/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //_________________________________________________________________________ // Implementation version v1 of the PHOS particle identifier // Particle identification based on the // - RCPV: distance from CPV recpoint to EMCA recpoint. // - TOF // - PCA: Principal Components Analysis.. // The identified particle has an identification number corresponding // to a 9 bits number: // -Bit 0 to 2: bit set if RCPV > CpvEmcDistance (each bit corresponds // to a different efficiency-purity point of the photon identification) // -Bit 3 to 5: bit set if TOF < TimeGate (each bit corresponds // to a different efficiency-purity point of the photon identification) // -Bit 6 to 9: bit set if Principal Components are // inside an ellipse defined by the parameters a, b, c, x0 and y0. // (each bit corresponds to a different efficiency-purity point of the // photon identification) // The PCA (Principal components analysis) needs a file that contains // a previous analysis of the correlations between the particles. This // file is $ALICE_ROOT/PHOS/PCA8pa15_0.5-100.root. Analysis done for // energies between 0.5 and 100 GeV. // A calibrated energy is calculated. The energy of the reconstructed // cluster is corrected with the formula A + B * E + C * E^2, whose // parameters where obtained through the study of the reconstructed // energy distribution of monoenergetic photons. // // All the parameters (RCPV(2 rows-3 columns),TOF(1r-3c),PCA(5r-4c) // and calibration(1r-3c))are stored in a file called // $ALICE_ROOT/PHOS/Parameters.dat. Each time that AliPHOSPIDv1 is // initialized, this parameters are copied to a Matrix (9,4), a // TMatrixD object. // // use case: // root [0] AliPHOSPIDv1 * p = new AliPHOSPIDv1("galice1.root") // Warning in : object already instantiated // // reading headers from file galice1.root and create RecParticles // TrackSegments and RecPoints are used // // set file name for the branch RecParticles // root [1] p->ExecuteTask("deb all time") // // available options // // "deb" - prints # of reconstructed particles // // "deb all" - prints # and list of RecParticles // // "time" - prints benchmarking results // // root [2] AliPHOSPIDv1 * p2 = new AliPHOSPIDv1("galice1.root","v1",kTRUE) // Warning in : object already instantiated // //Split mode. // root [3] p2->ExecuteTask() // //*-- Author: Yves Schutz (SUBATECH) & Gines Martinez (SUBATECH) & // Gustavo Conesa April 2002 // PCA redesigned by Gustavo Conesa October 2002: // The way of using the PCA has changed. Instead of 2 // files with the PCA, each one with different energy ranges // of application, we use the wide one (0.5-100 GeV), and instead // of fixing 3 ellipses for different ranges of energy, it has been // studied the dependency of the ellipses parameters with the // energy, and they are implemented in the code as a funtion // of the energy. // // // // --- ROOT system --- #include "TROOT.h" #include "TTree.h" #include "TFile.h" #include "TF2.h" #include "TFormula.h" #include "TCanvas.h" #include "TFolder.h" #include "TSystem.h" #include "TBenchmark.h" #include "TMatrixD.h" #include "TPrincipal.h" #include "TSystem.h" // --- Standard library --- // --- AliRoot header files --- #include "AliGenerator.h" #include "AliPHOS.h" #include "AliPHOSPIDv1.h" #include "AliPHOSClusterizerv1.h" #include "AliPHOSTrackSegment.h" #include "AliPHOSTrackSegmentMakerv1.h" #include "AliPHOSRecParticle.h" #include "AliPHOSGeometry.h" #include "AliPHOSGetter.h" ClassImp( AliPHOSPIDv1) //____________________________________________________________________________ AliPHOSPIDv1::AliPHOSPIDv1():AliPHOSPID() { // default ctor InitParameters() ; fDefaultInit = kTRUE ; } //____________________________________________________________________________ AliPHOSPIDv1::AliPHOSPIDv1(const AliPHOSPIDv1 & pid ):AliPHOSPID(pid) { // ctor InitParameters() ; Init() ; } //____________________________________________________________________________ AliPHOSPIDv1::AliPHOSPIDv1(const TString alirunFileName, const TString eventFolderName):AliPHOSPID(alirunFileName, eventFolderName) { //ctor with the indication on where to look for the track segments InitParameters() ; Init() ; fDefaultInit = kFALSE ; } //____________________________________________________________________________ AliPHOSPIDv1::~AliPHOSPIDv1() { // dtor delete [] fX ; // Principal input delete [] fPPhoton ; // Photon Principal components delete [] fPPi0 ; // Pi0 Principal components } //____________________________________________________________________________ const TString AliPHOSPIDv1::BranchName() const { return GetName() ; } //____________________________________________________________________________ void AliPHOSPIDv1::Init() { // Make all memory allocations that are not possible in default constructor // Add the PID task to the list of PHOS tasks AliPHOSGetter * gime = AliPHOSGetter::Instance(GetTitle(), fEventFolderName.Data()) ; if ( !gime->PID() ) gime->PostPID(this) ; } //____________________________________________________________________________ void AliPHOSPIDv1::InitParameters() { // Initialize PID parameters fRecParticlesInRun = 0 ; fNEvent = 0 ; fRecParticlesInRun = 0 ; SetParameters() ; // fill the parameters matrix from parameters file } //________________________________________________________________________ void AliPHOSPIDv1::Exec(Option_t * option) { //Steering method if(strstr(option,"tim")) gBenchmark->Start("PHOSPID"); if(strstr(option,"print")) { Print() ; return ; } AliPHOSGetter * gime = AliPHOSGetter::Instance() ; Int_t nevents = gime->MaxEvent() ; Int_t ievent ; for(ievent = 0; ievent < nevents; ievent++){ gime->Event(ievent,"TR") ; if(gime->TrackSegments() && //Skip events, where no track segments made gime->TrackSegments()->GetEntriesFast()) { MakeRecParticles() ; WriteRecParticles(ievent); if(strstr(option,"deb")) PrintRecParticles(option) ; //increment the total number of rec particles per run fRecParticlesInRun += gime->RecParticles()->GetEntriesFast() ; } } if(strstr(option,"tim")){ gBenchmark->Stop("PHOSPID"); Info("Exec", "took %f seconds for PID %f seconds per event", gBenchmark->GetCpuTime("PHOSPID"), gBenchmark->GetCpuTime("PHOSPID")/nevents) ; } Unload(); } //____________________________________________________________________________ const TString AliPHOSPIDv1::GetFileNamePrincipal(TString particle) const { //Get file name that contains the PCA for a particle ("photon or pi0") particle.ToLower(); TString name; if (particle=="photon") name = fFileNamePrincipalPhoton ; else if (particle=="pi0" ) name = fFileNamePrincipalPi0 ; else Error("GetFileNamePrincipal","Wrong particle name: %s (choose from pi0/photon)\n",particle.Data()); return name; } //____________________________________________________________________________ const Float_t AliPHOSPIDv1::GetParameterCalibration(Int_t i) const { // Get the i-th parameter "Calibration" Float_t param = 0.; if (i>2 || i<0) Error("GetParameterCalibration","Invalid parameter number: %d",i); else param = (*fParameters)(0,i); return param; } //____________________________________________________________________________ const Float_t AliPHOSPIDv1::GetCalibratedEnergy(const Float_t e) const { // It calibrates Energy depending on the recpoint energy. // The energy of the reconstructed cluster is corrected with // the formula A + B* E + C* E^2, whose parameters where obtained // through the study of the reconstructed energy distribution of // monoenergetic photons. Float_t p[]={0.,0.,0.}; for (Int_t i=0; i<3; i++) p[i] = GetParameterCalibration(i); Float_t enerec = p[0] + p[1]*e + p[2]*e*e; return enerec ; } //____________________________________________________________________________ const Float_t AliPHOSPIDv1::GetParameterCpv2Emc(Int_t i, TString axis) const { // Get the i-th parameter "CPV-EMC distance" for the specified axis Float_t param = 0.; if(i>2 || i<0) Error("GetParameterCpv2Emc","Invalid parameter number: %d",i); else { axis.ToLower(); if (axis == "x") param = (*fParameters)(1,i); else if (axis == "z") param = (*fParameters)(2,i); else Error("GetParameterCpv2Emc","Invalid axis name: %s",axis.Data()); } return param; } //____________________________________________________________________________ const Float_t AliPHOSPIDv1::GetCpv2EmcDistanceCut(TString axis, Float_t e) const { // Get CpvtoEmcDistance Cut depending on the cluster energy, axis and // Purity-Efficiency point axis.ToLower(); Float_t p[]={0.,0.,0.}; for (Int_t i=0; i<3; i++) p[i] = GetParameterCpv2Emc(i,axis); Float_t sig = p[0] + TMath::Exp(p[1] - p[2]*e); return sig; } //____________________________________________________________________________ const Float_t AliPHOSPIDv1::GetEllipseParameter(TString particle, TString param, Float_t e) const { // Calculates the parameter param of the ellipse particle.ToLower(); param. ToLower(); Float_t p[4]={0.,0.,0.,0.}; Float_t value = 0.0; for (Int_t i=0; i<4; i++) p[i] = GetParameterToCalculateEllipse(particle,param,i); if (particle == "photon") { if (param.Contains("a")) e = TMath::Min((Double_t)e,70.); else if (param.Contains("b")) e = TMath::Min((Double_t)e,70.); else if (param.Contains("x0")) e = TMath::Max((Double_t)e,1.1); } value = p[0]/TMath::Sqrt(e) + p[1]*e + p[2]*e*e + p[3]; return value; } //_____________________________________________________________________________ const Float_t AliPHOSPIDv1::GetParameterPhotonBoundary (Int_t i) const { // Get the parameter "i" to calculate the boundary on the moment M2x // for photons at high p_T Float_t param = 0; if (i>3 || i<0) Error("GetParameterPhotonBoundary","Wrong parameter number: %d\n",i); else param = (*fParameters)(14,i) ; return param; } //____________________________________________________________________________ const Float_t AliPHOSPIDv1::GetParameterPi0Boundary (Int_t i) const { // Get the parameter "i" to calculate the boundary on the moment M2x // for pi0 at high p_T Float_t param = 0; if (i>2 || i<0) Error("GetParameterPi0Boundary","Wrong parameter number: %d\n",i); else param = (*fParameters)(15,i) ; return param; } //____________________________________________________________________________ const Float_t AliPHOSPIDv1::GetParameterTimeGate(Int_t i) const { // Get TimeGate parameter depending on Purity-Efficiency i: // i=0 - Low purity, i=1 - Medium purity, i=2 - High purity Float_t param = 0.; if(i>2 || i<0) Error("GetParameterTimeGate","Invalid Efficiency-Purity choice %d",i); else param = (*fParameters)(3,i) ; return param; } //_____________________________________________________________________________ const Float_t AliPHOSPIDv1::GetParameterToCalculateEllipse(TString particle, TString param, Int_t i) const { // Get the parameter "i" that is needed to calculate the ellipse // parameter "param" for the particle "particle" ("photon" or "pi0") particle.ToLower(); param. ToLower(); Int_t offset = -1; if (particle == "photon") offset=0; else if (particle == "pi0") offset=5; else Error("GetParameterToCalculateEllipse","Wrong particle name: %s (choose from pi0/photon)\n",particle.Data()); Int_t p= -1; Float_t par = 0; if (param.Contains("a")) p=4+offset; else if(param.Contains("b")) p=5+offset; else if(param.Contains("c")) p=6+offset; else if(param.Contains("x0"))p=7+offset; else if(param.Contains("y0"))p=8+offset; if (i>4 || i<0) Error("GetParameterToCalculateEllipse", "No parameter with index", i) ; else if (p==-1) Error("GetParameterToCalculateEllipse", "No parameter with name %s", param.Data() ) ; else par = (*fParameters)(p,i) ; return par; } //____________________________________________________________________________ const Float_t AliPHOSPIDv1::GetDistance(AliPHOSEmcRecPoint * emc,AliPHOSRecPoint * cpv, Option_t * axis)const { // Calculates the distance between the EMC RecPoint and the PPSD RecPoint const AliPHOSGeometry * geom = AliPHOSGetter::Instance()->PHOSGeometry() ; TVector3 vecEmc ; TVector3 vecCpv ; if(cpv){ emc->GetLocalPosition(vecEmc) ; cpv->GetLocalPosition(vecCpv) ; if(emc->GetPHOSMod() == cpv->GetPHOSMod()){ // Correct to difference in CPV and EMC position due to different distance to center. // we assume, that particle moves from center Float_t dCPV = geom->GetIPtoOuterCoverDistance(); Float_t dEMC = geom->GetIPtoCrystalSurface() ; dEMC = dEMC / dCPV ; vecCpv = dEMC * vecCpv - vecEmc ; if (axis == "X") return vecCpv.X(); if (axis == "Y") return vecCpv.Y(); if (axis == "Z") return vecCpv.Z(); if (axis == "R") return vecCpv.Mag(); } return 100000000 ; } return 100000000 ; } //____________________________________________________________________________ const Int_t AliPHOSPIDv1::GetCPVBit(AliPHOSEmcRecPoint * emc,AliPHOSRecPoint * cpv,const Int_t effPur, Float_t e) const { if(effPur>2 || effPur<0) Error("GetCPVBit","Invalid Efficiency-Purity choice %d",effPur); Float_t sigX = GetCpv2EmcDistanceCut("X",e); Float_t sigZ = GetCpv2EmcDistanceCut("Z",e); Float_t deltaX = TMath::Abs(GetDistance(emc, cpv, "X")); Float_t deltaZ = TMath::Abs(GetDistance(emc, cpv, "Z")); if((deltaX>sigX*(effPur+1))|(deltaZ>sigZ*(effPur+1))) return 1;//Neutral else return 0;//Charged } //____________________________________________________________________________ const Int_t AliPHOSPIDv1::GetPrincipalBit(TString particle, const Double_t* p,const Int_t effPur, Float_t e)const { //Is the particle inside de PCA ellipse? particle.ToLower(); Int_t prinbit = 0 ; Float_t a = GetEllipseParameter(particle,"a" , e); Float_t b = GetEllipseParameter(particle,"b" , e); Float_t c = GetEllipseParameter(particle,"c" , e); Float_t x0 = GetEllipseParameter(particle,"x0", e); Float_t y0 = GetEllipseParameter(particle,"y0", e); Float_t r = TMath::Power((p[0] - x0)/a,2) + TMath::Power((p[1] - y0)/b,2) + c*(p[0] - x0)*(p[1] - y0)/(a*b) ; //3 different ellipses defined if((effPur==2) && (r<1./2.)) prinbit= 1; if((effPur==1) && (r<2. )) prinbit= 1; if((effPur==0) && (r<9./2.)) prinbit= 1; if(r<0) Error("GetPrincipalBit", "Negative square?") ; return prinbit; } //____________________________________________________________________________ const Int_t AliPHOSPIDv1::GetHardPhotonBit(AliPHOSEmcRecPoint * emc) const { // Set bit for identified hard photons (E > 30 GeV) // if the second moment M2x is below the boundary Float_t e = emc->GetEnergy(); if (e < 30.0) return 0; Float_t m2x = emc->GetM2x(); Float_t m2xBoundary = GetParameterPhotonBoundary(0) * TMath::Exp(-TMath::Power(e-GetParameterPhotonBoundary(1),2)/2.0/ TMath::Power(GetParameterPhotonBoundary(2),2)) + GetParameterPhotonBoundary(3); Info("GetHardPhotonBit","E=%f, m2x=%f, boundary=%f",e,m2x,m2xBoundary); if (m2x < m2xBoundary) return 1;// A hard photon else return 0;// Not a hard photon } //____________________________________________________________________________ const Int_t AliPHOSPIDv1::GetHardPi0Bit(AliPHOSEmcRecPoint * emc) const { // Set bit for identified hard pi0 (E > 30 GeV) // if the second moment M2x is above the boundary Float_t e = emc->GetEnergy(); if (e < 30.0) return 0; Float_t m2x = emc->GetM2x(); Float_t m2xBoundary = GetParameterPi0Boundary(0) + e * GetParameterPi0Boundary(1); Info("GetHardPi0Bit","E=%f, m2x=%f, boundary=%f",e,m2x,m2xBoundary); if (m2x > m2xBoundary) return 1;// A hard pi0 else return 0;// Not a hard pi0 } //____________________________________________________________________________ TVector3 AliPHOSPIDv1::GetMomentumDirection(AliPHOSEmcRecPoint * emc, AliPHOSRecPoint * cpv)const { // Calculates the momentum direction: // 1. if only a EMC RecPoint, direction is given by IP and this RecPoint // 2. if a EMC RecPoint and CPV RecPoint, direction is given by the line through the 2 recpoints // However because of the poor position resolution of PPSD the direction is always taken as if we were // in case 1. TVector3 dir(0,0,0) ; TVector3 emcglobalpos ; TMatrix dummy ; emc->GetGlobalPosition(emcglobalpos, dummy) ; dir = emcglobalpos ; dir.SetZ( -dir.Z() ) ; // why ? dir.SetMag(1.) ; //account correction to the position of IP Float_t xo,yo,zo ; //Coordinates of the origin gAlice->Generator()->GetOrigin(xo,yo,zo) ; TVector3 origin(xo,yo,zo); dir = dir - origin ; return dir ; } //____________________________________________________________________________ void AliPHOSPIDv1::MakeRecParticles() { // Makes a RecParticle out of a TrackSegment AliPHOSGetter * gime = AliPHOSGetter::Instance() ; TObjArray * emcRecPoints = gime->EmcRecPoints() ; TObjArray * cpvRecPoints = gime->CpvRecPoints() ; TClonesArray * trackSegments = gime->TrackSegments() ; if ( !emcRecPoints || !cpvRecPoints || !trackSegments ) { Fatal("MakeRecParticles", "RecPoints or TrackSegments not found !") ; } TClonesArray * recParticles = gime->RecParticles() ; recParticles->Clear(); TIter next(trackSegments) ; AliPHOSTrackSegment * ts ; Int_t index = 0 ; AliPHOSRecParticle * rp ; while ( (ts = (AliPHOSTrackSegment *)next()) ) { new( (*recParticles)[index] ) AliPHOSRecParticle() ; rp = (AliPHOSRecParticle *)recParticles->At(index) ; rp->SetTrackSegment(index) ; rp->SetIndexInList(index) ; AliPHOSEmcRecPoint * emc = 0 ; if(ts->GetEmcIndex()>=0) emc = (AliPHOSEmcRecPoint *) emcRecPoints->At(ts->GetEmcIndex()) ; AliPHOSRecPoint * cpv = 0 ; if(ts->GetCpvIndex()>=0) cpv = (AliPHOSRecPoint *) cpvRecPoints->At(ts->GetCpvIndex()) ; // Now set type (reconstructed) of the particle // Choose the cluster energy range if (!emc) { Fatal("MakeRecParticles", "-> emc(%d) = %d", ts->GetEmcIndex(), emc ) ; } Float_t e = emc->GetEnergy() ; Float_t lambda[2] ; emc->GetElipsAxis(lambda) ; if((lambda[0]>0.01) && (lambda[1]>0.01)){ // Looking PCA. Define and calculate the data (X), // introduce in the function X2P that gives the components (P). Float_t Spher = 0. ; Float_t Emaxdtotal = 0. ; if((lambda[0]+lambda[1])!=0) Spher=fabs(lambda[0]-lambda[1])/(lambda[0]+lambda[1]); Emaxdtotal=emc->GetMaximalEnergy()/emc->GetEnergy(); fX[0] = lambda[0] ; fX[1] = lambda[1] ; fX[2] = emc->GetDispersion() ; fX[3] = Spher ; fX[4] = emc->GetMultiplicity() ; fX[5] = Emaxdtotal ; fX[6] = emc->GetCoreEnergy() ; fPrincipalPhoton->X2P(fX,fPPhoton); fPrincipalPi0 ->X2P(fX,fPPi0); } else{ fPPhoton[0]=-100.0; //We do not accept clusters with fPPhoton[1]=-100.0; //one cell as a photon-like fPPi0[0] =-100.0; fPPi0[1] =-100.0; } Float_t time =emc->GetTime() ; // Loop of Efficiency-Purity (the 3 points of purity or efficiency // are taken into account to set the particle identification) for(Int_t effPur = 0; effPur < 3 ; effPur++){ // Looking at the CPV detector. If RCPV greater than CpvEmcDistance, // 1st,2nd or 3rd bit (depending on the efficiency-purity point ) // is set to 1 if(GetCPVBit(emc, cpv, effPur,e) == 1 ) rp->SetPIDBit(effPur) ; // Looking the TOF. If TOF smaller than gate, 4th, 5th or 6th // bit (depending on the efficiency-purity point )is set to 1 if(time< (*fParameters)(2,effPur)) rp->SetPIDBit(effPur+3) ; //Photon PCA //If we are inside the ellipse, 7th, 8th or 9th // bit (depending on the efficiency-purity point )is set to 1 if(GetPrincipalBit("photon",fPPhoton,effPur,e) == 1) rp->SetPIDBit(effPur+6) ; //Pi0 PCA //If we are inside the ellipse, 10th, 11th or 12th // bit (depending on the efficiency-purity point )is set to 1 if(GetPrincipalBit("pi0" ,fPPi0 ,effPur,e) == 1) rp->SetPIDBit(effPur+9) ; } if(GetHardPhotonBit(emc)) rp->SetPIDBit(12) ; if(GetHardPi0Bit (emc)) rp->SetPIDBit(13) ; //Set momentum, energy and other parameters Float_t encal = GetCalibratedEnergy(e); TVector3 dir = GetMomentumDirection(emc,cpv) ; dir.SetMag(encal) ; rp->SetMomentum(dir.X(),dir.Y(),dir.Z(),encal) ; rp->SetCalcMass(0); rp->Name(); //If photon sets the particle pdg name to gamma rp->SetProductionVertex(0,0,0,0); rp->SetFirstMother(-1); rp->SetLastMother(-1); rp->SetFirstDaughter(-1); rp->SetLastDaughter(-1); rp->SetPolarisation(0,0,0); index++ ; } } //____________________________________________________________________________ void AliPHOSPIDv1::Print() const { // Print the parameters used for the particle type identification Info("Print", "=============== AliPHOSPIDv1 ================") ; printf("Making PID\n") ; printf(" Pricipal analysis file from 0.5 to 100 %s\n", fFileNamePrincipalPhoton.Data() ) ; printf(" Name of parameters file %s\n", fFileNameParameters.Data() ) ; printf(" Matrix of Parameters: 14x4\n") ; printf(" Energy Calibration 1x3 [3 parametres to calibrate energy: A + B* E + C * E^2]\n") ; printf(" RCPV 2x3 rows x and z, columns function cut parameters\n") ; printf(" TOF 1x3 [High Eff-Low Pur,Medium Eff-Pur, Low Eff-High Pur]\n") ; printf(" PCA 5x4 [5 ellipse parametres and 4 parametres to calculate them: A/Sqrt(E) + B* E + C * E^2 + D]\n") ; Printf(" Pi0 PCA 5x3 [5 ellipse parametres and 3 parametres to calculate them: A + B* E + C * E^2]\n") ; fParameters->Print() ; } //____________________________________________________________________________ void AliPHOSPIDv1::PrintRecParticles(Option_t * option) { // Print table of reconstructed particles AliPHOSGetter *gime = AliPHOSGetter::Instance() ; TClonesArray * recParticles = gime->RecParticles() ; TString message ; message = "\nevent " ; message += gAlice->GetEvNumber() ; message += " found " ; message += recParticles->GetEntriesFast(); message += " RecParticles\n" ; if(strstr(option,"all")) { // printing found TS message += "\n PARTICLE Index \n" ; Int_t index ; for (index = 0 ; index < recParticles->GetEntries() ; index++) { AliPHOSRecParticle * rp = (AliPHOSRecParticle * ) recParticles->At(index) ; message += "\n" ; message += rp->Name().Data() ; message += " " ; message += rp->GetIndexInList() ; message += " " ; message += rp->GetType() ; } } Info("Print", message.Data() ) ; } //____________________________________________________________________________ void AliPHOSPIDv1::SetParameters() { // PCA : To do the Principal Components Analysis it is necessary // the Principal file, which is opened here fX = new double[7]; // Data for the PCA fPPhoton = new double[7]; // Eigenvalues of the PCA fPPi0 = new double[7]; // Eigenvalues of the Pi0 PCA // Read photon principals from the photon file fFileNamePrincipalPhoton = "$ALICE_ROOT/PHOS/PCA8pa15_0.5-100.root" ; TFile f( fFileNamePrincipalPhoton.Data(), "read" ) ; fPrincipalPhoton = dynamic_cast (f.Get("principal")) ; f.Close() ; // Read pi0 principals from the pi0 file fFileNamePrincipalPi0 = "$ALICE_ROOT/PHOS/PCA_pi0_40-120.root" ; TFile fPi0( fFileNamePrincipalPi0.Data(), "read" ) ; fPrincipalPi0 = dynamic_cast (fPi0.Get("principal")) ; fPi0.Close() ; // Open parameters file and initialization of the Parameters matrix. // In the File Parameters.dat are all the parameters. These are introduced // in a matrix of 16x4 // // All the parameters defined in this file are, in order of row: // line 0 : calibration // lines 1,2 : CPV rectangular cat for X and Z // line 3 : TOF cut // lines 4-8 : parameters to calculate photon PCA ellipse // lines 9-13: parameters to calculate pi0 PCA ellipse // lines 14-15: parameters to calculate border for high-pt photons and pi0 fFileNameParameters = gSystem->ExpandPathName("$ALICE_ROOT/PHOS/Parameters.dat"); fParameters = new TMatrix(16,4) ; const Int_t maxLeng=255; char string[maxLeng]; // Open a text file with PID parameters FILE *fd = fopen(fFileNameParameters.Data(),"r"); if (!fd) Fatal("SetParameter","File %s with a PID parameters cannot be opened\n", fFileNameParameters.Data()); Int_t i=0; // Read parameter file line-by-line and skip empty line and comments while (fgets(string,maxLeng,fd) != NULL) { if (string[0] == '\n' ) continue; if (string[0] == '!' ) continue; sscanf(string, "%f %f %f %f", &(*fParameters)(i,0), &(*fParameters)(i,1), &(*fParameters)(i,2), &(*fParameters)(i,3)); i++; //printf("line %d: %s",i,string); } fclose(fd); } //____________________________________________________________________________ void AliPHOSPIDv1::SetParameterCalibration(Int_t i,Float_t param) { // Set parameter "Calibration" i to a value param if(i>2 || i<0) Error("SetParameterCalibration","Invalid parameter number: %d",i); else (*fParameters)(0,i) = param ; } //____________________________________________________________________________ void AliPHOSPIDv1::SetParameterCpv2Emc(Int_t i, TString axis, Float_t cut) { // Set the parameters to calculate Cpv-to-Emc Distance Cut depending on // Purity-Efficiency point i if(i>2 || i<0) Error("SetParameterCpv2Emc","Invalid parameter number: %d",i); else { axis.ToLower(); if (axis == "x") (*fParameters)(1,i) = cut; else if (axis == "z") (*fParameters)(2,i) = cut; else Error("SetParameterCpv2Emc","Invalid axis name: %s",axis.Data()); } } //____________________________________________________________________________ void AliPHOSPIDv1::SetParameterPhotonBoundary(Int_t i,Float_t param) { // Set parameter "Hard photon boundary" i to a value param if(i>4 || i<0) Error("SetParameterPhotonBoundary","Invalid parameter number: %d",i); else (*fParameters)(14,i) = param ; } //____________________________________________________________________________ void AliPHOSPIDv1::SetParameterPi0Boundary(Int_t i,Float_t param) { // Set parameter "Hard pi0 boundary" i to a value param if(i>1 || i<0) Error("SetParameterPi0Boundary","Invalid parameter number: %d",i); else (*fParameters)(15,i) = param ; } //_____________________________________________________________________________ void AliPHOSPIDv1::SetParameterTimeGate(Int_t i, Float_t gate) { // Set the parameter TimeGate depending on Purity-Efficiency point i if (i>2 || i<0) Error("SetParameterTimeGate","Invalid Efficiency-Purity choice %d",i); else (*fParameters)(3,i)= gate ; } //_____________________________________________________________________________ void AliPHOSPIDv1::SetParameterToCalculateEllipse(TString particle, TString param, Int_t i, Float_t par) { // Set the parameter "i" that is needed to calculate the ellipse // parameter "param" for a particle "particle" particle.ToLower(); param. ToLower(); Int_t p= -1; Int_t offset=0; if (particle == "photon") offset=0; else if (particle == "pi0") offset=5; else Error("SetParameterToCalculateEllipse","Wrong particle name: %s (choose from pi0/photon)\n",particle.Data()); if (param.Contains("a")) p=4+offset; else if(param.Contains("b")) p=5+offset; else if(param.Contains("c")) p=6+offset; else if(param.Contains("x0"))p=7+offset; else if(param.Contains("y0"))p=8+offset; if((i>4)||(i<0)) Error("SetEllipseParameter", "No parameter with index %d", i) ; else if(p==-1) Error("SetEllipseParameter", "No parameter with name %s", param.Data() ) ; else (*fParameters)(p,i) = par ; } //____________________________________________________________________________ void AliPHOSPIDv1::Unload() { AliPHOSGetter * gime = AliPHOSGetter::Instance() ; gime->PhosLoader()->UnloadRecPoints() ; gime->PhosLoader()->UnloadTracks() ; gime->PhosLoader()->UnloadRecParticles() ; } //____________________________________________________________________________ void AliPHOSPIDv1::WriteRecParticles(Int_t event) { AliPHOSGetter *gime = AliPHOSGetter::Instance() ; TClonesArray * recParticles = gime->RecParticles() ; recParticles->Expand(recParticles->GetEntriesFast() ) ; TTree * treeP = gime->TreeP(); //First rp Int_t bufferSize = 32000 ; TBranch * rpBranch = treeP->Branch("PHOSRP",&recParticles,bufferSize); rpBranch->SetTitle(BranchName()); rpBranch->Fill() ; gime->WriteRecParticles("OVERWRITE"); gime->WritePID("OVERWRITE"); }