#include static Int_t eventsPerRun = 100; enum PprGeo_t { kHoles, kNoHoles }; enum PprRad_t { kGluonRadiation, kNoGluonRadiation }; // This part for configuration static PprGeo_t sgeo = kNoHoles; static PprRad_t srad = kGluonRadiation; static AliMagF::BMap_t smag = AliMagF::k5kG; // Comment line static TString comment; // Functions Float_t EtaToTheta(Float_t arg); void Config() { cout << "==> Config.C..." << endl; // Set Random Number seed UInt_t at = (UInt_t) gSystem->Now() ; UInt_t seed = ((gSystem->GetPid()*111)%at)*137 ; // gRandom->SetSeed(seed); gRandom->SetSeed(12345); printf("MySeed: %d\n",seed) ; cout<<"Seed for random number generation= "<GetSeed()<Load("libGeom"); cout << "\t* Loading TFluka..." << endl; gSystem->Load("libTFluka"); cout << "\t* Instantiating TFluka..." << endl; new TFluka("C++ Interface to Fluka", 0/*verbositylevel*/); } else { cout << "\t* Loading Geant3..." << endl; gSystem->Load("libgeant321"); cout << "\t* Instantiating Geant3TGeo..." << endl; new TGeant3TGeo("C++ Interface to Geant3"); } AliRunLoader* rl=0x0; cout<<"Config.C: Creating Run Loader ..."<Fatal("Config.C","Can not instatiate the Run Loader"); return; } rl->SetCompressionLevel(2); rl->SetNumberOfEventsPerFile(1000); gAlice->SetRunLoader(rl); // // Set External decayer AliDecayer *decayer = new AliDecayerPythia(); decayer->SetForceDecay(kAll); decayer->Init(); gMC->SetExternalDecayer(decayer); // // // // Physics process control gMC->SetProcess("DCAY",1); gMC->SetProcess("PAIR",1); gMC->SetProcess("COMP",1); gMC->SetProcess("PHOT",1); gMC->SetProcess("PFIS",0); gMC->SetProcess("DRAY",0); //AZ 1); gMC->SetProcess("ANNI",1); gMC->SetProcess("BREM",1); gMC->SetProcess("MUNU",1); gMC->SetProcess("CKOV",1); gMC->SetProcess("HADR",1); gMC->SetProcess("LOSS",2); gMC->SetProcess("MULS",1); gMC->SetProcess("RAYL",1); Float_t cut = 1.e-3; // 1MeV cut by default Float_t tofmax = 1.e10; gMC->SetCut("CUTGAM", cut); gMC->SetCut("CUTELE", cut); gMC->SetCut("CUTNEU", cut); gMC->SetCut("CUTHAD", cut); gMC->SetCut("CUTMUO", cut); gMC->SetCut("BCUTE", cut); gMC->SetCut("BCUTM", cut); gMC->SetCut("DCUTE", cut); gMC->SetCut("DCUTM", cut); gMC->SetCut("PPCUTM", cut); gMC->SetCut("TOFMAX", tofmax); ((AliMC*)gMC)->SetTransPar("./galice.cuts") ; // //======================================================================= // ************* STEERING parameters FOR ALICE SIMULATION ************** // --- Specify event type to be tracked through the ALICE setup // --- All positions are in cm, angles in degrees, and P and E in GeV AliGenBox *gener = new AliGenBox(5); gener->SetMomentumRange(0.5, 5.); gener->SetPhiRange(260., 280.); gener->SetThetaRange(82.,98.); gener->SetPart(kGamma); gener->SetOrigin(0, 0, 0); //vertex position gener->SetSigma(0, 0, 0); //Sigma in (X,Y,Z) (cm) on IP position gener->Init() ; // // Activate this line if you want the vertex smearing to happen // track by track // // gener->SetVertexSmear(kPerEvent) ; if (smag == AliMagF::k2kG) { comment = comment.Append(" | L3 field 0.2 T"); } else if (smag == AliMagF::k5kG) { comment = comment.Append(" | L3 field 0.5 T"); } if (srad == kGluonRadiation) { comment = comment.Append(" | Gluon Radiation On"); } else { comment = comment.Append(" | Gluon Radiation Off"); } if (sgeo == kHoles) { comment = comment.Append(" | Holes for PHOS/RICH"); } else { comment = comment.Append(" | No holes for PHOS/RICH"); } printf("\n \n Comment: %s \n \n", comment.Data()); // Field (L3 0.4 T) //Zero magnetic field AliMagF* field = new AliMagF("Maps","Maps", 0., 0., AliMagF::k5kGUniform); // AliMagF* field = new AliMagF("Maps","Maps", 2, -1., -1., 10., smag); TGeoGlobalMagField::Instance()->SetField(field); rl->CdGAFile(); Int_t iABSO = 0; Int_t iCRT = 0; Int_t iDIPO = 0; Int_t iFMD = 0; Int_t iFRAME = 0; Int_t iHALL = 0; Int_t iITS = 0; Int_t iMAG = 0; Int_t iMUON = 0; Int_t iPHOS = 1; Int_t iPIPE = 0; Int_t iPMD = 0; Int_t iRICH = 0; Int_t iSHIL = 0; Int_t iSTART = 0; Int_t iTOF = 0; Int_t iTPC = 0; Int_t iTRD = 0; Int_t iZDC = 0; Int_t iEMCAL = 0; Int_t iVZERO = 0; cout << "\t* Creating the detectors ..." << endl; //=================== Alice BODY parameters ============================= //=================== Alice BODY parameters ============================= AliBODY *BODY = new AliBODY("BODY", "Alice envelop"); if (iMAG) { //=================== MAG parameters ============================ // --- Start with Magnet since detector layouts may be depending --- // --- on the selected Magnet dimensions --- AliMAG *MAG = new AliMAG("MAG", "Magnet"); } if (iABSO) { //=================== ABSO parameters ============================ AliABSO *ABSO = new AliABSOv0("ABSO", "Muon Absorber"); } if (iDIPO) { //=================== DIPO parameters ============================ AliDIPO *DIPO = new AliDIPOv2("DIPO", "Dipole version 2"); } if (iHALL) { //=================== HALL parameters ============================ AliHALL *HALL = new AliHALL("HALL", "Alice Hall"); } if (iFRAME) { //=================== FRAME parameters ============================ AliFRAMEv2 *FRAME = new AliFRAMEv2("FRAME", "Space Frame"); if (sgeo == kHoles) { FRAME->SetHoles(1); } else { FRAME->SetHoles(0); } } if (iSHIL) { //=================== SHIL parameters ============================ AliSHIL *SHIL = new AliSHILv2("SHIL", "Shielding Version 2"); } if (iPIPE) { //=================== PIPE parameters ============================ AliPIPE *PIPE = new AliPIPEv0("PIPE", "Beam Pipe"); } if(iITS) { //=================== ITS parameters ============================ // // As the innermost detector in ALICE, the Inner Tracking System "impacts" on // almost all other detectors. This involves the fact that the ITS geometry // still has several options to be followed in parallel in order to determine // the best set-up which minimizes the induced background. All the geometries // available to date are described in the following. Read carefully the comments // and use the default version (the only one uncommented) unless you are making // comparisons and you know what you are doing. In this case just uncomment the // ITS geometry you want to use and run Aliroot. // // Detailed geometries: // // //AliITS *ITS = new AliITSv5symm("ITS","Updated ITS TDR detailed version with symmetric services"); // //AliITS *ITS = new AliITSv5asymm("ITS","Updates ITS TDR detailed version with asymmetric services"); // AliITSvPPRasymmFMD *ITS = new AliITSvPPRasymmFMD("ITS","New ITS PPR detailed version with asymmetric services"); ITS->SetMinorVersion(2); // don't touch this parameter if you're not an ITS developer ITS->SetReadDet(kTRUE); // don't touch this parameter if you're not an ITS developer // ITS->SetWriteDet("$ALICE_ROOT/ITS/ITSgeometry_vPPRasymm2.det"); // don't touch this parameter if you're not an ITS developer ITS->SetThicknessDet1(200.); // detector thickness on layer 1 must be in the range [100,300] ITS->SetThicknessDet2(200.); // detector thickness on layer 2 must be in the range [100,300] ITS->SetThicknessChip1(200.); // chip thickness on layer 1 must be in the range [150,300] ITS->SetThicknessChip2(200.); // chip thickness on layer 2 must be in the range [150,300] ITS->SetRails(0); // 1 --> rails in ; 0 --> rails out ITS->SetCoolingFluid(1); // 1 --> water ; 0 --> freon // Coarse geometries (warning: no hits are produced with these coarse geometries and they unuseful // for reconstruction !): // // //AliITSvPPRcoarseasymm *ITS = new AliITSvPPRcoarseasymm("ITS","New ITS PPR coarse version with asymmetric services"); //ITS->SetRails(0); // 1 --> rails in ; 0 --> rails out //ITS->SetSupportMaterial(0); // 0 --> Copper ; 1 --> Aluminum ; 2 --> Carbon // //AliITS *ITS = new AliITSvPPRcoarsesymm("ITS","New ITS PPR coarse version with symmetric services"); //ITS->SetRails(0); // 1 --> rails in ; 0 --> rails out //ITS->SetSupportMaterial(0); // 0 --> Copper ; 1 --> Aluminum ; 2 --> Carbon // // // // Geant3 <-> EUCLID conversion // ============================ // // SetEUCLID is a flag to output (=1) or not to output (=0) both geometry and // media to two ASCII files (called by default ITSgeometry.euc and // ITSgeometry.tme) in a format understandable to the CAD system EUCLID. // The default (=0) means that you dont want to use this facility. // ITS->SetEUCLID(0); } if (iTPC) { //============================ TPC parameters ================================ // AliTPC *TPC = new AliTPCv0("TPC", "Default"); AliTPC *TPC = new AliTPCv2("TPC", "Default"); } if (iTOF) { //=================== TOF parameters ============================ AliTOF *TOF = new AliTOFv4T0("TOF", "normal TOF"); } if (iRICH) { //=================== RICH parameters =========================== AliRICH *RICH = new AliRICHv1("RICH", "normal RICH"); } if (iZDC) { //=================== ZDC parameters ============================ AliZDC *ZDC = new AliZDCv2("ZDC", "normal ZDC"); } if (iTRD) { //=================== TRD parameters ============================ AliTRD *TRD = new AliTRDv1("TRD", "TRD slow simulator"); // Select the gas mixture (0: 97% Xe + 3% isobutane, 1: 90% Xe + 10% CO2) TRD->SetGasMix(1); if (sgeo == kHoles) { // With hole in front of PHOS TRD->SetPHOShole(); // With hole in front of RICH TRD->SetRICHhole(); } // Switch on TR AliTRDsim *TRDsim = TRD->CreateTR(); } if (iFMD) { //=================== FMD parameters ============================ AliFMD *FMD = new AliFMDv1("FMD", "normal FMD"); } if (iMUON) { //=================== MUON parameters =========================== AliMUON *MUON = new AliMUONv1("MUON", "default"); } //=================== PHOS parameters =========================== if (iPHOS) { AliPHOS *PHOS = new AliPHOSv1("PHOS", "IHEP"); // AliPHOS *PHOS = new AliPHOSv1("PHOS", "noCPV"); } if (iPMD) { //=================== PMD parameters ============================ AliPMD *PMD = new AliPMDv1("PMD", "normal PMD"); } if (iSTART) { //=================== START parameters ============================ AliSTART *START = new AliSTARTv1("START", "START Detector"); } if (iEMCAL) { //=================== EMCAL parameters ============================ AliEMCAL *EMCAL = new AliEMCALv2("EMCAL", "EMCAL_COMPLETEV1"); } if (iCRT) { //=================== CRT parameters ============================ AliCRT *CRT = new AliCRTv0("CRT", "normal ACORDE"); } if (iVZERO) { //=================== CRT parameters ============================ AliVZERO *VZERO = new AliVZEROv3("VZERO", "normal VZERO"); } } Float_t EtaToTheta(Float_t arg){ return (180./TMath::Pi())*2.*atan(exp(-arg)); }