/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /* History of cvs commits: * * $Log$ */ //_________________________________________________________________________ // Implementation version v1 of the PHOS particle identifier // Particle identification based on the // - RCPV: distance from CPV recpoint to EMCA recpoint. // - TOF // - PCA: Principal Components Analysis.. // The identified particle has an identification number corresponding // to a 9 bits number: // -Bit 0 to 2: bit set if RCPV > CpvEmcDistance (each bit corresponds // to a different efficiency-purity point of the photon identification) // -Bit 3 to 5: bit set if TOF < TimeGate (each bit corresponds // to a different efficiency-purity point of the photon identification) // -Bit 6 to 9: bit set if Principal Components are // inside an ellipse defined by the parameters a, b, c, x0 and y0. // (each bit corresponds to a different efficiency-purity point of the // photon identification) // The PCA (Principal components analysis) needs a file that contains // a previous analysis of the correlations between the particles. This // file is $ALICE_ROOT/PHOS/PCA8pa15_0.5-100.root. Analysis done for // energies between 0.5 and 100 GeV. // A calibrated energy is calculated. The energy of the reconstructed // cluster is corrected with the formula A + B * E + C * E^2, whose // parameters where obtained through the study of the reconstructed // energy distribution of monoenergetic photons. // // All the parameters (RCPV(2 rows-3 columns),TOF(1r-3c),PCA(5r-4c) // and calibration(1r-3c))are stored in a file called // $ALICE_ROOT/PHOS/Parameters.dat. Each time that AliPHOSPIDv1 is // initialized, this parameters are copied to a Matrix (9,4), a // TMatrixD object. // // use case: // root [0] AliPHOSPIDv1 * p = new AliPHOSPIDv1("galice1.root") // Warning in : object already instantiated // // reading headers from file galice1.root and create RecParticles // TrackSegments and RecPoints are used // // set file name for the branch RecParticles // root [1] p->ExecuteTask("deb all time") // // available options // // "deb" - prints # of reconstructed particles // // "deb all" - prints # and list of RecParticles // // "time" - prints benchmarking results // // root [2] AliPHOSPIDv1 * p2 = new AliPHOSPIDv1("galice1.root","v1",kTRUE) // Warning in : object already instantiated // //Split mode. // root [3] p2->ExecuteTask() // //*-- Author: Yves Schutz (SUBATECH) & Gines Martinez (SUBATECH) & // Gustavo Conesa April 2002 // PCA redesigned by Gustavo Conesa October 2002: // The way of using the PCA has changed. Instead of 2 // files with the PCA, each one with different energy ranges // of application, we use the wide one (0.5-100 GeV), and instead // of fixing 3 ellipses for different ranges of energy, it has been // studied the dependency of the ellipses parameters with the // energy, and they are implemented in the code as a funtion // of the energy. // // // // --- ROOT system --- // --- Standard library --- #include "TFormula.h" #include "TBenchmark.h" #include "TPrincipal.h" #include "TFile.h" #include "TSystem.h" // --- AliRoot header files --- //#include "AliLog.h" #include "AliGenerator.h" #include "AliPHOS.h" #include "AliPHOSPIDv1.h" #include "AliPHOSGetter.h" ClassImp( AliPHOSPIDv1) //____________________________________________________________________________ AliPHOSPIDv1::AliPHOSPIDv1():AliPHOSPID() { // default ctor InitParameters() ; fDefaultInit = kTRUE ; } //____________________________________________________________________________ AliPHOSPIDv1::AliPHOSPIDv1(const AliPHOSPIDv1 & pid ):AliPHOSPID(pid) { // ctor InitParameters() ; Init() ; } //____________________________________________________________________________ AliPHOSPIDv1::AliPHOSPIDv1(const TString alirunFileName, const TString eventFolderName):AliPHOSPID(alirunFileName, eventFolderName) { //ctor with the indication on where to look for the track segments InitParameters() ; Init() ; fDefaultInit = kFALSE ; } //____________________________________________________________________________ AliPHOSPIDv1::~AliPHOSPIDv1() { // dtor fPrincipalPhoton = 0; fPrincipalPi0 = 0; delete [] fX ; // Principal input delete [] fPPhoton ; // Photon Principal components delete [] fPPi0 ; // Pi0 Principal components delete fParameters; delete fTFphoton; delete fTFpiong; delete fTFkaong; delete fTFkaonl; delete fTFhhadrong; delete fTFhhadronl; delete fDFmuon; } //____________________________________________________________________________ const TString AliPHOSPIDv1::BranchName() const { return GetName() ; } //____________________________________________________________________________ void AliPHOSPIDv1::Init() { // Make all memory allocations that are not possible in default constructor // Add the PID task to the list of PHOS tasks AliPHOSGetter * gime = AliPHOSGetter::Instance() ; if(!gime) gime = AliPHOSGetter::Instance(GetTitle(), fEventFolderName.Data()) ; if ( !gime->PID() ) gime->PostPID(this) ; } //____________________________________________________________________________ void AliPHOSPIDv1::InitParameters() { // Initialize PID parameters fWrite = kTRUE ; fRecParticlesInRun = 0 ; fNEvent = 0 ; fRecParticlesInRun = 0 ; fBayesian = kTRUE ; SetParameters() ; // fill the parameters matrix from parameters file SetEventRange(0,-1) ; // initialisation of response function parameters // Tof // // Photons // fTphoton[0] = 0.218 ; // fTphoton[1] = 1.55E-8 ; // fTphoton[2] = 5.05E-10 ; // fTFphoton = new TFormula("ToF response to photons" , "gaus") ; // fTFphoton->SetParameters( fTphoton[0], fTphoton[1], fTphoton[2]) ; // // Pions // //Gaus (0 to max probability) // fTpiong[0] = 0.0971 ; // fTpiong[1] = 1.58E-8 ; // fTpiong[2] = 5.69E-10 ; // fTFpiong = new TFormula("ToF response to pions" , "gaus") ; // fTFpiong->SetParameters( fTpiong[0], fTpiong[1], fTpiong[2]) ; // // Kaons // //Gaus (0 to max probability) // fTkaong[0] = 0.0542 ; // fTkaong[1] = 1.64E-8 ; // fTkaong[2] = 6.07E-10 ; // fTFkaong = new TFormula("ToF response to kaon" , "gaus") ; // fTFkaong->SetParameters( fTkaong[0], fTkaong[1], fTkaong[2]) ; // //Landau (max probability to inf) // fTkaonl[0] = 0.264 ; // fTkaonl[1] = 1.68E-8 ; // fTkaonl[2] = 4.10E-10 ; // fTFkaonl = new TFormula("ToF response to kaon" , "landau") ; // fTFkaonl->SetParameters( fTkaonl[0], fTkaonl[1], fTkaonl[2]) ; // //Heavy Hadrons // //Gaus (0 to max probability) // fThhadrong[0] = 0.0302 ; // fThhadrong[1] = 1.73E-8 ; // fThhadrong[2] = 9.52E-10 ; // fTFhhadrong = new TFormula("ToF response to heavy hadrons" , "gaus") ; // fTFhhadrong->SetParameters( fThhadrong[0], fThhadrong[1], fThhadrong[2]) ; // //Landau (max probability to inf) // fThhadronl[0] = 0.139 ; // fThhadronl[1] = 1.745E-8 ; // fThhadronl[2] = 1.00E-9 ; // fTFhhadronl = new TFormula("ToF response to heavy hadrons" , "landau") ; // fTFhhadronl->SetParameters( fThhadronl[0], fThhadronl[1], fThhadronl[2]) ; // Photons fTphoton[0] = 7.83E8 ; fTphoton[1] = 1.55E-8 ; fTphoton[2] = 5.09E-10 ; fTFphoton = new TFormula("ToF response to photons" , "gaus") ; fTFphoton->SetParameters( fTphoton[0], fTphoton[1], fTphoton[2]) ; // Pions //Gaus (0 to max probability) fTpiong[0] = 6.73E8 ; fTpiong[1] = 1.58E-8 ; fTpiong[2] = 5.87E-10 ; fTFpiong = new TFormula("ToF response to pions" , "gaus") ; fTFpiong->SetParameters( fTpiong[0], fTpiong[1], fTpiong[2]) ; // Kaons //Gaus (0 to max probability) fTkaong[0] = 3.93E8 ; fTkaong[1] = 1.64E-8 ; fTkaong[2] = 6.07E-10 ; fTFkaong = new TFormula("ToF response to kaon" , "gaus") ; fTFkaong->SetParameters( fTkaong[0], fTkaong[1], fTkaong[2]) ; //Landau (max probability to inf) fTkaonl[0] = 2.0E9 ; fTkaonl[1] = 1.68E-8 ; fTkaonl[2] = 4.10E-10 ; fTFkaonl = new TFormula("ToF response to kaon" , "landau") ; fTFkaonl->SetParameters( fTkaonl[0], fTkaonl[1], fTkaonl[2]) ; //Heavy Hadrons //Gaus (0 to max probability) fThhadrong[0] = 2.02E8 ; fThhadrong[1] = 1.73E-8 ; fThhadrong[2] = 9.52E-10 ; fTFhhadrong = new TFormula("ToF response to heavy hadrons" , "gaus") ; fTFhhadrong->SetParameters( fThhadrong[0], fThhadrong[1], fThhadrong[2]) ; //Landau (max probability to inf) fThhadronl[0] = 1.10E9 ; fThhadronl[1] = 1.74E-8 ; fThhadronl[2] = 1.00E-9 ; fTFhhadronl = new TFormula("ToF response to heavy hadrons" , "landau") ; fTFhhadronl->SetParameters( fThhadronl[0], fThhadronl[1], fThhadronl[2]) ; // Shower shape: dispersion gaussian parameters // Photons // fDphoton[0] = 4.62e-2; fDphoton[1] = 1.39e-2 ; fDphoton[2] = -3.80e-2;//constant // fDphoton[3] = 1.53 ; fDphoton[4] =-6.62e-2 ; fDphoton[5] = 0.339 ;//mean // fDphoton[6] = 6.89e-2; fDphoton[7] =-6.59e-2 ; fDphoton[8] = 0.194 ;//sigma // fDpi0[0] = 0.0586 ; fDpi0[1] = 1.06E-3 ; fDpi0[2] = 0. ;//constant // fDpi0[3] = 2.67 ; fDpi0[4] =-2.00E-2 ; fDpi0[5] = 9.37E-5 ;//mean // fDpi0[6] = 0.153 ; fDpi0[7] = 9.34E-4 ; fDpi0[8] =-1.49E-5 ;//sigma // fDhadron[0] = 1.61E-2 ; fDhadron[1] = 3.03E-3 ; fDhadron[2] = 1.01E-2 ;//constant // fDhadron[3] = 3.81 ; fDhadron[4] = 0.232 ; fDhadron[5] =-1.25 ;//mean // fDhadron[6] = 0.897 ; fDhadron[7] = 0.0987 ; fDhadron[8] =-0.534 ;//sigma fDphoton[0] = 1.5 ; fDphoton[1] = 0.49 ; fDphoton[2] =-1.7E-2 ;//constant fDphoton[3] = 1.5 ; fDphoton[4] = 4.0E-2 ; fDphoton[5] = 0.21 ;//mean fDphoton[6] = 4.8E-2 ; fDphoton[7] =-0.12 ; fDphoton[8] = 0.27 ;//sigma fDphoton[9] = 16.; //for E> fDphoton[9] parameters calculated at fDphoton[9] fDpi0[0] = 0.25 ; fDpi0[1] = 3.3E-2 ; fDpi0[2] =-1.0e-5 ;//constant fDpi0[3] = 1.50 ; fDpi0[4] = 398. ; fDpi0[5] = 12. ;//mean fDpi0[6] =-7.0E-2 ; fDpi0[7] =-524. ; fDpi0[8] = 22. ;//sigma fDpi0[9] = 110.; //for E> fDpi0[9] parameters calculated at fDpi0[9] fDhadron[0] = 6.5 ; fDhadron[1] =-5.3 ; fDhadron[2] = 1.5 ;//constant fDhadron[3] = 3.8 ; fDhadron[4] = 0.23 ; fDhadron[5] =-1.2 ;//mean fDhadron[6] = 0.88 ; fDhadron[7] = 9.3E-2 ; fDhadron[8] =-0.51 ;//sigma fDhadron[9] = 2.; //for E> fDhadron[9] parameters calculated at fDhadron[9] fDmuon[0] = 0.0631 ; fDmuon[1] = 1.4 ; fDmuon[2] = 0.0557 ; fDFmuon = new TFormula("Shower shape response to muons" , "landau") ; fDFmuon->SetParameters( fDmuon[0], fDmuon[1], fDmuon[2]) ; // x(CPV-EMC) distance gaussian parameters // fXelectron[0] = 8.06e-2 ; fXelectron[1] = 1.00e-2; fXelectron[2] =-5.14e-2;//constant // fXelectron[3] = 0.202 ; fXelectron[4] = 8.15e-3; fXelectron[5] = 4.55 ;//mean // fXelectron[6] = 0.334 ; fXelectron[7] = 0.186 ; fXelectron[8] = 4.32e-2;//sigma // //charged hadrons gaus // fXcharged[0] = 6.43e-3 ; fXcharged[1] =-4.19e-5; fXcharged[2] = 1.42e-3;//constant // fXcharged[3] = 2.75 ; fXcharged[4] =-0.40 ; fXcharged[5] = 1.68 ;//mean // fXcharged[6] = 3.135 ; fXcharged[7] =-9.41e-2; fXcharged[8] = 1.31e-2;//sigma // // z(CPV-EMC) distance gaussian parameters // fZelectron[0] = 8.22e-2 ; fZelectron[1] = 5.11e-3; fZelectron[2] =-3.05e-2;//constant // fZelectron[3] = 3.09e-2 ; fZelectron[4] = 5.87e-2; fZelectron[5] =-9.49e-2;//mean // fZelectron[6] = 0.263 ; fZelectron[7] =-9.02e-3; fZelectron[8] = 0.151 ;//sigma // //charged hadrons gaus // fZcharged[0] = 1.00e-2 ; fZcharged[1] = 2.82E-4 ; fZcharged[2] = 2.87E-3 ;//constant // fZcharged[3] =-4.68e-2 ; fZcharged[4] =-9.21e-3 ; fZcharged[5] = 4.91e-2 ;//mean // fZcharged[6] = 1.425 ; fZcharged[7] =-5.90e-2 ; fZcharged[8] = 5.07e-2 ;//sigma fXelectron[0] =-1.6E-2 ; fXelectron[1] = 0.77 ; fXelectron[2] =-0.15 ;//constant fXelectron[3] = 0.35 ; fXelectron[4] = 0.25 ; fXelectron[5] = 4.12 ;//mean fXelectron[6] = 0.30 ; fXelectron[7] = 0.11 ; fXelectron[8] = 0.16 ;//sigma fXelectron[9] = 3.; //for E> fXelectron[9] parameters calculated at fXelectron[9] //charged hadrons gaus fXcharged[0] = 0.14 ; fXcharged[1] =-3.0E-2 ; fXcharged[2] = 0 ;//constant fXcharged[3] = 1.4 ; fXcharged[4] =-9.3E-2 ; fXcharged[5] = 1.4 ;//mean fXcharged[6] = 5.7 ; fXcharged[7] = 0.27 ; fXcharged[8] =-1.8 ;//sigma fXcharged[9] = 1.2; //for E> fXcharged[9] parameters calculated at fXcharged[9] // z(CPV-EMC) distance gaussian parameters fZelectron[0] = 0.49 ; fZelectron[1] = 0.53 ; fZelectron[2] =-9.8E-2 ;//constant fZelectron[3] = 2.8E-2 ; fZelectron[4] = 5.0E-2 ; fZelectron[5] =-8.2E-2 ;//mean fZelectron[6] = 0.25 ; fZelectron[7] =-1.7E-2 ; fZelectron[8] = 0.17 ;//sigma fZelectron[9] = 3.; //for E> fZelectron[9] parameters calculated at fZelectron[9] //charged hadrons gaus fZcharged[0] = 0.46 ; fZcharged[1] =-0.65 ; fZcharged[2] = 0.52 ;//constant fZcharged[3] = 1.1E-2 ; fZcharged[4] = 0. ; fZcharged[5] = 0. ;//mean fZcharged[6] = 0.60 ; fZcharged[7] =-8.2E-2 ; fZcharged[8] = 0.45 ;//sigma fZcharged[9] = 1.2; //for E> fXcharged[9] parameters calculated at fXcharged[9] //Threshold to differentiate between charged and neutral fChargedNeutralThreshold = 1e-5; fTOFEnThreshold = 2; //Maximum energy to use TOF fDispEnThreshold = 0.5; //Minimum energy to use shower shape fDispMultThreshold = 3; //Minimum multiplicity to use shower shape //Weight to hadrons recontructed energy fERecWeightPar[0] = 0.32 ; fERecWeightPar[1] = 3.8 ; fERecWeightPar[2] = 5.4E-3 ; fERecWeightPar[3] = 5.6E-2 ; fERecWeight = new TFormula("Weight for hadrons" , "[0]*exp(-x*[1])+[2]*exp(-x*[3])") ; fERecWeight ->SetParameters(fERecWeightPar[0],fERecWeightPar[1] ,fERecWeightPar[2] ,fERecWeightPar[3]) ; for (Int_t i =0; i< AliPID::kSPECIESN ; i++) fInitPID[i] = 1.; } //________________________________________________________________________ void AliPHOSPIDv1::Exec(Option_t *option) { // Steering method to perform particle reconstruction and identification // for the event range from fFirstEvent to fLastEvent. // This range is optionally set by SetEventRange(). // if fLastEvent=-1 (by default), then process events until the end. if(strstr(option,"tim")) gBenchmark->Start("PHOSPID"); if(strstr(option,"print")) { Print() ; return ; } AliPHOSGetter * gime = AliPHOSGetter::Instance() ; if (fLastEvent == -1) fLastEvent = gime->MaxEvent() - 1 ; else fLastEvent = TMath::Min(fLastEvent,gime->MaxEvent()); Int_t nEvents = fLastEvent - fFirstEvent + 1; Int_t ievent ; for (ievent = fFirstEvent; ievent <= fLastEvent; ievent++) { gime->Event(ievent,"TR") ; if(gime->TrackSegments() && //Skip events, where no track segments made gime->TrackSegments()->GetEntriesFast()) { MakeRecParticles() ; if(fBayesian) MakePID() ; WriteRecParticles(); if(strstr(option,"deb")) PrintRecParticles(option) ; //increment the total number of rec particles per run fRecParticlesInRun += gime->RecParticles()->GetEntriesFast() ; } } if(strstr(option,"deb")) PrintRecParticles(option); if(strstr(option,"tim")){ gBenchmark->Stop("PHOSPID"); AliInfo(Form("took %f seconds for PID %f seconds per event", gBenchmark->GetCpuTime("PHOSPID"), gBenchmark->GetCpuTime("PHOSPID")/nEvents)) ; } if(fWrite) Unload(); } //________________________________________________________________________ Double_t AliPHOSPIDv1::GausF(Double_t x, Double_t y, Double_t * par) { //Given the energy x and the parameter y (tof, shower dispersion or cpv-emc distance), //this method returns a density probability of this parameter, given by a gaussian //function whose parameters depend with the energy with a function: a/(x*x)+b/x+b //Float_t xorg = x; if (x > par[9]) x = par[9]; //Double_t cnt = par[1] / (x*x) + par[2] / x + par[0] ; Double_t cnt = par[0] + par[1] * x + par[2] * x * x ; Double_t mean = par[4] / (x*x) + par[5] / x + par[3] ; Double_t sigma = par[7] / (x*x) + par[8] / x + par[6] ; // if(xorg > 30) // cout<<"En_in = "<2 || i<0) { AliError(Form("Invalid parameter number: %d",i)); } else param = (*fParameters)(0,i); return param; } //____________________________________________________________________________ Float_t AliPHOSPIDv1::GetCalibratedEnergy(Float_t e) const { // It calibrates Energy depending on the recpoint energy. // The energy of the reconstructed cluster is corrected with // the formula A + B* E + C* E^2, whose parameters where obtained // through the study of the reconstructed energy distribution of // monoenergetic photons. Float_t p[]={0.,0.,0.}; for (Int_t i=0; i<3; i++) p[i] = GetParameterCalibration(i); Float_t enerec = p[0] + p[1]*e + p[2]*e*e; return enerec ; } //____________________________________________________________________________ Float_t AliPHOSPIDv1::GetParameterCpv2Emc(Int_t i, TString axis) const { // Get the i-th parameter "CPV-EMC distance" for the specified axis Float_t param = 0.; if(i>2 || i<0) { AliError(Form("Invalid parameter number: %d",i)); } else { axis.ToLower(); if (axis == "x") param = (*fParameters)(1,i); else if (axis == "z") param = (*fParameters)(2,i); else { AliError(Form("Invalid axis name: %s",axis.Data())); } } return param; } //____________________________________________________________________________ Float_t AliPHOSPIDv1::GetCpv2EmcDistanceCut(TString axis, Float_t e) const { // Get CpvtoEmcDistance Cut depending on the cluster energy, axis and // Purity-Efficiency point axis.ToLower(); Float_t p[]={0.,0.,0.}; for (Int_t i=0; i<3; i++) p[i] = GetParameterCpv2Emc(i,axis); Float_t sig = p[0] + TMath::Exp(p[1] - p[2]*e); return sig; } //____________________________________________________________________________ Float_t AliPHOSPIDv1::GetEllipseParameter(TString particle, TString param, Float_t e) const { // Calculates the parameter param of the ellipse particle.ToLower(); param. ToLower(); Float_t p[4]={0.,0.,0.,0.}; Float_t value = 0.0; for (Int_t i=0; i<4; i++) p[i] = GetParameterToCalculateEllipse(particle,param,i); if (particle == "photon") { if (param.Contains("a")) e = TMath::Min((Double_t)e,70.); else if (param.Contains("b")) e = TMath::Min((Double_t)e,70.); else if (param.Contains("x0")) e = TMath::Max((Double_t)e,1.1); } if (particle == "photon") value = p[0]/TMath::Sqrt(e) + p[1]*e + p[2]*e*e + p[3]; else if (particle == "pi0") value = p[0] + p[1]*e + p[2]*e*e; return value; } //_____________________________________________________________________________ Float_t AliPHOSPIDv1::GetParameterPhotonBoundary (Int_t i) const { // Get the parameter "i" to calculate the boundary on the moment M2x // for photons at high p_T Float_t param = 0; if (i>3 || i<0) { AliError(Form("Wrong parameter number: %d\n",i)); } else param = (*fParameters)(14,i) ; return param; } //____________________________________________________________________________ Float_t AliPHOSPIDv1::GetParameterPi0Boundary (Int_t i) const { // Get the parameter "i" to calculate the boundary on the moment M2x // for pi0 at high p_T Float_t param = 0; if (i>2 || i<0) { AliError(Form("Wrong parameter number: %d\n",i)); } else param = (*fParameters)(15,i) ; return param; } //____________________________________________________________________________ Float_t AliPHOSPIDv1::GetParameterTimeGate(Int_t i) const { // Get TimeGate parameter depending on Purity-Efficiency i: // i=0 - Low purity, i=1 - Medium purity, i=2 - High purity Float_t param = 0.; if(i>2 || i<0) { AliError(Form("Invalid Efficiency-Purity choice %d",i)); } else param = (*fParameters)(3,i) ; return param; } //_____________________________________________________________________________ Float_t AliPHOSPIDv1::GetParameterToCalculateEllipse(TString particle, TString param, Int_t i) const { // Get the parameter "i" that is needed to calculate the ellipse // parameter "param" for the particle "particle" ("photon" or "pi0") particle.ToLower(); param. ToLower(); Int_t offset = -1; if (particle == "photon") offset=0; else if (particle == "pi0") offset=5; else AliError(Form("Wrong particle name: %s (choose from pi0/photon)\n", particle.Data())); Int_t p= -1; Float_t par = 0; if (param.Contains("a")) p=4+offset; else if(param.Contains("b")) p=5+offset; else if(param.Contains("c")) p=6+offset; else if(param.Contains("x0"))p=7+offset; else if(param.Contains("y0"))p=8+offset; if (i>4 || i<0) { AliError(Form("No parameter with index %d", i)) ; } else if (p==-1) { AliError(Form("No parameter with name %s", param.Data() )) ; } else par = (*fParameters)(p,i) ; return par; } //____________________________________________________________________________ Float_t AliPHOSPIDv1::GetDistance(AliPHOSEmcRecPoint * emc,AliPHOSCpvRecPoint * cpv, Option_t * axis)const { // Calculates the distance between the EMC RecPoint and the PPSD RecPoint const AliPHOSGeometry * geom = AliPHOSGetter::Instance()->PHOSGeometry() ; TVector3 vecEmc ; TVector3 vecCpv ; if(cpv){ emc->GetLocalPosition(vecEmc) ; cpv->GetLocalPosition(vecCpv) ; if(emc->GetPHOSMod() == cpv->GetPHOSMod()){ // Correct to difference in CPV and EMC position due to different distance to center. // we assume, that particle moves from center Float_t dCPV = geom->GetIPtoOuterCoverDistance(); Float_t dEMC = geom->GetIPtoCrystalSurface() ; dEMC = dEMC / dCPV ; vecCpv = dEMC * vecCpv - vecEmc ; if (axis == "X") return vecCpv.X(); if (axis == "Y") return vecCpv.Y(); if (axis == "Z") return vecCpv.Z(); if (axis == "R") return vecCpv.Mag(); } return 100000000 ; } return 100000000 ; } //____________________________________________________________________________ Int_t AliPHOSPIDv1::GetCPVBit(AliPHOSEmcRecPoint * emc,AliPHOSCpvRecPoint * cpv, Int_t effPur, Float_t e) const { //Calculates the pid bit for the CPV selection per each purity. if(effPur>2 || effPur<0) AliError(Form("Invalid Efficiency-Purity choice %d",effPur)); Float_t sigX = GetCpv2EmcDistanceCut("X",e); Float_t sigZ = GetCpv2EmcDistanceCut("Z",e); Float_t deltaX = TMath::Abs(GetDistance(emc, cpv, "X")); Float_t deltaZ = TMath::Abs(GetDistance(emc, cpv, "Z")); //Info("GetCPVBit"," xdist %f, sigx %f, zdist %f, sigz %f",deltaX, sigX, deltaZ,sigZ) ; //if(deltaX>sigX*(effPur+1)) //if((deltaX>sigX*(effPur+1)) || (deltaZ>sigZ*(effPur+1))) if((deltaX>sigX*(effPur+1)) && (deltaZ>sigZ*(effPur+1))) return 1;//Neutral else return 0;//Charged } //____________________________________________________________________________ Int_t AliPHOSPIDv1::GetPrincipalBit(TString particle, const Double_t* p, Int_t effPur, Float_t e)const { //Is the particle inside de PCA ellipse? particle.ToLower(); Int_t prinbit = 0 ; Float_t a = GetEllipseParameter(particle,"a" , e); Float_t b = GetEllipseParameter(particle,"b" , e); Float_t c = GetEllipseParameter(particle,"c" , e); Float_t x0 = GetEllipseParameter(particle,"x0", e); Float_t y0 = GetEllipseParameter(particle,"y0", e); Float_t r = TMath::Power((p[0] - x0)/a,2) + TMath::Power((p[1] - y0)/b,2) + c*(p[0] - x0)*(p[1] - y0)/(a*b) ; //3 different ellipses defined if((effPur==2) && (r<1./2.)) prinbit= 1; if((effPur==1) && (r<2. )) prinbit= 1; if((effPur==0) && (r<9./2.)) prinbit= 1; if(r<0) AliError("Negative square?") ; return prinbit; } //____________________________________________________________________________ Int_t AliPHOSPIDv1::GetHardPhotonBit(AliPHOSEmcRecPoint * emc) const { // Set bit for identified hard photons (E > 30 GeV) // if the second moment M2x is below the boundary Float_t e = emc->GetEnergy(); if (e < 30.0) return 0; Float_t m2x = emc->GetM2x(); Float_t m2xBoundary = GetParameterPhotonBoundary(0) * TMath::Exp(-TMath::Power(e-GetParameterPhotonBoundary(1),2)/2.0/ TMath::Power(GetParameterPhotonBoundary(2),2)) + GetParameterPhotonBoundary(3); AliDebug(1, Form("GetHardPhotonBit","E=%f, m2x=%f, boundary=%f", e,m2x,m2xBoundary)); if (m2x < m2xBoundary) return 1;// A hard photon else return 0;// Not a hard photon } //____________________________________________________________________________ Int_t AliPHOSPIDv1::GetHardPi0Bit(AliPHOSEmcRecPoint * emc) const { // Set bit for identified hard pi0 (E > 30 GeV) // if the second moment M2x is above the boundary Float_t e = emc->GetEnergy(); if (e < 30.0) return 0; Float_t m2x = emc->GetM2x(); Float_t m2xBoundary = GetParameterPi0Boundary(0) + e * GetParameterPi0Boundary(1); AliDebug(1,Form("E=%f, m2x=%f, boundary=%f",e,m2x,m2xBoundary)); if (m2x > m2xBoundary) return 1;// A hard pi0 else return 0;// Not a hard pi0 } //____________________________________________________________________________ TVector3 AliPHOSPIDv1::GetMomentumDirection(AliPHOSEmcRecPoint * emc, AliPHOSCpvRecPoint * )const { // Calculates the momentum direction: // 1. if only a EMC RecPoint, direction is given by IP and this RecPoint // 2. if a EMC RecPoint and CPV RecPoint, direction is given by the line through the 2 recpoints // However because of the poor position resolution of PPSD the direction is always taken as if we were // in case 1. TVector3 dir(0,0,0) ; TMatrix dummy ; emc->GetGlobalPosition(dir, dummy) ; //account correction to the position of IP Float_t xo,yo,zo ; //Coordinates of the origin if(gAlice && gAlice->GetMCApp() && gAlice->Generator()){ gAlice->Generator()->GetOrigin(xo,yo,zo) ; } else{ xo=yo=zo=0.; } TVector3 origin(xo,yo,zo); dir = dir - origin ; dir.SetMag(1.) ; return dir ; } //________________________________________________________________________ Double_t AliPHOSPIDv1::LandauF(Double_t x, Double_t y, Double_t * par) { //Given the energy x and the parameter y (tof, shower dispersion or cpv-emc distance), //this method returns a density probability of this parameter, given by a landau //function whose parameters depend with the energy with a function: a/(x*x)+b/x+b if (x > par[9]) x = par[9]; //Double_t cnt = par[1] / (x*x) + par[2] / x + par[0] ; Double_t cnt = par[0] + par[1] * x + par[2] * x * x ; Double_t mean = par[4] / (x*x) + par[5] / x + par[3] ; Double_t sigma = par[7] / (x*x) + par[8] / x + par[6] ; if(TMath::Abs(sigma) > 1.e-10){ return cnt*TMath::Landau(y,mean,sigma); } else return 0.; } //________________________________________________________________________ Double_t AliPHOSPIDv1::LandauPol2(Double_t x, Double_t y, Double_t * par) { //Given the energy x and the parameter y (tof, shower dispersion or cpv-emc distance), //this method returns a density probability of this parameter, given by a landau //function whose parameters depend with the energy like second order polinomial Double_t cnt = par[2] * (x*x) + par[1] * x + par[0] ; Double_t mean = par[5] * (x*x) + par[4] * x + par[3] ; Double_t sigma = par[8] * (x*x) + par[7] * x + par[6] ; if(TMath::Abs(sigma) > 1.e-10){ return cnt*TMath::Landau(y,mean,sigma); } else return 0.; } // //________________________________________________________________________ // Double_t AliPHOSPIDv1::ChargedHadronDistProb(Double_t x, Double_t y, Double_t * parg, Double_t * parl) // { // Double_t cnt = 0.0 ; // Double_t mean = 0.0 ; // Double_t sigma = 0.0 ; // Double_t arg = 0.0 ; // if (y < parl[4] / (x*x) + parl[5] / x + parl[3]){ // cnt = parg[1] / (x*x) + parg[2] / x + parg[0] ; // mean = parg[4] / (x*x) + parg[5] / x + parg[3] ; // sigma = parg[7] / (x*x) + parg[8] / x + parg[6] ; // TF1 * f = new TF1("gaus","gaus",0.,100.); // f->SetParameters(cnt,mean,sigma); // arg = f->Eval(y) ; // } // else{ // cnt = parl[1] / (x*x) + parl[2] / x + parl[0] ; // mean = parl[4] / (x*x) + parl[5] / x + parl[3] ; // sigma = parl[7] / (x*x) + parl[8] / x + parl[6] ; // TF1 * f = new TF1("landau","landau",0.,100.); // f->SetParameters(cnt,mean,sigma); // arg = f->Eval(y) ; // } // // Double_t mean = par[3] + par[4] * x + par[5] * x * x ; // // Double_t sigma = par[6] + par[7] * x + par[8] * x * x ; // //Double_t arg = -(y-mean)*(y-mean)/(2*sigma*sigma) ; // //return cnt * TMath::Exp(arg) ; // return arg; // } //____________________________________________________________________________ void AliPHOSPIDv1::MakePID() { // construct the PID weight from a Bayesian Method const Int_t kSPECIES = AliPID::kSPECIESN ; AliPHOSGetter * gime = AliPHOSGetter::Instance() ; Int_t nparticles = gime->RecParticles()->GetEntriesFast() ; TObjArray * emcRecPoints = gime->EmcRecPoints() ; TObjArray * cpvRecPoints = gime->CpvRecPoints() ; TClonesArray * trackSegments = gime->TrackSegments() ; if ( !emcRecPoints || !cpvRecPoints || !trackSegments ) { AliFatal("RecPoints or TrackSegments not found !") ; } TIter next(trackSegments) ; AliPHOSTrackSegment * ts ; Int_t index = 0 ; Double_t * stof[kSPECIES] ; Double_t * sdp [kSPECIES] ; Double_t * scpv[kSPECIES] ; Double_t * sw [kSPECIES] ; //Info("MakePID","Begin MakePID"); for (Int_t i =0; i< kSPECIES; i++){ stof[i] = new Double_t[nparticles] ; sdp [i] = new Double_t[nparticles] ; scpv[i] = new Double_t[nparticles] ; sw [i] = new Double_t[nparticles] ; } while ( (ts = (AliPHOSTrackSegment *)next()) ) { //cout<<">>>>>> Bayesian Index "<GetEmcIndex()>=0) emc = (AliPHOSEmcRecPoint *) emcRecPoints->At(ts->GetEmcIndex()) ; AliPHOSCpvRecPoint * cpv = 0 ; if(ts->GetCpvIndex()>=0) cpv = (AliPHOSCpvRecPoint *) cpvRecPoints->At(ts->GetCpvIndex()) ; // Int_t track = 0 ; // track = ts->GetTrackIndex() ; //TPC tracks ? if (!emc) { AliFatal(Form("-> emc(%d) = %d", ts->GetEmcIndex(), emc )) ; } // ############Tof############################# // Info("MakePID", "TOF"); Float_t en = emc->GetEnergy(); Double_t time = emc->GetTime() ; // cout<<">>>>>>>Energy "<Eval(time) ; //gaus distribution Double_t pTofKaon = 0; if(time < fTkaonl[1]) pTofKaon = fTFkaong ->Eval(time) ; //gaus distribution else pTofKaon = fTFkaonl ->Eval(time) ; //landau distribution Double_t pTofNucleon = 0; if(time < fThhadronl[1]) pTofNucleon = fTFhhadrong ->Eval(time) ; //gaus distribution else pTofNucleon = fTFhhadronl ->Eval(time) ; //landau distribution //We assing the same prob to neutral hadrons, sum is the average prob Double_t pTofNeHadron = (pTofKaon + pTofNucleon)/2. ; //We assing the same prob to charged hadrons, sum is the average prob Double_t pTofChHadron = (pTofPion + pTofKaon + pTofNucleon)/3. ; stof[AliPID::kPhoton][index] = fTFphoton ->Eval(time) ; //gaus distribution stof[AliPID::kEleCon][index] = stof[AliPID::kPhoton][index] ; //a conversion electron has the photon ToF stof[AliPID::kMuon][index] = stof[AliPID::kPhoton][index] ; stof[AliPID::kElectron][index] = pTofPion ; stof[AliPID::kPion][index] = pTofChHadron ; stof[AliPID::kKaon][index] = pTofChHadron ; stof[AliPID::kProton][index] = pTofChHadron ; stof[AliPID::kKaon0][index] = pTofNeHadron ; stof[AliPID::kNeutron][index] = pTofNeHadron ; } // Info("MakePID", "Dispersion"); // ###########Shower shape: Dispersion#################### Float_t dispersion = emc->GetDispersion(); //dispersion is not well defined if the cluster is only in few crystals sdp[AliPID::kPhoton][index] = 1. ; sdp[AliPID::kElectron][index] = 1. ; sdp[AliPID::kPion][index] = 1. ; sdp[AliPID::kKaon][index] = 1. ; sdp[AliPID::kProton][index] = 1. ; sdp[AliPID::kNeutron][index] = 1. ; sdp[AliPID::kEleCon][index] = 1. ; sdp[AliPID::kKaon0][index] = 1. ; sdp[AliPID::kMuon][index] = 1. ; if(en > fDispEnThreshold && emc->GetMultiplicity() > fDispMultThreshold){ sdp[AliPID::kPhoton][index] = GausF(en , dispersion, fDphoton) ; sdp[AliPID::kElectron][index] = sdp[AliPID::kPhoton][index] ; sdp[AliPID::kPion][index] = LandauF(en , dispersion, fDhadron ) ; sdp[AliPID::kKaon][index] = sdp[AliPID::kPion][index] ; sdp[AliPID::kProton][index] = sdp[AliPID::kPion][index] ; sdp[AliPID::kNeutron][index] = sdp[AliPID::kPion][index] ; sdp[AliPID::kEleCon][index] = sdp[AliPID::kPhoton][index]; sdp[AliPID::kKaon0][index] = sdp[AliPID::kPion][index] ; sdp[AliPID::kMuon][index] = fDFmuon ->Eval(dispersion) ; //landau distribution } // Info("MakePID","multiplicity %d, dispersion %f", emc->GetMultiplicity(), dispersion); // Info("MakePID","ss: photon %f, hadron %f ", sdp[AliPID::kPhoton][index], sdp[AliPID::kPion][index]); // cout<<">>>>>multiplicity "<GetMultiplicity()<<", dispersion "<< dispersion<>>>energy "<>>>electron : x "<>>>hadron : x "<>>>electron : px*pz "<= pcpvcharged) pcpv = pcpvelectron ; else pcpv = pcpvcharged ; if(pcpv < fChargedNeutralThreshold) { pcpvneutral = 1. ; pcpvcharged = 0. ; pcpvelectron = 0. ; } // else // cout<<">>>>>>>>>>>CHARGED>>>>>>>>>>>"< 30.){ // pi0 are detected via decay photon stof[AliPID::kPi0][index] = stof[AliPID::kPhoton][index]; scpv[AliPID::kPi0][index] = pcpvneutral ; if(emc->GetMultiplicity() > fDispMultThreshold) sdp [AliPID::kPi0][index] = GausF(en , dispersion, fDpi0) ; //sdp [AliPID::kPi0][index] = GausPol2(en , dispersion, fDpi0) ; // cout<<"E = "<>>>>multiplicity "<GetMultiplicity()<>>>electron : xprob "<>>>hadron : xprob "<>>>electron : px*pz "<RecParticle(index) ; //Conversion electron? if(recpar->IsEleCon()){ fInitPID[AliPID::kEleCon] = 1. ; fInitPID[AliPID::kPhoton] = 0. ; fInitPID[AliPID::kElectron] = 0. ; } else{ fInitPID[AliPID::kEleCon] = 0. ; fInitPID[AliPID::kPhoton] = 1. ; fInitPID[AliPID::kElectron] = 1. ; } // fInitPID[AliPID::kEleCon] = 0. ; // calculates the Bayesian weight Int_t jndex ; Double_t wn = 0.0 ; for (jndex = 0 ; jndex < kSPECIES ; jndex++) wn += stof[jndex][index] * sdp[jndex][index] * scpv[jndex][index] * sw[jndex][index] * fInitPID[jndex] ; // cout<<"*************wn "<0) for (jndex = 0 ; jndex < kSPECIES ; jndex++) { //cout<<"jndex "<SetPID(jndex, stof[jndex][index] * sdp[jndex][index] * sw[jndex][index] * scpv[jndex][index] * fInitPID[jndex] / wn) ; } } // Info("MakePID", "Delete"); for (Int_t i =0; i< kSPECIES; i++){ delete [] stof[i]; delete [] sdp [i]; delete [] scpv[i]; delete [] sw [i]; } // Info("MakePID","End MakePID"); } //____________________________________________________________________________ void AliPHOSPIDv1::MakeRecParticles() { // Makes a RecParticle out of a TrackSegment AliPHOSGetter * gime = AliPHOSGetter::Instance() ; TObjArray * emcRecPoints = gime->EmcRecPoints() ; TObjArray * cpvRecPoints = gime->CpvRecPoints() ; TClonesArray * trackSegments = gime->TrackSegments() ; if ( !emcRecPoints || !cpvRecPoints || !trackSegments ) { AliFatal("RecPoints or TrackSegments not found !") ; } TClonesArray * recParticles = gime->RecParticles() ; recParticles->Clear(); TIter next(trackSegments) ; AliPHOSTrackSegment * ts ; Int_t index = 0 ; AliPHOSRecParticle * rp ; while ( (ts = (AliPHOSTrackSegment *)next()) ) { // cout<<">>>>>>>>>>>>>>>PCA Index "<At(index) ; rp->SetTrackSegment(index) ; rp->SetIndexInList(index) ; AliPHOSEmcRecPoint * emc = 0 ; if(ts->GetEmcIndex()>=0) emc = (AliPHOSEmcRecPoint *) emcRecPoints->At(ts->GetEmcIndex()) ; AliPHOSCpvRecPoint * cpv = 0 ; if(ts->GetCpvIndex()>=0) cpv = (AliPHOSCpvRecPoint *) cpvRecPoints->At(ts->GetCpvIndex()) ; Int_t track = 0 ; track = ts->GetTrackIndex() ; // Now set type (reconstructed) of the particle // Choose the cluster energy range if (!emc) { AliFatal(Form("-> emc(%d) = %d", ts->GetEmcIndex(), emc )) ; } Float_t e = emc->GetEnergy() ; Float_t lambda[2] ; emc->GetElipsAxis(lambda) ; if((lambda[0]>0.01) && (lambda[1]>0.01)){ // Looking PCA. Define and calculate the data (X), // introduce in the function X2P that gives the components (P). Float_t spher = 0. ; Float_t emaxdtotal = 0. ; if((lambda[0]+lambda[1])!=0) spher=fabs(lambda[0]-lambda[1])/(lambda[0]+lambda[1]); emaxdtotal=emc->GetMaximalEnergy()/emc->GetEnergy(); fX[0] = lambda[0] ; fX[1] = lambda[1] ; fX[2] = emc->GetDispersion() ; fX[3] = spher ; fX[4] = emc->GetMultiplicity() ; fX[5] = emaxdtotal ; fX[6] = emc->GetCoreEnergy() ; fPrincipalPhoton->X2P(fX,fPPhoton); fPrincipalPi0 ->X2P(fX,fPPi0); } else{ fPPhoton[0]=-100.0; //We do not accept clusters with fPPhoton[1]=-100.0; //one cell as a photon-like fPPi0[0] =-100.0; fPPi0[1] =-100.0; } Float_t time = emc->GetTime() ; rp->SetTof(time) ; // Loop of Efficiency-Purity (the 3 points of purity or efficiency // are taken into account to set the particle identification) for(Int_t effPur = 0; effPur < 3 ; effPur++){ // Looking at the CPV detector. If RCPV greater than CpvEmcDistance, // 1st,2nd or 3rd bit (depending on the efficiency-purity point ) // is set to 1 if(GetCPVBit(emc, cpv, effPur,e) == 1 ){ rp->SetPIDBit(effPur) ; //cout<<"CPV bit "<SetPIDBit(effPur+3) ; //Photon PCA //If we are inside the ellipse, 7th, 8th or 9th // bit (depending on the efficiency-purity point )is set to 1 if(GetPrincipalBit("photon",fPPhoton,effPur,e) == 1) rp->SetPIDBit(effPur+6) ; //Pi0 PCA //If we are inside the ellipse, 10th, 11th or 12th // bit (depending on the efficiency-purity point )is set to 1 if(GetPrincipalBit("pi0" ,fPPi0 ,effPur,e) == 1) rp->SetPIDBit(effPur+9) ; } if(GetHardPhotonBit(emc)) rp->SetPIDBit(12) ; if(GetHardPi0Bit (emc)) rp->SetPIDBit(13) ; if(track >= 0) rp->SetPIDBit(14) ; //Set momentum, energy and other parameters Float_t encal = GetCalibratedEnergy(e); TVector3 dir = GetMomentumDirection(emc,cpv) ; dir.SetMag(encal) ; rp->SetMomentum(dir.X(),dir.Y(),dir.Z(),encal) ; rp->SetCalcMass(0); rp->Name(); //If photon sets the particle pdg name to gamma rp->SetProductionVertex(0,0,0,0); rp->SetFirstMother(-1); rp->SetLastMother(-1); rp->SetFirstDaughter(-1); rp->SetLastDaughter(-1); rp->SetPolarisation(0,0,0); //Set the position in global coordinate system from the RecPoint AliPHOSGeometry * geom = gime->PHOSGeometry() ; AliPHOSTrackSegment * ts = gime->TrackSegment(rp->GetPHOSTSIndex()) ; AliPHOSEmcRecPoint * erp = gime->EmcRecPoint(ts->GetEmcIndex()) ; TVector3 pos ; geom->GetGlobal(erp, pos) ; rp->SetPos(pos); index++ ; } } //____________________________________________________________________________ void AliPHOSPIDv1::Print(const Option_t *) const { // Print the parameters used for the particle type identification AliInfo("=============== AliPHOSPIDv1 ================") ; printf("Making PID\n") ; printf(" Pricipal analysis file from 0.5 to 100 %s\n", fFileNamePrincipalPhoton.Data() ) ; printf(" Name of parameters file %s\n", fFileNameParameters.Data() ) ; printf(" Matrix of Parameters: 14x4\n") ; printf(" Energy Calibration 1x3 [3 parametres to calibrate energy: A + B* E + C * E^2]\n") ; printf(" RCPV 2x3 rows x and z, columns function cut parameters\n") ; printf(" TOF 1x3 [High Eff-Low Pur,Medium Eff-Pur, Low Eff-High Pur]\n") ; printf(" PCA 5x4 [5 ellipse parametres and 4 parametres to calculate them: A/Sqrt(E) + B* E + C * E^2 + D]\n") ; Printf(" Pi0 PCA 5x3 [5 ellipse parametres and 3 parametres to calculate them: A + B* E + C * E^2]\n") ; fParameters->Print() ; } //____________________________________________________________________________ void AliPHOSPIDv1::PrintRecParticles(Option_t * option) { // Print table of reconstructed particles AliPHOSGetter *gime = AliPHOSGetter::Instance() ; TClonesArray * recParticles = gime->RecParticles() ; TString message ; message = "\nevent " ; message += gAlice->GetEvNumber() ; message += " found " ; message += recParticles->GetEntriesFast(); message += " RecParticles\n" ; if(strstr(option,"all")) { // printing found TS message += "\n PARTICLE Index \n" ; Int_t index ; for (index = 0 ; index < recParticles->GetEntries() ; index++) { AliPHOSRecParticle * rp = (AliPHOSRecParticle * ) recParticles->At(index) ; message += "\n" ; message += rp->Name().Data() ; message += " " ; message += rp->GetIndexInList() ; message += " " ; message += rp->GetType() ; } } AliInfo(message.Data() ) ; } //____________________________________________________________________________ void AliPHOSPIDv1::SetParameters() { // PCA : To do the Principal Components Analysis it is necessary // the Principal file, which is opened here fX = new double[7]; // Data for the PCA fPPhoton = new double[7]; // Eigenvalues of the PCA fPPi0 = new double[7]; // Eigenvalues of the Pi0 PCA // Read photon principals from the photon file fFileNamePrincipalPhoton = "$ALICE_ROOT/PHOS/PCA8pa15_0.5-100.root" ; TFile f( fFileNamePrincipalPhoton.Data(), "read" ) ; fPrincipalPhoton = dynamic_cast (f.Get("principal")) ; f.Close() ; // Read pi0 principals from the pi0 file fFileNamePrincipalPi0 = "$ALICE_ROOT/PHOS/PCA_pi0_40-120.root" ; TFile fPi0( fFileNamePrincipalPi0.Data(), "read" ) ; fPrincipalPi0 = dynamic_cast (fPi0.Get("principal")) ; fPi0.Close() ; // Open parameters file and initialization of the Parameters matrix. // In the File Parameters.dat are all the parameters. These are introduced // in a matrix of 16x4 // // All the parameters defined in this file are, in order of row: // line 0 : calibration // lines 1,2 : CPV rectangular cat for X and Z // line 3 : TOF cut // lines 4-8 : parameters to calculate photon PCA ellipse // lines 9-13: parameters to calculate pi0 PCA ellipse // lines 14-15: parameters to calculate border for high-pt photons and pi0 fFileNameParameters = gSystem->ExpandPathName("$ALICE_ROOT/PHOS/Parameters.dat"); fParameters = new TMatrix(16,4) ; const Int_t kMaxLeng=255; char string[kMaxLeng]; // Open a text file with PID parameters FILE *fd = fopen(fFileNameParameters.Data(),"r"); if (!fd) AliFatal(Form("File %s with a PID parameters cannot be opened\n", fFileNameParameters.Data())); Int_t i=0; // Read parameter file line-by-line and skip empty line and comments while (fgets(string,kMaxLeng,fd) != NULL) { if (string[0] == '\n' ) continue; if (string[0] == '!' ) continue; sscanf(string, "%f %f %f %f", &(*fParameters)(i,0), &(*fParameters)(i,1), &(*fParameters)(i,2), &(*fParameters)(i,3)); i++; AliDebug(1, Form("SetParameters", "line %d: %s",i,string)); } fclose(fd); } //____________________________________________________________________________ void AliPHOSPIDv1::SetParameterCalibration(Int_t i,Float_t param) { // Set parameter "Calibration" i to a value param if(i>2 || i<0) { AliError(Form("Invalid parameter number: %d",i)); } else (*fParameters)(0,i) = param ; } //____________________________________________________________________________ void AliPHOSPIDv1::SetParameterCpv2Emc(Int_t i, TString axis, Float_t cut) { // Set the parameters to calculate Cpv-to-Emc Distance Cut depending on // Purity-Efficiency point i if(i>2 || i<0) { AliError(Form("Invalid parameter number: %d",i)); } else { axis.ToLower(); if (axis == "x") (*fParameters)(1,i) = cut; else if (axis == "z") (*fParameters)(2,i) = cut; else { AliError(Form("Invalid axis name: %s",axis.Data())); } } } //____________________________________________________________________________ void AliPHOSPIDv1::SetParameterPhotonBoundary(Int_t i,Float_t param) { // Set parameter "Hard photon boundary" i to a value param if(i>4 || i<0) { AliError(Form("Invalid parameter number: %d",i)); } else (*fParameters)(14,i) = param ; } //____________________________________________________________________________ void AliPHOSPIDv1::SetParameterPi0Boundary(Int_t i,Float_t param) { // Set parameter "Hard pi0 boundary" i to a value param if(i>1 || i<0) { AliError(Form("Invalid parameter number: %d",i)); } else (*fParameters)(15,i) = param ; } //_____________________________________________________________________________ void AliPHOSPIDv1::SetParameterTimeGate(Int_t i, Float_t gate) { // Set the parameter TimeGate depending on Purity-Efficiency point i if (i>2 || i<0) { AliError(Form("Invalid Efficiency-Purity choice %d",i)); } else (*fParameters)(3,i)= gate ; } //_____________________________________________________________________________ void AliPHOSPIDv1::SetParameterToCalculateEllipse(TString particle, TString param, Int_t i, Float_t par) { // Set the parameter "i" that is needed to calculate the ellipse // parameter "param" for a particle "particle" particle.ToLower(); param. ToLower(); Int_t p= -1; Int_t offset=0; if (particle == "photon") offset=0; else if (particle == "pi0") offset=5; else AliError(Form("Wrong particle name: %s (choose from pi0/photon)\n", particle.Data())); if (param.Contains("a")) p=4+offset; else if(param.Contains("b")) p=5+offset; else if(param.Contains("c")) p=6+offset; else if(param.Contains("x0"))p=7+offset; else if(param.Contains("y0"))p=8+offset; if((i>4)||(i<0)) { AliError(Form("No parameter with index %d", i)) ; } else if(p==-1) { AliError(Form("No parameter with name %s", param.Data() )) ; } else (*fParameters)(p,i) = par ; } //____________________________________________________________________________ void AliPHOSPIDv1::Unload() { //Unloads RecPoints, Tracks and RecParticles AliPHOSGetter * gime = AliPHOSGetter::Instance() ; gime->PhosLoader()->UnloadRecPoints() ; gime->PhosLoader()->UnloadTracks() ; gime->PhosLoader()->UnloadRecParticles() ; } //____________________________________________________________________________ void AliPHOSPIDv1::WriteRecParticles() { //It writes reconstructed particles and pid to file AliPHOSGetter *gime = AliPHOSGetter::Instance() ; TClonesArray * recParticles = gime->RecParticles() ; recParticles->Expand(recParticles->GetEntriesFast() ) ; if(fWrite){ TTree * treeP = gime->TreeP(); //First rp Int_t bufferSize = 32000 ; TBranch * rpBranch = treeP->Branch("PHOSRP",&recParticles,bufferSize); rpBranch->SetTitle(BranchName()); rpBranch->Fill() ; gime->WriteRecParticles("OVERWRITE"); gime->WritePID("OVERWRITE"); } } //_______________________________________________________________________ void AliPHOSPIDv1::SetInitPID(const Double_t *p) { // Sets values for the initial population of each particle type for (Int_t i=0; i