/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ /* History of cvs commits: * * $Log$ * Revision 1.81 2006/03/04 20:25:56 kharlov * Set geom parameters from CDB * * Revision 1.80 2005/06/17 07:39:07 hristov * Removing GetDebug and SetDebug from AliRun and AliModule. Using AliLog for the messages * * Revision 1.79 2005/05/28 14:19:05 schutz * Compilation warnings fixed by T.P. * */ //_________________________________________________________________________ // Implementation version v0 of PHOS Manager class // An object of this class does not produce hits nor digits // It is the one to use if you do not want to produce outputs in TREEH or TREED // //*-- Author: Yves Schutz (SUBATECH) & Dmitri Peressounko (RRC KI & SUBATECH) // --- ROOT system --- #include #include #include #include #include #include #include #include #include #include // --- Standard library --- #include #include // --- AliRoot header files --- #include "AliConst.h" #include "AliPHOSGeometry.h" #include "AliPHOSLoader.h" #include "AliPHOSv0.h" #include "AliRun.h" #include "AliLog.h" ClassImp(AliPHOSv0) //____________________________________________________________________________ AliPHOSv0::AliPHOSv0(const char *name, const char *title): AliPHOS(name,title) { // ctor : title is used to identify the layout GetGeometry() ; } //____________________________________________________________________________ void AliPHOSv0::Copy(TObject & phos) const { TObject::Copy(phos) ; AliPHOS::Copy(phos) ; } //____________________________________________________________________________ void AliPHOSv0::BuildGeometry() { // Build the PHOS geometry for the ROOT display //BEGIN_HTML /*

PHOS in ALICE displayed by root

  • All Views

    All Views

  • Front View

    Front View

  • 3D View 1

    3D View 1

  • 3D View 2

    3D View 2

*/ //END_HTML this->BuildGeometryforEMC() ; this->BuildGeometryforCPV() ; } //____________________________________________________________________________ void AliPHOSv0:: BuildGeometryforEMC(void) { // Build the PHOS-EMC geometry for the ROOT display const Int_t kColorPHOS = kRed ; const Int_t kColorXTAL = kBlue ; Double_t const kRADDEG = 180.0 / TMath::Pi() ; AliPHOSGeometry * geom = GetGeometry() ; AliPHOSEMCAGeometry * emcg = geom->GetEMCAGeometry() ; Float_t * boxparams = emcg->GetEMCParams() ; new TTRD1("OuterBox", "PHOS box", "void",boxparams[0],boxparams[1],boxparams[2], boxparams[3] ); // Crystals Box Float_t * cribox = emcg->GetInnerThermoHalfSize() ; new TBRIK( "CrystalsBox", "PHOS crystals box", "void", cribox[0], cribox[2], cribox[1] ) ; // position PHOS into ALICE Float_t r = geom->GetIPtoOuterCoverDistance() + boxparams[3] ; Int_t number = 988 ; TNode * top = gAlice->GetGeometry()->GetNode("alice") ; char * nodename = new char[20] ; char * rotname = new char[20] ; new TRotMatrix("cribox", "cribox", 90, 0, 90, 90, 0, 0); for( Int_t i = 1; i <= geom->GetNModules(); i++ ) { Float_t angle = geom->GetPHOSAngle(i) ; sprintf(rotname, "%s%d", "rot", number++) ; new TRotMatrix(rotname, rotname, 90, angle, 0, 0, 90, 270 + angle); top->cd(); sprintf(nodename,"%s%d", "Module", i) ; Float_t x = r * TMath::Sin( angle / kRADDEG ) ; Float_t y = -r * TMath::Cos( angle / kRADDEG ) ; TNode * outerboxnode = new TNode(nodename, nodename, "OuterBox", x, y, 0, rotname ) ; outerboxnode->SetLineColor(kColorPHOS) ; fNodes->Add(outerboxnode) ; outerboxnode->cd() ; Float_t z = -boxparams[3] - geom->GetIPtoOuterCoverDistance() + cribox[1] + geom->GetIPtoCrystalSurface() ; TNode * crystalsboxnode = new TNode(nodename, nodename, "CrystalsBox", 0, 0, z) ; crystalsboxnode->SetLineColor(kColorXTAL) ; fNodes->Add(crystalsboxnode) ; } delete[] rotname ; delete[] nodename ; } //____________________________________________________________________________ void AliPHOSv0:: BuildGeometryforCPV(void) { // Build the PHOS-CPV geometry for the ROOT display // Author: Yuri Kharlov 11 September 2000 // //BEGIN_HTML /*

CPV displayed by root

CPV perspective view CPV front view
*/ //END_HTML const Double_t kRADDEG = 180.0 / TMath::Pi() ; const Int_t kColorCPV = kGreen ; const Int_t kColorFrame = kYellow ; const Int_t kColorGassiplex = kRed; const Int_t kColorPCB = kCyan; AliPHOSGeometry * geom = GetGeometry() ; // Box for a full PHOS module new TBRIK ("CPVBox", "CPV box", "void", geom->GetCPVBoxSize(0)/2, geom->GetCPVBoxSize(1)/2, geom->GetCPVBoxSize(2)/2 ); new TBRIK ("CPVFrameLR", "CPV frame Left-Right", "void", geom->GetCPVFrameSize(0)/2, geom->GetCPVFrameSize(1)/2, geom->GetCPVBoxSize(2)/2 ); new TBRIK ("CPVFrameUD", "CPV frame Up-Down", "void", geom->GetCPVBoxSize(0)/2 - geom->GetCPVFrameSize(0), geom->GetCPVFrameSize(1)/2, geom->GetCPVFrameSize(2)/2); new TBRIK ("CPVPCB", "CPV PCB", "void", geom->GetCPVActiveSize(0)/2, geom->GetCPVTextoliteThickness()/2, geom->GetCPVActiveSize(1)/2); new TBRIK ("CPVGassiplex", "CPV Gassiplex PCB", "void", geom->GetGassiplexChipSize(0)/2, geom->GetGassiplexChipSize(1)/2, geom->GetGassiplexChipSize(2)/2); // position CPV into ALICE char * nodename = new char[25] ; char * rotname = new char[25] ; Float_t r = geom->GetIPtoCPVDistance() + geom->GetCPVBoxSize(1) / 2.0 ; Int_t number = 988 ; TNode * top = gAlice->GetGeometry()->GetNode("alice") ; Int_t lastModule = 0 ; lastModule = geom->GetNModules(); for( Int_t i = 1; i <= lastModule; i++ ) { // the number of PHOS modules // One CPV module Float_t angle = geom->GetPHOSAngle(i) ; sprintf(rotname, "%s%d", "rotg", number+i) ; new TRotMatrix(rotname, rotname, 90, angle, 90, 90 + angle, 0, 0); top->cd(); sprintf(nodename, "%s%d", "CPVModule", i) ; Float_t x = r * TMath::Sin( angle / kRADDEG ) ; Float_t y = -r * TMath::Cos( angle / kRADDEG ) ; Float_t z; TNode * cpvBoxNode = new TNode(nodename , nodename ,"CPVBox", x, y, 0, rotname ) ; cpvBoxNode->SetLineColor(kColorCPV) ; fNodes->Add(cpvBoxNode) ; cpvBoxNode->cd() ; // inside each CPV box: // Frame around CPV Int_t j; for (j=0; j<=1; j++) { sprintf(nodename, "CPVModule%d Frame%d", i, j+1) ; x = TMath::Sign(1,2*j-1) * (geom->GetCPVBoxSize(0) - geom->GetCPVFrameSize(0)) / 2; TNode * cpvFrameNode = new TNode(nodename , nodename ,"CPVFrameLR", x, 0, 0) ; cpvFrameNode->SetLineColor(kColorFrame) ; fNodes->Add(cpvFrameNode) ; sprintf(nodename, "CPVModule%d Frame%d", i, j+3) ; z = TMath::Sign(1,2*j-1) * (geom->GetCPVBoxSize(2) - geom->GetCPVFrameSize(2)) / 2; cpvFrameNode = new TNode(nodename , nodename ,"CPVFrameUD", 0, 0, z) ; cpvFrameNode->SetLineColor(kColorFrame) ; fNodes->Add(cpvFrameNode) ; } // 4 printed circuit boards for (j=0; j<4; j++) { sprintf(nodename, "CPVModule%d PCB%d", i, j+1) ; y = geom->GetCPVFrameSize(1) / 2 - geom->GetFTPosition(j) + geom->GetCPVTextoliteThickness()/2; TNode * cpvPCBNode = new TNode(nodename , nodename ,"CPVPCB", 0, y, 0) ; cpvPCBNode->SetLineColor(kColorPCB) ; fNodes->Add(cpvPCBNode) ; } // Gassiplex chips Float_t xStep = geom->GetCPVActiveSize(0) / (geom->GetNumberOfCPVChipsPhi() + 1); Float_t zStep = geom->GetCPVActiveSize(1) / (geom->GetNumberOfCPVChipsZ() + 1); y = geom->GetCPVFrameSize(1)/2 - geom->GetFTPosition(0) + geom->GetCPVTextoliteThickness() / 2 + geom->GetGassiplexChipSize(1) / 2 + 0.1; for (Int_t ix=0; ixGetNumberOfCPVChipsPhi(); ix++) { x = xStep * (ix+1) - geom->GetCPVActiveSize(0)/2; for (Int_t iz=0; izGetNumberOfCPVChipsZ(); iz++) { z = zStep * (iz+1) - geom->GetCPVActiveSize(1)/2; sprintf(nodename, "CPVModule%d Chip(%dx%d)", i, ix+1,iz+1) ; TNode * cpvGassiplexNode = new TNode(nodename , nodename ,"CPVGassiplex", x, y, z) ; cpvGassiplexNode->SetLineColor(kColorGassiplex) ; fNodes->Add(cpvGassiplexNode) ; } } } // PHOS modules delete[] rotname ; delete[] nodename ; } //____________________________________________________________________________ void AliPHOSv0::CreateGeometry() { // Create the PHOS geometry for Geant AliPHOSv0 *phostmp = dynamic_cast(gAlice->GetModule("PHOS")) ; if ( phostmp == NULL ) { fprintf(stderr, "PHOS detector not found!\n") ; return; } AliPHOSGeometry * geom = GetGeometry() ; // Get pointer to the array containing media indeces Int_t *idtmed = fIdtmed->GetArray() - 699 ; // Create a PHOS module. gMC->Gsvolu("PHOS", "TRD1", idtmed[798], geom->GetPHOSParams(), 4) ; this->CreateGeometryforEMC() ; this->CreateGeometryforCPV() ; this->CreateGeometryforSupport() ; // --- Position PHOS mdules in ALICE setup --- Int_t idrotm[99] ; Int_t iXYZ,iAngle; for (Int_t iModule = 0; iModule < geom->GetNModules(); iModule++ ) { Float_t angle[3][2]; for (iXYZ=0; iXYZ<3; iXYZ++) for (iAngle=0; iAngle<2; iAngle++) angle[iXYZ][iAngle] = geom->GetModuleAngle(iModule,iXYZ, iAngle); AliMatrix(idrotm[iModule], angle[0][0],angle[0][1], angle[1][0],angle[1][1], angle[2][0],angle[2][1]) ; Float_t pos[3]; for (iXYZ=0; iXYZ<3; iXYZ++) pos[iXYZ] = geom->GetModuleCenter(iModule,iXYZ); gMC->Gspos("PHOS", iModule+1, "ALIC", pos[0], pos[1], pos[2], idrotm[iModule], "ONLY") ; } } //____________________________________________________________________________ void AliPHOSv0::CreateGeometryforEMC() { // Create the PHOS-EMC geometry for GEANT // Author: Dmitri Peressounko August 2001 // The used coordinate system: // 1. in Module: X along longer side, Y out of beam, Z along shorter side (along beam) // 2. In Strip the same: X along longer side, Y out of beam, Z along shorter side (along beam) //BEGIN_HTML /*

Geant3 geometry tree of PHOS-EMC in ALICE

EMC geant tree

*/ //END_HTML // Get pointer to the array containing media indexes Int_t *idtmed = fIdtmed->GetArray() - 699 ; AliPHOSGeometry * geom = GetGeometry() ; AliPHOSEMCAGeometry * emcg = geom->GetEMCAGeometry() ; // ======= Define the strip =============== gMC->Gsvolu("PSTR", "BOX ", idtmed[716], emcg->GetStripHalfSize(), 3) ; //Made of stell // --- define air volume (cell of the honeycomb) gMC->Gsvolu("PCEL", "BOX ", idtmed[798], emcg->GetAirCellHalfSize(), 3); // --- define wrapped crystal and put it into AirCell gMC->Gsvolu("PWRA", "BOX ", idtmed[702], emcg->GetWrappedHalfSize(), 3); Float_t * pin = emcg->GetAPDHalfSize() ; Float_t * preamp = emcg->GetPreampHalfSize() ; Float_t y = (emcg->GetAirGapLed()-2*pin[1]-2*preamp[1])/2; gMC->Gspos("PWRA", 1, "PCEL", 0.0, y, 0.0, 0, "ONLY") ; // --- Define crystall and put it into wrapped crystall --- gMC->Gsvolu("PXTL", "BOX ", idtmed[699], emcg->GetCrystalHalfSize(), 3) ; gMC->Gspos("PXTL", 1, "PWRA", 0.0, 0.0, 0.0, 0, "ONLY") ; // --- define APD/PIN preamp and put it into AirCell gMC->Gsvolu("PPIN", "BOX ", idtmed[705], emcg->GetAPDHalfSize(), 3) ; Float_t * crystal = emcg->GetCrystalHalfSize() ; y = crystal[1] + emcg->GetAirGapLed() /2 - preamp[1]; gMC->Gspos("PPIN", 1, "PCEL", 0.0, y, 0.0, 0, "ONLY") ; gMC->Gsvolu("PREA", "BOX ", idtmed[711], emcg->GetPreampHalfSize(), 3) ; // Here I assumed preamp // as a printed Circuit y = crystal[1] + emcg->GetAirGapLed() /2 + pin[1] ; // May it should be changed gMC->Gspos("PREA", 1, "PCEL", 0.0, y, 0.0, 0, "ONLY") ; // to ceramics? // --- Fill strip with wrapped cristalls in Air Cells Float_t* splate = emcg->GetSupportPlateHalfSize(); y = -splate[1] ; Float_t* acel = emcg->GetAirCellHalfSize() ; Int_t icel ; for(icel = 1; icel <= emcg->GetNCellsInStrip(); icel++){ Float_t x = (2*icel - 1 - emcg->GetNCellsInStrip())* acel[0] ; gMC->Gspos("PCEL", icel, "PSTR", x, y, 0.0, 0, "ONLY") ; } // --- define the support plate, hole in it and position it in strip ---- gMC->Gsvolu("PSUP", "BOX ", idtmed[701], emcg->GetSupportPlateHalfSize(), 3) ; gMC->Gsvolu("PSHO", "BOX ", idtmed[798], emcg->GetSupportPlateInHalfSize(), 3) ; Float_t z = emcg->GetSupportPlateThickness()/2 ; gMC->Gspos("PSHO", 1, "PSUP", 0.0, 0.0, z, 0, "ONLY") ; y = acel[1] ; gMC->Gspos("PSUP", 1, "PSTR", 0.0, y, 0.0, 0, "ONLY") ; // ========== Fill module with strips and put them into inner thermoinsulation============= gMC->Gsvolu("PTII", "BOX ", idtmed[706], emcg->GetInnerThermoHalfSize(), 3) ; Float_t * inthermo = emcg->GetInnerThermoHalfSize() ; Float_t * strip = emcg->GetStripHalfSize() ; y = inthermo[1] - strip[1] ; Int_t irow; Int_t nr = 1 ; Int_t icol ; for(irow = 0; irow < emcg->GetNStripX(); irow ++){ Float_t x = (2*irow + 1 - emcg->GetNStripX())* strip[0] ; for(icol = 0; icol < emcg->GetNStripZ(); icol ++){ z = (2*icol + 1 - emcg->GetNStripZ()) * strip[2] ; gMC->Gspos("PSTR", nr, "PTII", x, y, z, 0, "ONLY") ; nr++ ; } } // ------- define the air gap between thermoinsulation and cooler gMC->Gsvolu("PAGA", "BOX ", idtmed[798], emcg->GetAirGapHalfSize(), 3) ; Float_t * agap = emcg->GetAirGapHalfSize() ; y = agap[1] - inthermo[1] ; gMC->Gspos("PTII", 1, "PAGA", 0.0, y, 0.0, 0, "ONLY") ; // ------- define the Al passive cooler gMC->Gsvolu("PCOR", "BOX ", idtmed[701], emcg->GetCoolerHalfSize(), 3) ; Float_t * cooler = emcg->GetCoolerHalfSize() ; y = cooler[1] - agap[1] ; gMC->Gspos("PAGA", 1, "PCOR", 0.0, y, 0.0, 0, "ONLY") ; // ------- define the outer thermoinsulating cover gMC->Gsvolu("PTIO", "TRD1", idtmed[706], emcg->GetOuterThermoParams(), 4) ; Float_t * outparams = emcg->GetOuterThermoParams() ; Int_t idrotm[99] ; AliMatrix(idrotm[1], 90.0, 0.0, 0.0, 0.0, 90.0, 270.0) ; // Frame in outer thermoinsulation and so on: z out of beam, y along beam, x across beam z = outparams[3] - cooler[1] ; gMC->Gspos("PCOR", 1, "PTIO", 0., 0.0, z, idrotm[1], "ONLY") ; // -------- Define the outer Aluminium cover ----- gMC->Gsvolu("PCOL", "TRD1", idtmed[701], emcg->GetAlCoverParams(), 4) ; Float_t * covparams = emcg->GetAlCoverParams() ; z = covparams[3] - outparams[3] ; gMC->Gspos("PTIO", 1, "PCOL", 0., 0.0, z, 0, "ONLY") ; // --------- Define front fiberglass cover ----------- gMC->Gsvolu("PFGC", "BOX ", idtmed[717], emcg->GetFiberGlassHalfSize(), 3) ; z = - outparams[3] ; gMC->Gspos("PFGC", 1, "PCOL", 0., 0.0, z, 0, "ONLY") ; //=============This is all with cold section============== //------ Warm Section -------------- gMC->Gsvolu("PWAR", "BOX ", idtmed[701], emcg->GetWarmAlCoverHalfSize(), 3) ; Float_t * warmcov = emcg->GetWarmAlCoverHalfSize() ; // --- Define the outer thermoinsulation --- gMC->Gsvolu("PWTI", "BOX ", idtmed[706], emcg->GetWarmThermoHalfSize(), 3) ; Float_t * warmthermo = emcg->GetWarmThermoHalfSize() ; z = -warmcov[2] + warmthermo[2] ; gMC->Gspos("PWTI", 1, "PWAR", 0., 0.0, z, 0, "ONLY") ; // --- Define cables area and put in it T-supports ---- gMC->Gsvolu("PCA1", "BOX ", idtmed[718], emcg->GetTCables1HalfSize(), 3) ; Float_t * cbox = emcg->GetTCables1HalfSize() ; gMC->Gsvolu("PBE1", "BOX ", idtmed[701], emcg->GetTSupport1HalfSize(), 3) ; Float_t * beams = emcg->GetTSupport1HalfSize() ; Int_t isup ; for(isup = 0; isup < emcg->GetNTSuppots(); isup++){ Float_t x = -cbox[0] + beams[0] + (2*beams[0]+emcg->GetTSupportDist())*isup ; gMC->Gspos("PBE1", isup, "PCA1", x, 0.0, 0.0, 0, "ONLY") ; } z = -warmthermo[2] + cbox[2] ; gMC->Gspos("PCA1", 1, "PWTI", 0.0, 0.0, z, 0, "ONLY") ; gMC->Gsvolu("PCA2", "BOX ", idtmed[718], emcg->GetTCables2HalfSize(), 3) ; Float_t * cbox2 = emcg->GetTCables2HalfSize() ; gMC->Gsvolu("PBE2", "BOX ", idtmed[701], emcg->GetTSupport2HalfSize(), 3) ; for(isup = 0; isup < emcg->GetNTSuppots(); isup++){ Float_t x = -cbox[0] + beams[0] + (2*beams[0]+emcg->GetTSupportDist())*isup ; gMC->Gspos("PBE2", isup, "PCA2", x, 0.0, 0.0, 0, "ONLY") ; } z = -warmthermo[2] + 2*cbox[2] + cbox2[2]; gMC->Gspos("PCA2", 1, "PWTI", 0.0, 0.0, z, 0, "ONLY") ; // --- Define frame --- gMC->Gsvolu("PFRX", "BOX ", idtmed[716], emcg->GetFrameXHalfSize(), 3) ; Float_t * posit = emcg->GetFrameXPosition() ; gMC->Gspos("PFRX", 1, "PWTI", posit[0], posit[1], posit[2], 0, "ONLY") ; gMC->Gspos("PFRX", 2, "PWTI", posit[0], -posit[1], posit[2], 0, "ONLY") ; gMC->Gsvolu("PFRZ", "BOX ", idtmed[716], emcg->GetFrameZHalfSize(), 3) ; posit = emcg->GetFrameZPosition() ; gMC->Gspos("PFRZ", 1, "PWTI", posit[0], posit[1], posit[2], 0, "ONLY") ; gMC->Gspos("PFRZ", 2, "PWTI", -posit[0], posit[1], posit[2], 0, "ONLY") ; // --- Define Fiber Glass support --- gMC->Gsvolu("PFG1", "BOX ", idtmed[717], emcg->GetFGupXHalfSize(), 3) ; posit = emcg->GetFGupXPosition() ; gMC->Gspos("PFG1", 1, "PWTI", posit[0], posit[1], posit[2], 0, "ONLY") ; gMC->Gspos("PFG1", 2, "PWTI", posit[0], -posit[1], posit[2], 0, "ONLY") ; gMC->Gsvolu("PFG2", "BOX ", idtmed[717], emcg->GetFGupZHalfSize(), 3) ; posit = emcg->GetFGupZPosition() ; gMC->Gspos("PFG2", 1, "PWTI", posit[0], posit[1], posit[2], 0, "ONLY") ; gMC->Gspos("PFG2", 2, "PWTI", -posit[0], posit[1], posit[2], 0, "ONLY") ; gMC->Gsvolu("PFG3", "BOX ", idtmed[717], emcg->GetFGlowXHalfSize(), 3) ; posit = emcg->GetFGlowXPosition() ; gMC->Gspos("PFG3", 1, "PWTI", posit[0], posit[1], posit[2], 0, "ONLY") ; gMC->Gspos("PFG3", 2, "PWTI", posit[0], -posit[1], posit[2], 0, "ONLY") ; gMC->Gsvolu("PFG4", "BOX ", idtmed[717], emcg->GetFGlowZHalfSize(), 3) ; posit = emcg->GetFGlowZPosition() ; gMC->Gspos("PFG4", 1, "PWTI", posit[0], posit[1], posit[2], 0, "ONLY") ; gMC->Gspos("PFG4", 2, "PWTI", -posit[0], posit[1], posit[2], 0, "ONLY") ; // --- Define Air Gap for FEE electronics ----- gMC->Gsvolu("PAFE", "BOX ", idtmed[798], emcg->GetFEEAirHalfSize(), 3) ; posit = emcg->GetFEEAirPosition() ; gMC->Gspos("PAFE", 1, "PWTI", posit[0], posit[1], posit[2], 0, "ONLY") ; // Define the EMC module volume and combine Cool and Warm sections gMC->Gsvolu("PEMC", "TRD1", idtmed[798], emcg->GetEMCParams(), 4) ; z = - warmcov[2] ; gMC->Gspos("PCOL", 1, "PEMC", 0., 0., z, 0, "ONLY") ; z = covparams[3] ; gMC->Gspos("PWAR", 1, "PEMC", 0., 0., z, 0, "ONLY") ; // Put created EMC geometry into PHOS volume z = geom->GetCPVBoxSize(1) / 2. ; gMC->Gspos("PEMC", 1, "PHOS", 0., 0., z, 0, "ONLY") ; } //____________________________________________________________________________ void AliPHOSv0::CreateGeometryforCPV() { // Create the PHOS-CPV geometry for GEANT // Author: Yuri Kharlov 11 September 2000 //BEGIN_HTML /*

Geant3 geometry of PHOS-CPV in ALICE

CPV perspective view CPV front view
One CPV module, perspective view One CPV module, front view (extended in vertical direction)

Geant3 geometry tree of PHOS-CPV in ALICE

*/ //END_HTML Float_t par[3], x,y,z; // Get pointer to the array containing media indexes Int_t *idtmed = fIdtmed->GetArray() - 699 ; AliPHOSGeometry * geom = GetGeometry() ; // The box containing all CPV for one PHOS module filled with air par[0] = geom->GetCPVBoxSize(0) / 2.0 ; par[1] = geom->GetCPVBoxSize(1) / 2.0 ; par[2] = geom->GetCPVBoxSize(2) / 2.0 ; gMC->Gsvolu("PCPV", "BOX ", idtmed[798], par, 3) ; Float_t * emcParams = geom->GetEMCAGeometry()->GetEMCParams() ; z = - emcParams[3] ; Int_t rotm ; AliMatrix(rotm, 90.,0., 0., 0., 90., 90.) ; gMC->Gspos("PCPV", 1, "PHOS", 0.0, 0.0, z, rotm, "ONLY") ; // Gassiplex board par[0] = geom->GetGassiplexChipSize(0)/2.; par[1] = geom->GetGassiplexChipSize(1)/2.; par[2] = geom->GetGassiplexChipSize(2)/2.; gMC->Gsvolu("PCPC","BOX ",idtmed[707],par,3); // Cu+Ni foil covers Gassiplex board par[1] = geom->GetCPVCuNiFoilThickness()/2; gMC->Gsvolu("PCPD","BOX ",idtmed[710],par,3); y = -(geom->GetGassiplexChipSize(1)/2 - par[1]); gMC->Gspos("PCPD",1,"PCPC",0,y,0,0,"ONLY"); // Position of the chip inside CPV Float_t xStep = geom->GetCPVActiveSize(0) / (geom->GetNumberOfCPVChipsPhi() + 1); Float_t zStep = geom->GetCPVActiveSize(1) / (geom->GetNumberOfCPVChipsZ() + 1); Int_t copy = 0; y = geom->GetCPVFrameSize(1)/2 - geom->GetFTPosition(0) + geom->GetCPVTextoliteThickness() / 2 + geom->GetGassiplexChipSize(1) / 2 + 0.1; for (Int_t ix=0; ixGetNumberOfCPVChipsPhi(); ix++) { x = xStep * (ix+1) - geom->GetCPVActiveSize(0)/2; for (Int_t iz=0; izGetNumberOfCPVChipsZ(); iz++) { copy++; z = zStep * (iz+1) - geom->GetCPVActiveSize(1)/2; gMC->Gspos("PCPC",copy,"PCPV",x,y,z,0,"ONLY"); } } // Foiled textolite (1 mm of textolite + 50 mkm of Cu + 6 mkm of Ni) par[0] = geom->GetCPVActiveSize(0) / 2; par[1] = geom->GetCPVTextoliteThickness() / 2; par[2] = geom->GetCPVActiveSize(1) / 2; gMC->Gsvolu("PCPF","BOX ",idtmed[707],par,3); // Argon gas volume par[1] = (geom->GetFTPosition(2) - geom->GetFTPosition(1) - geom->GetCPVTextoliteThickness()) / 2; gMC->Gsvolu("PCPG","BOX ",idtmed[715],par,3); for (Int_t i=0; i<4; i++) { y = geom->GetCPVFrameSize(1) / 2 - geom->GetFTPosition(i) + geom->GetCPVTextoliteThickness()/2; gMC->Gspos("PCPF",i+1,"PCPV",0,y,0,0,"ONLY"); if(i==1){ y-= (geom->GetFTPosition(2) - geom->GetFTPosition(1)) / 2; gMC->Gspos("PCPG",1,"PCPV ",0,y,0,0,"ONLY"); } } // Dummy sensitive plane in the middle of argone gas volume par[1]=0.001; gMC->Gsvolu("PCPQ","BOX ",idtmed[715],par,3); gMC->Gspos ("PCPQ",1,"PCPG",0,0,0,0,"ONLY"); // Cu+Ni foil covers textolite par[1] = geom->GetCPVCuNiFoilThickness() / 2; gMC->Gsvolu("PCP1","BOX ",idtmed[710],par,3); y = geom->GetCPVTextoliteThickness()/2 - par[1]; gMC->Gspos ("PCP1",1,"PCPF",0,y,0,0,"ONLY"); // Aluminum frame around CPV par[0] = geom->GetCPVFrameSize(0)/2; par[1] = geom->GetCPVFrameSize(1)/2; par[2] = geom->GetCPVBoxSize(2) /2; gMC->Gsvolu("PCF1","BOX ",idtmed[701],par,3); par[0] = geom->GetCPVBoxSize(0)/2 - geom->GetCPVFrameSize(0); par[1] = geom->GetCPVFrameSize(1)/2; par[2] = geom->GetCPVFrameSize(2)/2; gMC->Gsvolu("PCF2","BOX ",idtmed[701],par,3); for (Int_t j=0; j<=1; j++) { x = TMath::Sign(1,2*j-1) * (geom->GetCPVBoxSize(0) - geom->GetCPVFrameSize(0)) / 2; gMC->Gspos("PCF1",j+1,"PCPV", x,0,0,0,"ONLY"); z = TMath::Sign(1,2*j-1) * (geom->GetCPVBoxSize(2) - geom->GetCPVFrameSize(2)) / 2; gMC->Gspos("PCF2",j+1,"PCPV",0, 0,z,0,"ONLY"); } } //____________________________________________________________________________ void AliPHOSv0::CreateGeometryforSupport() { // Create the PHOS' support geometry for GEANT //BEGIN_HTML /*

Geant3 geometry of the PHOS's support

EMC geant tree

*/ //END_HTML Float_t par[5], x0,y0,z0 ; Int_t i,j,copy; // Get pointer to the array containing media indexes Int_t *idtmed = fIdtmed->GetArray() - 699 ; AliPHOSGeometry * geom = GetGeometry() ; // --- Dummy box containing two rails on which PHOS support moves // --- Put these rails to the bottom of the L3 magnet par[0] = geom->GetRailRoadSize(0) / 2.0 ; par[1] = geom->GetRailRoadSize(1) / 2.0 ; par[2] = geom->GetRailRoadSize(2) / 2.0 ; gMC->Gsvolu("PRRD", "BOX ", idtmed[798], par, 3) ; y0 = -(geom->GetRailsDistanceFromIP() - geom->GetRailRoadSize(1) / 2.0) ; gMC->Gspos("PRRD", 1, "ALIC", 0.0, y0, 0.0, 0, "ONLY") ; // --- Dummy box containing one rail par[0] = geom->GetRailOuterSize(0) / 2.0 ; par[1] = geom->GetRailOuterSize(1) / 2.0 ; par[2] = geom->GetRailOuterSize(2) / 2.0 ; gMC->Gsvolu("PRAI", "BOX ", idtmed[798], par, 3) ; for (i=0; i<2; i++) { x0 = (2*i-1) * geom->GetDistanceBetwRails() / 2.0 ; gMC->Gspos("PRAI", i, "PRRD", x0, 0.0, 0.0, 0, "ONLY") ; } // --- Upper and bottom steel parts of the rail par[0] = geom->GetRailPart1(0) / 2.0 ; par[1] = geom->GetRailPart1(1) / 2.0 ; par[2] = geom->GetRailPart1(2) / 2.0 ; gMC->Gsvolu("PRP1", "BOX ", idtmed[716], par, 3) ; y0 = - (geom->GetRailOuterSize(1) - geom->GetRailPart1(1)) / 2.0 ; gMC->Gspos("PRP1", 1, "PRAI", 0.0, y0, 0.0, 0, "ONLY") ; y0 = (geom->GetRailOuterSize(1) - geom->GetRailPart1(1)) / 2.0 - geom->GetRailPart3(1); gMC->Gspos("PRP1", 2, "PRAI", 0.0, y0, 0.0, 0, "ONLY") ; // --- The middle vertical steel parts of the rail par[0] = geom->GetRailPart2(0) / 2.0 ; par[1] = geom->GetRailPart2(1) / 2.0 ; par[2] = geom->GetRailPart2(2) / 2.0 ; gMC->Gsvolu("PRP2", "BOX ", idtmed[716], par, 3) ; y0 = - geom->GetRailPart3(1) / 2.0 ; gMC->Gspos("PRP2", 1, "PRAI", 0.0, y0, 0.0, 0, "ONLY") ; // --- The most upper steel parts of the rail par[0] = geom->GetRailPart3(0) / 2.0 ; par[1] = geom->GetRailPart3(1) / 2.0 ; par[2] = geom->GetRailPart3(2) / 2.0 ; gMC->Gsvolu("PRP3", "BOX ", idtmed[716], par, 3) ; y0 = (geom->GetRailOuterSize(1) - geom->GetRailPart3(1)) / 2.0 ; gMC->Gspos("PRP3", 1, "PRAI", 0.0, y0, 0.0, 0, "ONLY") ; // --- The wall of the cradle // --- The wall is empty: steel thin walls and air inside par[1] = TMath::Sqrt(TMath::Power((geom->GetIPtoCPVDistance() + geom->GetOuterBoxSize(3)),2) + TMath::Power((geom->GetOuterBoxSize(1)/2),2))+10. ; par[0] = par[1] - geom->GetCradleWall(1) ; par[2] = geom->GetCradleWall(2) / 2.0 ; par[3] = geom->GetCradleWall(3) ; par[4] = geom->GetCradleWall(4) ; gMC->Gsvolu("PCRA", "TUBS", idtmed[716], par, 5) ; par[0] += geom->GetCradleWallThickness() ; par[1] -= geom->GetCradleWallThickness() ; par[2] -= geom->GetCradleWallThickness() ; gMC->Gsvolu("PCRE", "TUBS", idtmed[798], par, 5) ; gMC->Gspos ("PCRE", 1, "PCRA", 0.0, 0.0, 0.0, 0, "ONLY") ; for (i=0; i<2; i++) { z0 = (2*i-1) * (geom->GetOuterBoxSize(2) + geom->GetCradleWall(2) )/ 2.0 ; gMC->Gspos("PCRA", i, "ALIC", 0.0, 0.0, z0, 0, "ONLY") ; } // --- The "wheels" of the cradle par[0] = geom->GetCradleWheel(0) / 2; par[1] = geom->GetCradleWheel(1) / 2; par[2] = geom->GetCradleWheel(2) / 2; gMC->Gsvolu("PWHE", "BOX ", idtmed[716], par, 3) ; y0 = -(geom->GetRailsDistanceFromIP() - geom->GetRailRoadSize(1) - geom->GetCradleWheel(1)/2) ; for (i=0; i<2; i++) { z0 = (2*i-1) * ((geom->GetOuterBoxSize(2) + geom->GetCradleWheel(2))/ 2.0 + geom->GetCradleWall(2)); for (j=0; j<2; j++) { copy = 2*i + j; x0 = (2*j-1) * geom->GetDistanceBetwRails() / 2.0 ; gMC->Gspos("PWHE", copy, "ALIC", x0, y0, z0, 0, "ONLY") ; } } } //_____________________________________________________________________________ void AliPHOSv0::AddAlignableVolumes() const { // // Create entries for alignable volumes associating the symbolic volume // name with the corresponding volume path. Needs to be syncronized with // eventual changes in the geometry // Alignable volumes are: // 1) PHOS modules as a whole // 2) Cradle // 3) Cradle wheels // 4) Strip units (group of 2x8 crystals) TString volpath, symname; // Alignable modules // Volume path /ALIC_1/PHOS_ => symbolic name /PHOS/Module, =1,2,3,4,5 TString physModulePath="/ALIC_1/PHOS_"; TString symbModuleName="PHOS/Module"; Int_t nModules = GetGeometry()->GetNModules(); for(Int_t iModule=1; iModule<=nModules; iModule++){ volpath = physModulePath; volpath += iModule; symname = symbModuleName; symname += iModule; gGeoManager->SetAlignableEntry(symname.Data(),volpath.Data()); } // Alignable cradle walls // Volume path /ALIC_1/PCRA_ => symbolic name /PHOS/Cradle, =0,1 TString physCradlePath="/ALIC_1/PCRA_"; TString symbCradleName="PHOS/Cradle"; Int_t nCradles = 2; for(Int_t iCradle=0; iCradleSetAlignableEntry(symname.Data(),volpath.Data()); } // Alignable wheels // Volume path /ALIC_1/PWHE_ => symbolic name /PHOS/Wheel, i=0,1,2,3 TString physWheelPath="/ALIC_1/PWHE_"; TString symbWheelName="PHOS/Wheel"; Int_t nWheels = 4; for(Int_t iWheel=0; iWheelSetAlignableEntry(symname.Data(),volpath.Data()); } // Alignable strip units are not implemented yet (27.09.2006) } //____________________________________________________________________________ Float_t AliPHOSv0::ZMin(void) const { // Overall dimension of the PHOS (min) AliPHOSGeometry * geom = GetGeometry() ; return -geom->GetOuterBoxSize(2)/2.; } //____________________________________________________________________________ Float_t AliPHOSv0::ZMax(void) const { // Overall dimension of the PHOS (max) AliPHOSGeometry * geom = GetGeometry() ; return geom->GetOuterBoxSize(2)/2.; } //____________________________________________________________________________ void AliPHOSv0::Init(void) { // Just prints an information message Int_t i; if(AliLog::GetGlobalDebugLevel()>0) { TString st ; for(i=0;i<35;i++) st += "*"; Info("Init", "%s", st.Data()) ; // Here the PHOS initialisation code (if any!) AliPHOSGeometry * geom = GetGeometry() ; if (geom!=0) Info("Init", "AliPHOS%s: PHOS geometry intialized for %s", Version().Data(), geom->GetName()) ; else Info("Init", "AliPHOS%s: PHOS geometry initialization failed !", Version().Data()) ; Info("Init", "%s", st.Data()) ; } }