/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //_________________________________________________________________________ // Class for trigger analysis. // Digits are grouped in TRU's (Trigger Units). A TRU consist of 16x28 // crystals ordered fNTRUPhi x fNTRUZ. The algorithm searches all possible // 2x2 and nxn (n multiple of 2) crystal combinations per each TRU, adding the // digits amplitude and finding the maximum. If found, look if it is isolated. // Maxima are transformed in ADC time samples. Each time bin is compared to the trigger // threshold until it is larger and then, triggers are set. Thresholds need to be fixed. // Usage: // // //Inside the event loop // AliPHOSTrigger *tr = new AliPHOSTrigger();//Init Trigger // tr->SetL0Threshold(100); // tr->SetL1JetLowPtThreshold(1000); // tr->SetL1JetMediumPtThreshold(10000); // tr->SetL1JetHighPtThreshold(20000); // .... // tr->Trigger(); //Execute Trigger // tr->Print(""); //Print data members after calculation. // // //*-- Author: Gustavo Conesa & Yves Schutz (IFIC, CERN) ////////////////////////////////////////////////////////////////////////////// // --- ROOT system --- #include "TMath.h" // --- ALIROOT system --- #include "AliConfig.h" #include "AliPHOS.h" #include "AliPHOSTrigger.h" #include "AliPHOSGeometry.h" #include "AliPHOSDigit.h" #include "AliPHOSLoader.h" #include "AliPHOSPulseGenerator.h" #include "AliTriggerInput.h" ClassImp(AliPHOSTrigger) //______________________________________________________________________ AliPHOSTrigger::AliPHOSTrigger() : AliTriggerDetector(), f2x2MaxAmp(-1), f2x2CrystalPhi(-1), f2x2CrystalEta(-1), f2x2SM(0), fnxnMaxAmp(-1), fnxnCrystalPhi(-1), fnxnCrystalEta(-1), fnxnSM(0), fADCValuesHighnxn(0), fADCValuesLownxn(0), fADCValuesHigh2x2(0), fADCValuesLow2x2(0), fDigitsList(0), fAmptrus(0), fAmpmods(0), fTimeRtrus(0), fL0Threshold(50), fL1JetLowPtThreshold(200), fL1JetMediumPtThreshold(500), fL1JetHighPtThreshold(1000), fNTRU(8), fNTRUZ(2), fNTRUPhi(4), fNCrystalsPhi(16), fNCrystalsZ(28), fPatchSize(1), fIsolPatchSize(1), f2x2AmpOutOfPatch(-1), fnxnAmpOutOfPatch(-1), f2x2AmpOutOfPatchThres(2), fnxnAmpOutOfPatchThres(2), //2 GeV out of patch fIs2x2Isol(kFALSE), fIsnxnIsol(kFALSE), fSimulation(kTRUE), fIsolateInModule(kTRUE) { //ctor fADCValuesHighnxn = 0x0; //new Int_t[fTimeBins]; fADCValuesLownxn = 0x0; //new Int_t[fTimeBins]; fADCValuesHigh2x2 = 0x0; //new Int_t[fTimeBins]; fADCValuesLow2x2 = 0x0; //new Int_t[fTimeBins]; SetName("PHOS"); CreateInputs(); fAmptrus = new TClonesArray("TMatrixD",1000); fAmpmods = new TClonesArray("TMatrixD",1000); fTimeRtrus = new TClonesArray("TMatrixD",1000); } //____________________________________________________________________________ AliPHOSTrigger::AliPHOSTrigger(const AliPHOSTrigger & trig) : AliTriggerDetector(trig), f2x2MaxAmp(trig.f2x2MaxAmp), f2x2CrystalPhi(trig.f2x2CrystalPhi), f2x2CrystalEta(trig.f2x2CrystalEta), f2x2SM(trig.f2x2SM), fnxnMaxAmp(trig.fnxnMaxAmp), fnxnCrystalPhi(trig.fnxnCrystalPhi), fnxnCrystalEta(trig.fnxnCrystalEta), fnxnSM(trig.fnxnSM), fADCValuesHighnxn(trig.fADCValuesHighnxn), fADCValuesLownxn(trig.fADCValuesLownxn), fADCValuesHigh2x2(trig.fADCValuesHigh2x2), fADCValuesLow2x2(trig.fADCValuesLow2x2), fDigitsList(trig.fDigitsList), fAmptrus(trig.fAmptrus), fAmpmods(trig.fAmpmods), fTimeRtrus(trig.fTimeRtrus), fL0Threshold(trig.fL0Threshold), fL1JetLowPtThreshold(trig.fL1JetLowPtThreshold), fL1JetMediumPtThreshold(trig.fL1JetMediumPtThreshold), fL1JetHighPtThreshold(trig.fL1JetHighPtThreshold), fNTRU(trig.fNTRU), fNTRUZ(trig.fNTRUZ), fNTRUPhi(trig.fNTRUPhi), fNCrystalsPhi(trig.fNCrystalsPhi), fNCrystalsZ(trig. fNCrystalsZ), fPatchSize(trig.fPatchSize), fIsolPatchSize(trig.fIsolPatchSize), f2x2AmpOutOfPatch(trig.f2x2AmpOutOfPatch), fnxnAmpOutOfPatch(trig.fnxnAmpOutOfPatch), f2x2AmpOutOfPatchThres(trig.f2x2AmpOutOfPatchThres), fnxnAmpOutOfPatchThres(trig.fnxnAmpOutOfPatchThres), fIs2x2Isol(trig.fIs2x2Isol), fIsnxnIsol(trig.fIsnxnIsol), fSimulation(trig.fSimulation), fIsolateInModule(trig.fIsolateInModule) { // cpy ctor } //_________________________________________________________________________ AliPHOSTrigger::~AliPHOSTrigger() { // dtor if(fADCValuesHighnxn)delete [] fADCValuesHighnxn; if(fADCValuesLownxn)delete [] fADCValuesLownxn; if(fADCValuesHigh2x2)delete [] fADCValuesHigh2x2; if(fADCValuesLow2x2)delete [] fADCValuesLow2x2; // fDigitsList is now ours... if(fAmptrus) { fAmptrus->Delete() ; delete fAmptrus ; } if(fAmpmods) { fAmpmods->Delete() ; delete fAmpmods ; } if(fTimeRtrus) { fTimeRtrus->Delete(); delete fTimeRtrus; } } //_________________________________________________________________________ AliPHOSTrigger & AliPHOSTrigger::operator = (const AliPHOSTrigger &) { Fatal("operator =", "no implemented"); return *this; } void AliPHOSTrigger::CreateInputs() { // inputs // Do not create inputs again!! if( fInputs.GetEntriesFast() > 0 ) return; TString name = GetName(); fInputs.AddLast( new AliTriggerInput( "0PH0", name, 0 ) ); fInputs.AddLast( new AliTriggerInput( "PHOS_JetHPt_L1",name, 1 ) ); fInputs.AddLast( new AliTriggerInput( "PHOS_JetMPt_L1",name, 1 ) ); fInputs.AddLast( new AliTriggerInput( "PHOS_JetLPt_L1",name, 1 ) ); } //____________________________________________________________________________ void AliPHOSTrigger::FillTRU(const TClonesArray * digits, const AliPHOSGeometry * geom) const { //Orders digits ampitudes list and times in fNTRU TRUs (28x16 crystals) //per module. Each TRU is a TMatrixD, and they are kept in TClonesArrays. //In a module, the number of TRU in phi is fNTRUPhi, and the number of //TRU in eta is fNTRUZ. Also fill a matrix with all amplitudes in module for isolation studies. //Check data members if(fNTRUZ*fNTRUPhi != fNTRU) Error("FillTRU"," Wrong number of TRUS per Z or Phi"); //Initilize and declare variables Int_t nModules = geom->GetNModules(); Int_t relid[4] ; Float_t amp = -1; Float_t timeR = -1; Int_t id = -1; //List of TRU matrices initialized to 0. for(Int_t k = 0; k < fNTRU*nModules ; k++){ TMatrixD amptrus(fNCrystalsPhi,fNCrystalsZ) ; TMatrixD timeRtrus(fNCrystalsPhi,fNCrystalsZ) ; for(Int_t i = 0; i < fNCrystalsPhi; i++){ for(Int_t j = 0; j < fNCrystalsZ; j++){ amptrus(i,j) = 0.0; timeRtrus(i,j) = 0.0; } } new((*fAmptrus)[k]) TMatrixD(amptrus) ; new((*fTimeRtrus)[k]) TMatrixD(timeRtrus) ; } //List of Modules matrices initialized to 0. Int_t nmodphi = geom->GetNPhi(); Int_t nmodz = geom->GetNZ(); for(Int_t k = 0; k < nModules ; k++){ TMatrixD ampmods(nmodphi,nmodz) ; for(Int_t i = 0; i < nmodphi; i++){ for(Int_t j = 0; j < nmodz; j++){ ampmods(i,j) = 0.0; } } new((*fAmpmods)[k]) TMatrixD(ampmods) ; } AliPHOSDigit * dig ; //Digits loop to fill TRU matrices with amplitudes. for(Int_t idig = 0 ; idig < digits->GetEntriesFast() ; idig++){ dig = static_cast(digits->At(idig)) ; amp = dig->GetEnergy() ; // Energy of the digit id = dig->GetId() ; // Id label of the cell timeR = dig->GetTimeR() ; // Earliest time of the digit geom->AbsToRelNumbering(id, relid) ; //Transform digit number into 4 numbers //relid[0] = module //relid[1] = EMC (0) or CPV (-1) //relid[2] = row <= 64 (fNPhi) //relid[3] = column <= 56 (fNZ) if(relid[1] == 0){//Not CPV, Only EMC digits //############# TRU ################### //Check to which TRU in the supermodule belongs the crystal. //Supermodules are divided in a TRU matrix of dimension //(fNTRUPhi,fNTRUZ). //Each TRU is a crystal matrix of dimension (fNCrystalsPhi,fNCrystalsZ) //First calculate the row and column in the supermodule //of the TRU to which the crystal belongs. Int_t col = (relid[3]-1)/fNCrystalsZ+1; Int_t row = (relid[2]-1)/fNCrystalsPhi+1; //Calculate label number of the TRU Int_t itru = (row-1) + (col-1)*fNTRUPhi + (relid[0]-1)*fNTRU ; //Fill TRU matrix with crystal values TMatrixD * amptrus = static_cast(fAmptrus ->At(itru)) ; TMatrixD * timeRtrus = static_cast(fTimeRtrus->At(itru)) ; //Calculate row and column of the crystal inside the TRU with number itru Int_t irow = (relid[2]-1) - (row-1) * fNCrystalsPhi; Int_t icol = (relid[3]-1) - (col-1) * fNCrystalsZ; (*amptrus)(irow,icol) = amp ; (*timeRtrus)(irow,icol) = timeR ; //####################MODULE MATRIX ################## TMatrixD * ampmods = static_cast(fAmpmods->At(relid[0]-1)) ; (*ampmods)(relid[2]-1,relid[3]-1) = amp ; } } } //______________________________________________________________________ void AliPHOSTrigger::GetCrystalPhiEtaIndexInModuleFromTRUIndex(Int_t itru, Int_t iphitru, Int_t ietatru,Int_t &iphiMod,Int_t &ietaMod) const { // This method transforms the (eta,phi) index of a crystals in a // TRU matrix into Super Module (eta,phi) index. // Calculate in which row and column in which the TRU are // ordered in the SM Int_t col = itru/ fNTRUPhi + 1; Int_t row = itru - (col-1)*fNTRUPhi + 1; //Calculate the (eta,phi) index in SM iphiMod = fNCrystalsPhi*(row-1) + iphitru + 1 ; ietaMod = fNCrystalsZ*(col-1) + ietatru + 1 ; } //____________________________________________________________________________ Bool_t AliPHOSTrigger::IsPatchIsolated(Int_t iPatchType, const Int_t imod, const Int_t mtru, const Float_t maxamp, const Int_t maxphi, const Int_t maxeta) { //Calculate if the maximum patch found is isolated, find amplitude around maximum (2x2 or nxn) patch, //inside isolation patch . iPatchType = 0 means calculation for 2x2 patch, //iPatchType = 1 means calculation for nxn patch. //In the next table there is an example of the different options of patch size and isolation patch size: // Patch Size (fPatchSize) // 0 1 2 // fIsolPatchSize 2x2 (not overlap) 4x4 (overlapped) 6x6(overlapped) ... // 1 4x4 8x8 10x10 // 2 6x6 12x12 14x14 // 3 8x8 16x16 18x18 Bool_t b = kFALSE; Float_t amp = 0; //Get matrix of TRU or Module with maximum amplitude patch. Int_t itru = mtru+imod*fNTRU ; //number of tru, min 0 max 8*5. TMatrixD * ampmatrix = 0x0; Int_t colborder = 0; Int_t rowborder = 0; if(fIsolateInModule){ ampmatrix = static_cast(fAmpmods->At(imod)) ; rowborder = fNCrystalsPhi*fNTRUPhi; colborder = fNCrystalsZ*fNTRUZ; AliDebug(2,"Isolate trigger in Module"); } else{ ampmatrix = static_cast(fAmptrus->At(itru)) ; rowborder = fNCrystalsPhi; colborder = fNCrystalsZ; AliDebug(2,"Isolate trigger in TRU"); } //Define patch cells Int_t isolcells = fIsolPatchSize*(1+iPatchType); Int_t ipatchcells = 2*(1+fPatchSize*iPatchType); Int_t minrow = maxphi - isolcells; Int_t mincol = maxeta - isolcells; Int_t maxrow = maxphi + isolcells + ipatchcells; Int_t maxcol = maxeta + isolcells + ipatchcells; AliDebug(2,Form("Number of added Isol Cells %d, Patch Size %d",isolcells, ipatchcells)); AliDebug(2,Form("Patch: minrow %d, maxrow %d, mincol %d, maxcol %d",minrow,maxrow,mincol,maxcol)); if(minrow < 0 || mincol < 0 || maxrow > rowborder || maxcol > colborder){ AliDebug(1,Form("Out of Module/TRU range, cannot isolate patch")); return kFALSE; } //Add amplitudes in all isolation patch for(Int_t irow = minrow ; irow < maxrow; irow ++) for(Int_t icol = mincol ; icol < maxcol ; icol ++) amp += (*ampmatrix)(irow,icol); AliDebug(2,Form("Type %d, Maximum amplitude %f, patch+isol square %f",iPatchType, maxamp, amp)); if(amp < maxamp){ AliError(Form("Bad sum: Type %d, Maximum amplitude %f, patch+isol square %f",iPatchType, maxamp, amp)); return kFALSE; } else amp-=maxamp; //Calculate energy in isolation patch that do not comes from maximum patch. AliDebug(2, Form("Maximum amplitude %f, Out of patch %f",maxamp, amp)); //Fill isolation amplitude data member and say if patch is isolated. if(iPatchType == 0){ //2x2 case f2x2AmpOutOfPatch = amp; if(amp < f2x2AmpOutOfPatchThres) b=kTRUE; } else if(iPatchType == 1){ //nxn case fnxnAmpOutOfPatch = amp; if(amp < fnxnAmpOutOfPatchThres) b=kTRUE; } return b; } //____________________________________________________________________________ void AliPHOSTrigger::MakeSlidingCell(const Int_t imod, TMatrixD &max2, TMatrixD &maxn) { //Sums energy of all possible 2x2 (L0) and nxn (L1) crystals per each TRU. //Fast signal in the experiment is given by 2x2 crystals, //for this reason we loop inside the TRU crystals by 2. //Declare and initialize varibles Float_t amp2 = 0 ; Float_t ampn = 0 ; for(Int_t i = 0; i < 4; i++){ for(Int_t j = 0; j < fNTRU; j++){ ampmax2(i,j) = -1; ampmaxn(i,j) = -1; } } //Create matrix that will contain 2x2 amplitude sums //used to calculate the nxn sums TMatrixD tru2x2(fNCrystalsPhi/2,fNCrystalsZ/2) ; for(Int_t i = 0; i < fNCrystalsPhi/2; i++) for(Int_t j = 0; j < fNCrystalsZ/2; j++) tru2x2(i,j) = -1.; //Loop over all TRUS in a module for(Int_t itru = 0 + imod * fNTRU ; itru < (imod+1)*fNTRU ; itru++){ TMatrixD * amptru = static_cast(fAmptrus ->At(itru)) ; TMatrixD * timeRtru = static_cast(fTimeRtrus->At(itru)) ; Int_t mtru = itru-imod*fNTRU ; //Number of TRU in Module //Sliding 2x2, add 2x2 amplitudes (NOT OVERLAP) for(Int_t irow = 0 ; irow < fNCrystalsPhi; irow += 2){ for(Int_t icol = 0 ; icol < fNCrystalsZ ; icol += 2){ amp2 = (*amptru)(irow,icol)+(*amptru)(irow+1,icol)+ (*amptru)(irow,icol+1)+(*amptru)(irow+1,icol+1); //Fill new matrix with added 2x2 crystals for use in nxn sums tru2x2(irow/2,icol/2) = amp2 ; //Select 2x2 maximum sums to select L0 if(amp2 > ampmax2(0,mtru)){ ampmax2(0,mtru) = amp2 ; ampmax2(1,mtru) = irow; ampmax2(2,mtru) = icol; } } } //Find most recent time in the selected 2x2 cell ampmax2(3,mtru) = 1 ; Int_t row2 = static_cast (ampmax2(1,mtru)); Int_t col2 = static_cast (ampmax2(2,mtru)); for(Int_t i = 0; i<2; i++){ for(Int_t j = 0; j<2; j++){ if((*amptru)(row2+i,col2+j) > 0 && (*timeRtru)(row2+i,col2+j)> 0){ if((*timeRtru)(row2+i,col2+j) < ampmax2(3,mtru) ) ampmax2(3,mtru) = (*timeRtru)(row2+i,col2+j); } } } //Sliding nxn, add nxn amplitudes (OVERLAP) if(fPatchSize > 0){ for(Int_t irow = 0 ; irow < fNCrystalsPhi/2; irow++){ for(Int_t icol = 0 ; icol < fNCrystalsZ/2 ; icol++){ ampn = 0; if( (irow+fPatchSize) < fNCrystalsPhi/2 && (icol+fPatchSize) < fNCrystalsZ/2){//Avoid exit the TRU for(Int_t i = 0 ; i <= fPatchSize ; i++) for(Int_t j = 0 ; j <= fPatchSize ; j++) ampn += tru2x2(irow+i,icol+j); //Select nxn maximum sums to select L1 if(ampn > ampmaxn(0,mtru)){ ampmaxn(0,mtru) = ampn ; ampmaxn(1,mtru) = irow*2; ampmaxn(2,mtru) = icol*2; } } } } //Find most recent time in selected nxn cell ampmaxn(3,mtru) = 1 ; Int_t rown = static_cast (ampmaxn(1,mtru)); Int_t coln = static_cast (ampmaxn(2,mtru)); for(Int_t i = 0; i<4*fPatchSize; i++){ for(Int_t j = 0; j<4*fPatchSize; j++){ if( (rown+i) < fNCrystalsPhi && (coln+j) < fNCrystalsZ/2){//Avoid exit the TRU if((*amptru)(rown+i,coln+j) > 0 && (*timeRtru)(rown+i,coln+j)> 0){ if((*timeRtru)(rown+i,coln+j) < ampmaxn(3,mtru) ) ampmaxn(3,mtru) = (*timeRtru)(rown+i,coln+j); } } } } } else { ampmaxn(0,mtru) = ampmax2(0,mtru); ampmaxn(1,mtru) = ampmax2(1,mtru); ampmaxn(2,mtru) = ampmax2(2,mtru); ampmaxn(3,mtru) = ampmax2(3,mtru); } } } //____________________________________________________________________________ void AliPHOSTrigger::Print(const Option_t * opt) const { //Prints main parameters if(! opt) return; AliTriggerInput* in = 0x0 ; printf( " Maximum Amplitude after Sliding Crystal, \n") ; printf( " -2x2 crystals sum (not overlapped): %10.2f, in Super Module %d\n", f2x2MaxAmp,f2x2SM) ; printf( " -2x2 from row %d to row %d and from column %d to column %d\n", f2x2CrystalPhi, f2x2CrystalPhi+2, f2x2CrystalEta, f2x2CrystalEta+2) ; printf( " -2x2 Isolation Patch %d x %d, Amplitude out of 2x2 patch is %f, threshold %f, Isolated? %d \n", 2*fIsolPatchSize+2, 2*fIsolPatchSize+2, f2x2AmpOutOfPatch, f2x2AmpOutOfPatchThres,static_cast (fIs2x2Isol)) ; if(fPatchSize > 0){ printf( " Patch Size, n x n: %d x %d cells\n",2*(fPatchSize+1), 2*(fPatchSize+1)); printf( " -nxn crystals sum (overlapped) : %10.2f, in Super Module %d\n", fnxnMaxAmp,fnxnSM) ; printf( " -nxn from row %d to row %d and from column %d to column %d\n", fnxnCrystalPhi, fnxnCrystalPhi+4*fPatchSize, fnxnCrystalEta, fnxnCrystalEta+4*fPatchSize) ; printf( " -nxn Isolation Patch %d x %d, Amplitude out of nxn patch is %f, threshold %f, Isolated? %d \n", 4*fIsolPatchSize+2*(fPatchSize+1),4*fIsolPatchSize+2*(fPatchSize+1) , fnxnAmpOutOfPatch, fnxnAmpOutOfPatchThres,static_cast (fIsnxnIsol) ) ; } printf( " Isolate in Module? %d\n", fIsolateInModule) ; printf( " Threshold for LO %10.1f\n", fL0Threshold) ; printf( " Threshold for LO %10.2f\n", fL0Threshold) ; in = (AliTriggerInput*)fInputs.FindObject( "0PH0" ); if(in->GetValue()) printf( " *** PHOS LO is set ***\n") ; printf( " Jet Low Pt Threshold for L1 %10.2f\n", fL1JetLowPtThreshold) ; in = (AliTriggerInput*)fInputs.FindObject( "PHOS_JetLPt_L1" ); if(in->GetValue()) printf( " *** PHOS Jet Low Pt for L1 is set ***\n") ; printf( " Jet Medium Pt Threshold for L1 %10.2f\n", fL1JetMediumPtThreshold) ; in = (AliTriggerInput*)fInputs.FindObject( "PHOS_JetMPt_L1" ); if(in->GetValue()) printf( " *** PHOS Jet Medium Pt for L1 is set ***\n") ; printf( " Jet High Pt Threshold for L1 %10.2f\n", fL1JetHighPtThreshold) ; in = (AliTriggerInput*) fInputs.FindObject( "PHOS_JetHPt_L1" ); if(in->GetValue()) printf( " *** PHOS Jet High Pt for L1 is set ***\n") ; } //____________________________________________________________________________ void AliPHOSTrigger::SetTriggers(const Int_t iMod, const TMatrixD & ampmax2, const TMatrixD & ampmaxn) { //Checks the 2x2 and nxn maximum amplitude per each TRU and compares //with the different L0 and L1 triggers thresholds. It finds if maximum amplitudes are isolated. //Initialize variables Float_t max2[] = {-1,-1,-1,-1} ; Float_t maxn[] = {-1,-1,-1,-1} ; Int_t mtru2 = -1 ; Int_t mtrun = -1 ; //Find maximum summed amplitude of all the TRU //in a Module for(Int_t i = 0 ; i < fNTRU ; i++){ if(max2[0] < ampmax2(0,i) ){ max2[0] = ampmax2(0,i) ; // 2x2 summed max amplitude max2[1] = ampmax2(1,i) ; // corresponding phi position in TRU max2[2] = ampmax2(2,i) ; // corresponding eta position in TRU max2[3] = ampmax2(3,i) ; // corresponding most recent time mtru2 = i ; // TRU number in module } if(maxn[0] < ampmaxn(0,i) ){ maxn[0] = ampmaxn(0,i) ; // nxn summed max amplitude maxn[1] = ampmaxn(1,i) ; // corresponding phi position in TRU maxn[2] = ampmaxn(2,i) ; // corresponding eta position in TRU maxn[3] = ampmaxn(3,i) ; // corresponding most recent time mtrun = i ; // TRU number in module } } //Set max amplitude if larger than in other Modules Float_t maxtimeR2 = -1 ; Float_t maxtimeRn = -1 ; // Create a shaper pulse object AliPHOSPulseGenerator pulse ; Int_t nTimeBins = pulse.GetRawFormatTimeBins() ; //Set max 2x2 amplitude and select L0 trigger if(max2[0] > f2x2MaxAmp ){ f2x2MaxAmp = max2[0] ; f2x2SM = iMod ; maxtimeR2 = max2[3] ; GetCrystalPhiEtaIndexInModuleFromTRUIndex(mtru2, static_cast(max2[1]), static_cast(max2[2]), f2x2CrystalPhi,f2x2CrystalEta) ; //Isolated patch? if(fIsolateInModule) fIs2x2Isol = IsPatchIsolated(0, iMod, mtru2, f2x2MaxAmp, f2x2CrystalPhi,f2x2CrystalEta) ; else fIs2x2Isol = IsPatchIsolated(0, iMod, mtru2, f2x2MaxAmp, static_cast(max2[1]), static_cast(max2[2])) ; //Transform digit amplitude in Raw Samples if (fADCValuesLow2x2 == 0) { fADCValuesLow2x2 = new Int_t[nTimeBins]; } if(!fADCValuesHigh2x2) fADCValuesHigh2x2 = new Int_t[nTimeBins]; pulse.SetAmplitude(f2x2MaxAmp); pulse.SetTZero(maxtimeR2); pulse.MakeSamples(); pulse.GetSamples(fADCValuesHigh2x2, fADCValuesLow2x2) ; //Set Trigger Inputs, compare ADC time bins until threshold is attained //Set L0 for(Int_t i = 0 ; i < nTimeBins ; i++){ if(fADCValuesHigh2x2[i] >= fL0Threshold || fADCValuesLow2x2[i] >= fL0Threshold) { SetInput("0PH0") ; break; } } } //Set max nxn amplitude and select L1 triggers if(maxn[0] > fnxnMaxAmp && fPatchSize > 0){ fnxnMaxAmp = maxn[0] ; fnxnSM = iMod ; maxtimeRn = maxn[3] ; GetCrystalPhiEtaIndexInModuleFromTRUIndex(mtrun, static_cast(maxn[1]), static_cast(maxn[2]), fnxnCrystalPhi,fnxnCrystalEta) ; //Isolated patch? if(fIsolateInModule) fIsnxnIsol = IsPatchIsolated(1, iMod, mtrun, fnxnMaxAmp, fnxnCrystalPhi, fnxnCrystalEta) ; else fIsnxnIsol = IsPatchIsolated(1, iMod, mtrun, fnxnMaxAmp, static_cast(maxn[1]), static_cast(maxn[2])) ; //Transform digit amplitude in Raw Samples if (fADCValuesHighnxn == 0) { fADCValuesHighnxn = new Int_t[nTimeBins]; fADCValuesLownxn = new Int_t[nTimeBins]; } pulse.SetAmplitude(fnxnMaxAmp); pulse.SetTZero(maxtimeRn); pulse.MakeSamples(); pulse.GetSamples(fADCValuesHighnxn, fADCValuesLownxn) ; //Set Trigger Inputs, compare ADC time bins until threshold is attained //SetL1 Low for(Int_t i = 0 ; i < nTimeBins ; i++){ if(fADCValuesHighnxn[i] >= fL1JetLowPtThreshold || fADCValuesLownxn[i] >= fL1JetLowPtThreshold){ SetInput("PHOS_JetLPt_L1") ; break; } } //SetL1 Medium for(Int_t i = 0 ; i < nTimeBins ; i++){ if(fADCValuesHighnxn[i] >= fL1JetMediumPtThreshold || fADCValuesLownxn[i] >= fL1JetMediumPtThreshold){ SetInput("PHOS_JetMPt_L1") ; break; } } //SetL1 High for(Int_t i = 0 ; i < nTimeBins ; i++){ if(fADCValuesHighnxn[i] >= fL1JetHighPtThreshold || fADCValuesLownxn[i] >= fL1JetHighPtThreshold){ SetInput("PHOS_JetHPt_L1") ; break; } } } } //____________________________________________________________________________ void AliPHOSTrigger::Trigger(TClonesArray *digits) { //Main Method to select triggers. fDigitsList = digits; DoIt() ; } //____________________________________________________________________________ void AliPHOSTrigger::DoIt() { // does the trigger job AliRunLoader* rl = AliRunLoader::Instance() ; AliPHOSLoader * phosLoader = static_cast(rl->GetLoader("PHOSLoader")); // Get PHOS Geometry object AliPHOSGeometry *geom; if (!(geom = AliPHOSGeometry::GetInstance())) geom = AliPHOSGeometry::GetInstance("IHEP",""); //Define parameters Int_t nModules = geom->GetNModules(); fNCrystalsPhi = geom->GetNPhi()/fNTRUPhi ;// 64/4=16 fNCrystalsZ = geom->GetNZ()/fNTRUZ ;// 56/2=28 //Intialize data members each time the trigger is called in event loop f2x2MaxAmp = -1; f2x2CrystalPhi = -1; f2x2CrystalEta = -1; fnxnMaxAmp = -1; fnxnCrystalPhi = -1; fnxnCrystalEta = -1; //Take the digits list if simulation if(fSimulation) fDigitsList = phosLoader->Digits() ; if(!fDigitsList) AliFatal("Digits not found !") ; //Fill TRU Matrix // TClonesArray * amptrus = new TClonesArray("TMatrixD",1000); // TClonesArray * ampmods = new TClonesArray("TMatrixD",1000); // TClonesArray * timeRtrus = new TClonesArray("TMatrixD",1000); FillTRU(fDigitsList,geom) ; //Do Crystal Sliding and select Trigger //Initialize varible that will contain maximum amplitudes and //its corresponding cell position in eta and phi, and time. TMatrixD ampmax2(4,fNTRU) ; TMatrixD ampmaxn(4,fNTRU) ; for(Int_t imod = 0 ; imod < nModules ; imod++) { //Do 2x2 and nxn sums, select maximums. MakeSlidingCell(imod, ampmax2, ampmaxn); //Set the trigger SetTriggers(imod,ampmax2,ampmaxn) ; } fAmptrus->Delete(); // delete amptrus; amptrus=0; fAmpmods->Delete(); // delete ampmods; ampmods=0; fTimeRtrus->Delete(); // delete timeRtrus; timeRtrus=0; //Print(); }