrystalSize(index) ; } Float_t GetCellStep(void) const { return 2.*fGeometryEMCA->GetAirCellHalfSize()[0];} Float_t GetModuleCenter(Int_t module, Int_t axis) const { return fModuleCenter[module][axis];} Float_t GetModuleAngle(Int_t module, Int_t axis, Int_t angle) const { return fModuleAngle[module][axis][angle];} // Return ideal EMCA geometry parameters AliPHOSEMCAGeometry * GetEMCAGeometry() const {return fGeometryEMCA ;} Float_t GetIPtoCrystalSurface(void) const { return fGeometryEMCA->GetIPtoCrystalSurface() ; } Float_t GetIPtoOuterCoverDistance(void) const { return fGeometryEMCA->GetIPtoOuterCoverDistance() ; } Int_t GetNPhi(void) const { return fGeometryEMCA->GetNPhi() ; } Int_t GetNZ(void) const { return fGeometryEMCA->GetNZ() ; } Int_t GetNCristalsInModule(void) const { return fGeometryEMCA->GetNPhi() * fGeometryEMCA->GetNZ() ; } // Return ideal CPV geometry parameters Int_t GetNumberOfCPVLayers(void) const { return fGeometryCPV ->GetNumberOfCPVLayers(); } Float_t GetCPVActiveSize(Int_t index) const { return fGeometryCPV->GetCPVActiveSize(index); } Int_t GetNumberOfCPVChipsPhi(void) const { return fGeometryCPV->GetNumberOfCPVChipsPhi(); } Int_t GetNumberOfCPVChipsZ(void) const { return fGeometryCPV->GetNumberOfCPVChipsZ(); } Int_t GetNumberOfCPVPadsPhi(void) const { return fGeometryCPV->GetNumberOfCPVPadsPhi(); } Int_t GetNumberOfCPVPadsZ(void) const { return fGeometryCPV->GetNumberOfCPVPadsZ(); } Float_t GetPadSizePhi(void) const { return fGeometryCPV->GetCPVPadSizePhi(); } Float_t GetPadSizeZ(void) const { return fGeometryCPV->GetCPVPadSizeZ(); } Float_t GetGassiplexChipSize(Int_t index) const { return fGeometryCPV->GetGassiplexChipSize(index); } Float_t GetCPVGasThickness(void) const { return fGeometryCPV->GetCPVGasThickness(); } Float_t GetCPVTextoliteThickness(void) const { return fGeometryCPV->GetCPVTextoliteThickness(); } Float_t GetCPVCuNiFoilThickness(void) const { return fGeometryCPV->GetCPVCuNiFoilThickness(); } Float_t GetFTPosition(Int_t index) const { return fGeometryCPV->GetFTPosition(index); } Float_t GetCPVFrameSize(Int_t index) const { return fGeometryCPV->GetCPVFrameSize(index); } Float_t GetCPVBoxSize(Int_t index) const { return fGeometryCPV ->GetCPVBoxSize(index); } Float_t GetIPtoCPVDistance(void) const { return GetIPtoOuterCoverDistance() - GetCPVBoxSize(1) - 1.0; } // Return real CPV geometry parameters void GetModuleCenter(TVector3& center, const char *det, Int_t module) const; void Global2Local(TVector3& localPosition, const TVector3& globalPosition, Int_t module) const; // Return PHOS' support geometry parameters Float_t GetRailOuterSize(Int_t index) const { return fGeometrySUPP->GetRailOuterSize(index); } Float_t GetRailPart1 (Int_t index) const { return fGeometrySUPP->GetRailPart1 (index); } Float_t GetRailPart2 (Int_t index) const { return fGeometrySUPP->GetRailPart2 (index); } Float_t GetRailPart3 (Int_t index) const { return fGeometrySUPP->GetRailPart3 (index); } Float_t GetRailPos (Int_t index) const { return fGeometrySUPP->GetRailPos (index); } Float_t GetRailLength (void) const { return fGeometrySUPP->GetRailLength (); } Float_t GetDistanceBetwRails(void) const { return fGeometrySUPP->GetDistanceBetwRails(); } Float_t GetRailsDistanceFromIP(void) const { return fGeometrySUPP->GetRailsDistanceFromIP();} Float_t GetRailRoadSize (Int_t index) const { return fGeometrySUPP->GetRailRoadSize (index); } Float_t GetCradleWallThickness(void) const { return fGeometrySUPP->GetCradleWallThickness();} Float_t GetCradleWall (Int_t index) const { return fGeometrySUPP->GetCradleWall (index); } Float_t GetCradleWheel (Int_t index) const { return fGeometrySUPP->GetCradleWheel (index); } void Init(void) ; // steering method for PHOS and PPSD/CPV protected: AliPHOSGeometry(const Text_t* name, const Text_t* title="") ; private: Int_t fNModules ; // Number of modules constituing PHOS Float_t fAngle ; // Position angles between modules Float_t *fPHOSAngle ; //[fNModules] Position angles of modules Float_t fPHOSParams[4] ; // Half-sizes of PHOS trapecoid Float_t fIPtoUpperCPVsurface; // Minimal distance from IP to PHOS Float_t fCrystalShift ; //Distance from crystal center to front surface Float_t fCryCellShift ; //Distance from crystal center to front surface TObjArray *fRotMatrixArray ; // Liste of rotation matrices (one per phos module) AliPHOSEMCAGeometry *fGeometryEMCA ; // Geometry object for Electromagnetic calorimeter AliPHOSCPVGeometry *fGeometryCPV ; // Geometry object for CPV (IHEP) AliPHOSSupportGeometry *fGeometrySUPP ; // Geometry object for PHOS support Float_t fModuleCenter[5][3]; // xyz-position of the module center Float_t fModuleAngle[5][3][2]; // polar and azymuth angles for 3 axes of modules void SetPHOSAngles(); // calculates the PHOS modules PHI angle static AliPHOSGeometry * fgGeom ; // pointer to the unique instance of the singleton static Bool_t fgInit ; // Tells if geometry has been succesfully set up ClassDef(AliPHOSGeometry,2) // PHOS geometry class } ; #endif // AliPHOSGEOMETRY_H