/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ //_________________________________________________________________________ // Geometry class for PHOS version SUBATECH //*-- Author : Y. Schutz SUBATECH ////////////////////////////////////////////////////////////////////////////// // --- ROOT system --- #include "TVector3.h" #include "TRotation.h" // --- Standard library --- #include #include "assert.h" // --- AliRoot header files --- #include "AliPHOSGeometry.h" #include "AliPHOSPpsdRecPoint.h" #include "AliConst.h" ClassImp(AliPHOSGeometry) AliPHOSGeometry * AliPHOSGeometry::fGeom = 0 ; //____________________________________________________________________________ AliPHOSGeometry::~AliPHOSGeometry(void) { fRotMatrixArray->Delete() ; delete fRotMatrixArray ; } //____________________________________________________________________________ Bool_t AliPHOSGeometry::AbsToRelNumbering(const Int_t AbsId, Int_t * RelId) { // RelId[0] = PHOS Module number 1:fNModules // RelId[1] = 0 if PbW04 // = PPSD Module number 1:fNumberOfModulesPhi*fNumberOfModulesZ*2 (2->up and bottom level) // RelId[2] = Row number inside a PHOS or PPSD module // RelId[3] = Column number inside a PHOS or PPSD module Bool_t rv = kTRUE ; Float_t Id = AbsId ; Int_t PHOSModuleNumber = (Int_t)TMath:: Ceil( Id / ( GetNPhi() * GetNZ() ) ) ; if ( PHOSModuleNumber > GetNModules() ) { // its a PPSD pad Id -= GetNPhi() * GetNZ() * GetNModules() ; Float_t tempo = 2 * GetNumberOfModulesPhi() * GetNumberOfModulesZ() * GetNumberOfPadsPhi() * GetNumberOfPadsZ() ; RelId[0] = (Int_t)TMath::Ceil( Id / tempo ) ; Id -= ( RelId[0] - 1 ) * tempo ; RelId[1] = (Int_t)TMath::Ceil( Id / ( GetNumberOfPadsPhi() * GetNumberOfPadsZ() ) ) ; Id -= ( RelId[1] - 1 ) * GetNumberOfPadsPhi() * GetNumberOfPadsZ() ; RelId[2] = (Int_t)TMath::Ceil( Id / GetNumberOfPadsPhi() ) ; RelId[3] = (Int_t) ( Id - ( RelId[2] - 1 ) * GetNumberOfPadsPhi() ) ; } else { // its a PW04 crystal RelId[0] = PHOSModuleNumber ; RelId[1] = 0 ; Id -= ( PHOSModuleNumber - 1 ) * GetNPhi() * GetNZ() ; RelId[2] = (Int_t)TMath::Ceil( Id / GetNPhi() ) ; RelId[3] = (Int_t)( Id - ( RelId[2] - 1 ) * GetNPhi() ) ; } return rv ; } //____________________________________________________________________________ void AliPHOSGeometry::GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos, TMatrix & gmat) { AliPHOSRecPoint * tmpPHOS = (AliPHOSRecPoint *) RecPoint ; TVector3 LocalPosition ; tmpPHOS->GetLocalPosition(gpos) ; if ( tmpPHOS->IsEmc() ) // it is a EMC crystal { gpos.SetY( -(GetIPtoOuterCoverDistance() + GetUpperPlateThickness() + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()) ) ; } else { // it is a PPSD pad AliPHOSPpsdRecPoint * tmpPpsd = (AliPHOSPpsdRecPoint *) RecPoint ; if (tmpPpsd->GetUp() ) // it is an upper module { gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() - GetLeadToMicro2Gap() - GetLeadConverterThickness() - GetMicro1ToLeadGap() - GetMicromegas1Thickness() / 2.0 ) ) ; } else // it is a lower module gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() / 2.0) ) ; } Float_t Phi = GetPHOSAngle( tmpPHOS->GetPHOSMod()) ; Double_t const RADDEG = 180.0 / kPI ; Float_t rPhi = Phi / RADDEG ; TRotation Rot ; Rot.RotateZ(-rPhi) ; // a rotation around Z by angle TRotation dummy = Rot.Invert() ; // to transform from original frame to rotate frame gpos.Transform(Rot) ; // rotate the baby } //____________________________________________________________________________ void AliPHOSGeometry::GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos) { AliPHOSRecPoint * tmpPHOS = (AliPHOSRecPoint *) RecPoint ; TVector3 LocalPosition ; tmpPHOS->GetLocalPosition(gpos) ; if ( tmpPHOS->IsEmc() ) // it is a EMC crystal { gpos.SetY( -(GetIPtoOuterCoverDistance() + GetUpperPlateThickness() + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()) ) ; } else { // it is a PPSD pad AliPHOSPpsdRecPoint * tmpPpsd = (AliPHOSPpsdRecPoint *) RecPoint ; if (tmpPpsd->GetUp() ) // it is an upper module { gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() - GetLeadToMicro2Gap() - GetLeadConverterThickness() - GetMicro1ToLeadGap() - GetMicromegas1Thickness() / 2.0 ) ) ; } else // it is a lower module gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() / 2.0) ) ; } Float_t Phi = GetPHOSAngle( tmpPHOS->GetPHOSMod()) ; Double_t const RADDEG = 180.0 / kPI ; Float_t rPhi = Phi / RADDEG ; TRotation Rot ; Rot.RotateZ(-rPhi) ; // a rotation around Z by angle TRotation dummy = Rot.Invert() ; // to transform from original frame to rotate frame gpos.Transform(Rot) ; // rotate the baby } //____________________________________________________________________________ void AliPHOSGeometry::Init(void) { fRotMatrixArray = new TObjArray(fNModules) ; cout << "PHOS geometry setup: parameters for option " << fName << " " << fTitle << endl ; if ( ((strcmp( fName, "default" )) == 0) || ((strcmp( fName, "GPS2" )) == 0) ) { fInit = kTRUE ; this->InitPHOS() ; this->InitPPSD() ; this->SetPHOSAngles() ; } else { fInit = kFALSE ; cout << "PHOS Geometry setup: option not defined " << fName << endl ; } } //____________________________________________________________________________ void AliPHOSGeometry::InitPHOS(void) { // PHOS fNPhi = 64 ; fNZ = 64 ; fNModules = 5 ; fPHOSAngle[0] = 0.0 ; // Module position angles are set in CreateGeometry() fPHOSAngle[1] = 0.0 ; fPHOSAngle[2] = 0.0 ; fPHOSAngle[3] = 0.0 ; fXtlSize[0] = 2.2 ; fXtlSize[1] = 18.0 ; fXtlSize[2] = 2.2 ; // all these numbers coming next are subject to changes fOuterBoxThickness[0] = 2.8 ; fOuterBoxThickness[1] = 5.0 ; fOuterBoxThickness[2] = 5.0 ; fUpperPlateThickness = 4.0 ; fSecondUpperPlateThickness = 5.0 ; fCrystalSupportHeight = 6.95 ; fCrystalWrapThickness = 0.01 ; fCrystalHolderThickness = 0.005 ; fModuleBoxThickness = 2.0 ; fIPtoOuterCoverDistance = 447.0 ; fIPtoCrystalSurface = 460.0 ; fPinDiodeSize[0] = 1.0 ; fPinDiodeSize[1] = 0.1 ; fPinDiodeSize[2] = 1.0 ; fUpperCoolingPlateThickness = 0.06 ; fSupportPlateThickness = 10.0 ; fLowerThermoPlateThickness = 3.0 ; fLowerTextolitPlateThickness = 1.0 ; fGapBetweenCrystals = 0.03 ; fTextolitBoxThickness[0] = 1.5 ; fTextolitBoxThickness[1] = 0.0 ; fTextolitBoxThickness[2] = 3.0 ; fAirThickness[0] = 1.56 ; fAirThickness[1] = 20.5175 ; fAirThickness[2] = 2.48 ; Float_t XtalModulePhiSize = fNPhi * ( fXtlSize[0] + 2 * fGapBetweenCrystals ) ; Float_t XtalModuleZSize = fNZ * ( fXtlSize[2] + 2 * fGapBetweenCrystals ) ; // The next dimensions are calculated from the above parameters fOuterBoxSize[0] = XtalModulePhiSize + 2 * ( fAirThickness[0] + fModuleBoxThickness + fTextolitBoxThickness[0] + fOuterBoxThickness[0] ) ; fOuterBoxSize[1] = ( fXtlSize[1] + fCrystalSupportHeight + fCrystalWrapThickness + fCrystalHolderThickness ) + 2 * (fAirThickness[1] + fModuleBoxThickness + fTextolitBoxThickness[1] + fOuterBoxThickness[1] ) ; fOuterBoxSize[2] = XtalModuleZSize + 2 * ( fAirThickness[2] + fModuleBoxThickness + fTextolitBoxThickness[2] + fOuterBoxThickness[2] ) ; fTextolitBoxSize[0] = fOuterBoxSize[0] - 2 * fOuterBoxThickness[0] ; fTextolitBoxSize[1] = fOuterBoxSize[1] - fOuterBoxThickness[1] - fUpperPlateThickness ; fTextolitBoxSize[2] = fOuterBoxSize[2] - 2 * fOuterBoxThickness[2] ; fAirFilledBoxSize[0] = fTextolitBoxSize[0] - 2 * fTextolitBoxThickness[0] ; fAirFilledBoxSize[1] = fTextolitBoxSize[1] - fSecondUpperPlateThickness ; fAirFilledBoxSize[2] = fTextolitBoxSize[2] - 2 * fTextolitBoxThickness[2] ; } //____________________________________________________________________________ void AliPHOSGeometry::InitPPSD(void) { // PPSD fAnodeThickness = 0.0009 ; fAvalancheGap = 0.01 ; fCathodeThickness = 0.0009 ; fCompositeThickness = 0.3 ; fConversionGap = 0.3 ; fLeadConverterThickness = 0.56 ; fLeadToMicro2Gap = 0.1 ; fLidThickness = 0.2 ; fMicro1ToLeadGap = 0.1 ; fMicromegasWallThickness = 0.6 ; fNumberOfModulesPhi = 4 ; fNumberOfModulesZ = 4 ; fNumberOfPadsPhi = 24 ; fNumberOfPadsZ = 24 ; fPCThickness = 0.1 ; fPhiDisplacement = 0.8 ; fZDisplacement = 0.8 ; fMicromegas1Thickness = fLidThickness + 2 * fCompositeThickness + fCathodeThickness + fPCThickness + fAnodeThickness + fConversionGap + fAvalancheGap ; fMicromegas2Thickness = fMicromegas1Thickness ; fPPSDModuleSize[0] = 38.0 ; fPPSDModuleSize[1] = fMicromegas1Thickness ; fPPSDModuleSize[2] = 38.0 ; fPPSDBoxSize[0] = fNumberOfModulesPhi * fPPSDModuleSize[0] + 2 * fPhiDisplacement ; fPPSDBoxSize[1] = fMicromegas2Thickness + fMicromegas2Thickness + fLeadConverterThickness + fMicro1ToLeadGap + fLeadToMicro2Gap ; fPPSDBoxSize[2] = fNumberOfModulesZ * fPPSDModuleSize[2] + 2 * fZDisplacement ; fIPtoTopLidDistance = fIPtoOuterCoverDistance - fPPSDBoxSize[1] - 1. ; } //____________________________________________________________________________ AliPHOSGeometry * AliPHOSGeometry::GetInstance() { assert(fGeom!=0) ; return (AliPHOSGeometry *) fGeom ; } //____________________________________________________________________________ AliPHOSGeometry * AliPHOSGeometry::GetInstance(const Text_t* name, const Text_t* title) { AliPHOSGeometry * rv = 0 ; if ( fGeom == 0 ) { fGeom = new AliPHOSGeometry(name, title) ; rv = (AliPHOSGeometry * ) fGeom ; } else { if ( strcmp(fGeom->GetName(), name) != 0 ) { cout << "AliPHOSGeometry : current geometry is " << fGeom->GetName() << endl << " you cannot call " << name << endl ; } else rv = (AliPHOSGeometry *) fGeom ; } return rv ; } //____________________________________________________________________________ Bool_t AliPHOSGeometry::RelToAbsNumbering(const Int_t * RelId, Int_t & AbsId) { // AbsId = 1:fNModules * fNPhi * fNZ -> PbWO4 // AbsId = 1:fNModules * 2 * (fNumberOfModulesPhi * fNumberOfModulesZ) * fNumberOfPadsPhi * fNumberOfPadsZ -> PPSD Bool_t rv = kTRUE ; if ( RelId[1] > 0 ) { // its a PPSD pad AbsId = GetNPhi() * GetNZ() * GetNModules() // the offset to separate emcal crystals from PPSD pads + ( RelId[0] - 1 ) * GetNumberOfModulesPhi() * GetNumberOfModulesZ() // the pads offset of PHOS modules * GetNumberOfPadsPhi() * GetNumberOfPadsZ() * 2 + ( RelId[1] - 1 ) * GetNumberOfPadsPhi() * GetNumberOfPadsZ() // the pads offset of PPSD modules + ( RelId[2] - 1 ) * GetNumberOfPadsPhi() // the pads offset of a PPSD row + RelId[3] ; // the column number } else { if ( RelId[1] == 0 ) { // its a Phos crystal AbsId = ( RelId[0] - 1 ) * GetNPhi() * GetNZ() // the offset of PHOS modules + ( RelId[2] - 1 ) * GetNPhi() // the offset of a xtal row + RelId[3] ; // the column number } } return rv ; } //____________________________________________________________________________ void AliPHOSGeometry::RelPosInAlice(const Int_t Id, TVector3 & pos ) { if (Id > 0) { Int_t RelId[4] ; AbsToRelNumbering(Id , RelId) ; Int_t PHOSModule = RelId[0] ; if ( RelId[1] == 0 ) // it is a PbW04 crystal { pos.SetY( -(GetIPtoOuterCoverDistance() + GetUpperPlateThickness() + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()) ) ; } if ( RelId[1] > 0 ) { // its a PPSD pad if ( RelId[1] > GetNumberOfModulesPhi() * GetNumberOfModulesZ() ) // its an bottom module { pos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() / 2.0) ) ; } else // its an upper module pos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() - GetLeadToMicro2Gap() - GetLeadConverterThickness() - GetMicro1ToLeadGap() - GetMicromegas1Thickness() / 2.0) ) ; } Float_t x, z ; RelPosInModule(RelId, x, z) ; pos.SetX(x); pos.SetZ(z); Float_t Phi = GetPHOSAngle( PHOSModule) ; Double_t const RADDEG = 180.0 / kPI ; Float_t rPhi = Phi / RADDEG ; TRotation Rot ; Rot.RotateZ(-rPhi) ; // a rotation around Z by angle TRotation dummy = Rot.Invert() ; // to transform from original frame to rotate frame pos.Transform(Rot) ; // rotate the baby } else { pos.SetX(0.); pos.SetY(0.); pos.SetZ(0.); } } //____________________________________________________________________________ void AliPHOSGeometry::RelPosInModule(const Int_t * RelId, Float_t & x, Float_t & z) { Int_t PPSDModule ; Int_t Row = RelId[2] ; //offset along z axiz Int_t Column = RelId[3] ; //offset along x axiz Float_t PadSizeZ = GetPPSDModuleSize(2)/ GetNumberOfPadsZ(); Float_t PadSizeX = GetPPSDModuleSize(0)/ GetNumberOfPadsPhi(); if ( RelId[1] == 0 ) { // its a PbW04 crystal x = -( GetNPhi()/2. - Row + 0.5 ) * GetCrystalSize(0) ; // position ox Xtal with respect z = -( GetNZ() /2. - Column + 0.5 ) * GetCrystalSize(2) ; // of center of PHOS module } else { if ( RelId[1] > GetNumberOfModulesPhi() * GetNumberOfModulesZ() ) PPSDModule = RelId[1]-GetNumberOfModulesPhi() * GetNumberOfModulesZ(); else PPSDModule = RelId[1] ; Int_t ModRow = 1+(Int_t)TMath::Ceil( (Float_t)PPSDModule / GetNumberOfModulesPhi()-1. ) ; Int_t ModCol = PPSDModule - ( ModRow-1 ) * GetNumberOfModulesPhi() ; Float_t x0 = ( GetNumberOfModulesPhi() / 2. - ModRow + 0.5 ) * GetPPSDModuleSize(0) ; Float_t z0 = ( GetNumberOfModulesZ() / 2. - ModCol + 0.5 ) * GetPPSDModuleSize(2) ; x = - ( GetNumberOfPadsPhi()/2. - Row - 0.5 ) * PadSizeX + x0 ; // position of pad with respect z = - ( GetNumberOfPadsZ()/2. - Column - 0.5 ) * PadSizeZ + z0 ; // of center of PHOS module } } //____________________________________________________________________________ void AliPHOSGeometry:: SetPHOSAngles() { Double_t const RADDEG = 180.0 / kPI ; Float_t PPHI = TMath::ATan( fOuterBoxSize[0] / ( 2.0 * fIPtoOuterCoverDistance ) ) ; PPHI *= RADDEG ; for( Int_t i = 1; i <= fNModules ; i++ ) { Float_t angle = PPHI * 2 * ( i - fNModules / 2.0 - 0.5 ) ; fPHOSAngle[i-1] = - angle ; } }