/*************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.16 2002/11/21 22:57:02 alibrary Removing AliMC and AliMCProcess Revision 1.15 2002/10/23 07:36:35 alibrary Introducing Riostream.h Revision 1.14 2001/05/21 17:44:04 hristov Backslash to continue strings Revision 1.13 2001/05/21 10:59:09 morsch Printouts in debug mode only. Revision 1.12 2001/05/21 09:39:28 morsch Minor modifications on the geometry. (Tapan Nayak) Revision 1.11 2001/05/14 14:01:04 morsch AliPMDv0 coarse geometry and AliPMDv1 detailed simulation, completely revised versions by Tapan Nayak. */ // /////////////////////////////////////////////////////////////////////////////// // // // Photon Multiplicity Detector Version 1 // // // //Begin_Html /* */ //End_Html // // /////////////////////////////////////////////////////////////////////////////// //// #include "AliPMDv0.h" #include "AliRun.h" #include "AliConst.h" #include "AliMagF.h" #include "Riostream.h" static Int_t kdet, ncell_sm, ncell_hole; static Float_t zdist, zdist1; static Float_t sm_length, sm_thick, cell_radius, cell_wall, cell_depth; static Float_t boundary, th_base, th_air, th_pcb; static Float_t th_lead, th_steel; ClassImp(AliPMDv0) //_____________________________________________________________________________ AliPMDv0::AliPMDv0() { // // Default constructor // fMedSens=0; } //_____________________________________________________________________________ AliPMDv0::AliPMDv0(const char *name, const char *title) : AliPMD(name,title) { // // Standard constructor // fMedSens=0; } //_____________________________________________________________________________ void AliPMDv0::CreateGeometry() { // // Create geometry for Photon Multiplicity Detector Version 3 : // April 2, 2001 // //Begin_Html /* */ //End_Html //Begin_Html /* */ //End_Html GetParameters(); CreateSupermodule(); CreatePMD(); } //_____________________________________________________________________________ void AliPMDv0::CreateSupermodule() { // // Creates the geometry of the cells, places them in supermodule which // is a rhombus object. // *** DEFINITION OF THE GEOMETRY OF THE PMD *** // *** HEXAGONAL CELLS WITH CELL RADIUS 0.25 cm (see "GetParameters") // -- Author : S. Chattopadhyay, 02/04/1999. // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is placed inside another // hexagonal cell made of Cu (ECCU) with larger radius, compared to ECAR. The difference // in radius gives the dimension of half width of each cell wall. // These cells are placed as 72 x 72 array in a // rhombus shaped supermodule (EHC1). The rhombus shaped modules are designed // to have closed packed structure. // // Each supermodule (ESMA, ESMB), made of G10 is filled with following components // EAIR --> Air gap between gas hexagonal cells and G10 backing. // EHC1 --> Rhombus shaped parallelopiped containing the hexagonal cells // EAIR --> Air gap between gas hexagonal cells and G10 backing. // // ESMA, ESMB are placed in EMM1 along with EMPB (Pb converter) // and EMFE (iron support) // EMM1 made of // ESMB --> Normal supermodule, mirror image of ESMA // EMPB --> Pb converter // EMFE --> Fe backing // ESMA --> Normal supermodule // // ESMX, ESMY are placed in EMM2 along with EMPB (Pb converter) // and EMFE (iron support) // EMM2 made of // ESMY --> Special supermodule, mirror image of ESMX, // EMPB --> Pb converter // EMFE --> Fe backing // ESMX --> First of the two Special supermodules near the hole // EMM3 made of // ESMQ --> Special supermodule, mirror image of ESMX, // EMPB --> Pb converter // EMFE --> Fe backing // ESMP --> Second of the two Special supermodules near the hole // EMM2 and EMM3 are used to create the hexagonal HOLE // // EPMD // | // | // --------------------------------------------------------------------------- // | | | | | // EHOL EMM1 EMM2 EMM3 EALM // | | | // -------------------- -------------------- -------------------- // | | | | | | | | | | | | // ESMB EMPB EMFE ESMA ESMY EMPB EMFE ESMX ESMQ EMPB EMFE ESMP // | | | // ------------ ------------ ------------- // | | | | | | | | | // EAIR EHC1 EAIR EAIR EHC2 EAIR EAIR EHC3 EAIR // | | | // ECCU ECCU ECCU // | | | // ECAR ECAR ECAR Int_t i, j; Float_t xb, yb, zb; Int_t number; Int_t ihrotm,irotdm; const Float_t root3_2 = TMath::Sqrt(3.) /2.; Int_t *idtmed = fIdtmed->GetArray()-599; AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.); AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.); zdist = TMath::Abs(zdist1); //Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu // rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension //(1mm tolerance on both side and 5mm thick G10 wall) // // **** CELL SIZE 20 mm^2 EQUIVALENT // Inner hexagon filled with gas (Ar+CO2) Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23}; hexd2[4]= - cell_depth/2.; hexd2[7]= cell_depth/2.; hexd2[6]= cell_radius - cell_wall; hexd2[9]= cell_radius - cell_wall; // Gas replaced by vacuum for v0(insensitive) version of PMD. gMC->Gsvolu("ECAR", "PGON", idtmed[697], hexd2,10); gMC->Gsatt("ECAR", "SEEN", 0); // Outer hexagon made of Copper Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25}; //total wall thickness=0.2*2 hexd1[4]= - cell_depth/2.; hexd1[7]= cell_depth/2.; hexd1[6]= cell_radius; hexd1[9]= cell_radius; gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10); gMC->Gsatt("ECCU", "SEEN", 1); // --- place inner hex inside outer hex gMC->Gspos("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY"); // Rhombus shaped supermodules (defined by PARA) // volume for SUPERMODULE Float_t dpara_sm1[6] = {12.5,12.5,0.8,30.,0.,0.}; dpara_sm1[0]=(ncell_sm+0.25)*hexd1[6] ; dpara_sm1[1] = dpara_sm1[0] *root3_2; dpara_sm1[2] = sm_thick/2.; // gMC->Gsvolu("ESMA","PARA", idtmed[607], dpara_sm1, 6); gMC->Gsatt("ESMA", "SEEN", 0); // gMC->Gsvolu("ESMB","PARA", idtmed[607], dpara_sm1, 6); gMC->Gsatt("ESMB", "SEEN", 0); // Air residing between the PCB and the base Float_t dpara_air[6] = {12.5,12.5,8.,30.,0.,0.}; dpara_air[0]= dpara_sm1[0]; dpara_air[1]= dpara_sm1[1]; dpara_air[2]= th_air/2.; gMC->Gsvolu("EAIR","PARA", idtmed[698], dpara_air, 6); gMC->Gsatt("EAIR", "SEEN", 0); // volume for honeycomb chamber EHC1 Float_t dpara1[6] = {12.5,12.5,0.4,30.,0.,0.}; dpara1[0] = dpara_sm1[0]; dpara1[1] = dpara_sm1[1]; dpara1[2] = cell_depth/2.; gMC->Gsvolu("EHC1","PARA", idtmed[698], dpara1, 6); gMC->Gsatt("EHC1", "SEEN", 1); // Place hexagonal cells ECCU cells inside EHC1 (72 X 72) Int_t xrow=1; yb = -dpara1[1] + (1./root3_2)*hexd1[6]; zb = 0.; for (j = 1; j <= ncell_sm; ++j) { xb =-(dpara1[0] + dpara1[1]*0.577) + 2*hexd1[6]; //0.577=tan(30deg) if(xrow >= 2){ xb = xb+(xrow-1)*hexd1[6]; } for (i = 1; i <= ncell_sm; ++i) { number = i+(j-1)*ncell_sm; gMC->Gspos("ECCU", number, "EHC1", xb,yb,zb, ihrotm, "ONLY"); xb += (hexd1[6]*2.); } xrow = xrow+1; yb += (hexd1[6]*TMath::Sqrt(3.)); } // Place EHC1 and EAIR into ESMA and ESMB Float_t z_air1,z_air2,z_gas; //ESMA is normal supermodule with base at bottom, with EHC1 z_air1= -dpara_sm1[2] + th_base + dpara_air[2]; gMC->Gspos("EAIR", 1, "ESMA", 0., 0., z_air1, 0, "ONLY"); z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2]; //Line below Commented for version 0 of PMD routine // gMC->Gspos("EHC1", 1, "ESMA", 0., 0., z_gas, 0, "ONLY"); z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2]; gMC->Gspos("EAIR", 2, "ESMA", 0., 0., z_air2, 0, "ONLY"); // ESMB is mirror image of ESMA, with base at top, with EHC1 z_air1= -dpara_sm1[2] + th_pcb + dpara_air[2]; gMC->Gspos("EAIR", 3, "ESMB", 0., 0., z_air1, 0, "ONLY"); z_gas=z_air1+dpara_air[2]+ th_pcb + dpara1[2]; //Line below Commented for version 0 of PMD routine // gMC->Gspos("EHC1", 2, "ESMB", 0., 0., z_gas, 0, "ONLY"); z_air2=z_gas+dpara1[2]+ th_pcb + dpara_air[2]; gMC->Gspos("EAIR", 4, "ESMB", 0., 0., z_air2, 0, "ONLY"); // special supermodule EMM2(GEANT only) containing 6 unit modules // volume for SUPERMODULE Float_t dpara_sm2[6] = {12.5,12.5,0.8,30.,0.,0.}; dpara_sm2[0]=(ncell_sm+0.25)*hexd1[6] ; dpara_sm2[1] = (ncell_sm - ncell_hole + 0.25) * root3_2 * hexd1[6]; dpara_sm2[2] = sm_thick/2.; gMC->Gsvolu("ESMX","PARA", idtmed[607], dpara_sm2, 6); gMC->Gsatt("ESMX", "SEEN", 0); // gMC->Gsvolu("ESMY","PARA", idtmed[607], dpara_sm2, 6); gMC->Gsatt("ESMY", "SEEN", 0); Float_t dpara2[6] = {12.5,12.5,0.4,30.,0.,0.}; dpara2[0] = dpara_sm2[0]; dpara2[1] = dpara_sm2[1]; dpara2[2] = cell_depth/2.; gMC->Gsvolu("EHC2","PARA", idtmed[698], dpara2, 6); gMC->Gsatt("EHC2", "SEEN", 1); // Air residing between the PCB and the base Float_t dpara2_air[6] = {12.5,12.5,8.,30.,0.,0.}; dpara2_air[0]= dpara_sm2[0]; dpara2_air[1]= dpara_sm2[1]; dpara2_air[2]= th_air/2.; gMC->Gsvolu("EAIX","PARA", idtmed[698], dpara2_air, 6); gMC->Gsatt("EAIX", "SEEN", 0); // Place hexagonal single cells ECCU inside EHC2 // skip cells which go into the hole in top left corner. xrow=1; yb = -dpara2[1] + (1./root3_2)*hexd1[6]; zb = 0.; for (j = 1; j <= (ncell_sm - ncell_hole); ++j) { xb =-(dpara2[0] + dpara2[1]*0.577) + 2*hexd1[6]; if(xrow >= 2){ xb = xb+(xrow-1)*hexd1[6]; } for (i = 1; i <= ncell_sm; ++i) { number = i+(j-1)*ncell_sm; gMC->Gspos("ECCU", number, "EHC2", xb,yb,zb, ihrotm, "ONLY"); xb += (hexd1[6]*2.); } xrow = xrow+1; yb += (hexd1[6]*TMath::Sqrt(3.)); } // ESMX is normal supermodule with base at bottom, with EHC2 z_air1= -dpara_sm2[2] + th_base + dpara2_air[2]; gMC->Gspos("EAIX", 1, "ESMX", 0., 0., z_air1, 0, "ONLY"); z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2]; //Line below Commented for version 0 of PMD routine // gMC->Gspos("EHC2", 1, "ESMX", 0., 0., z_gas, 0, "ONLY"); z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2]; gMC->Gspos("EAIX", 2, "ESMX", 0., 0., z_air2, 0, "ONLY"); // ESMY is mirror image of ESMX with base at bottom, with EHC2 z_air1= -dpara_sm2[2] + th_pcb + dpara2_air[2]; gMC->Gspos("EAIX", 3, "ESMY", 0., 0., z_air1, 0, "ONLY"); z_gas=z_air1+dpara2_air[2]+ th_pcb + dpara2[2]; //Line below Commented for version 0 of PMD routine // gMC->Gspos("EHC2", 2, "ESMY", 0., 0., z_gas, 0, "ONLY"); z_air2=z_gas+dpara2[2]+ th_pcb + dpara2_air[2]; gMC->Gspos("EAIX", 4, "ESMY", 0., 0., z_air2, 0, "ONLY"); // // special supermodule EMM3 (GEANT only) containing 2 unit modules // volume for SUPERMODULE Float_t dpara_sm3[6] = {12.5,12.5,0.8,30.,0.,0.}; dpara_sm3[0]=(ncell_sm - ncell_hole +0.25)*hexd1[6] ; dpara_sm3[1] = (ncell_hole + 0.25) * hexd1[6] * root3_2; dpara_sm3[2] = sm_thick/2.; gMC->Gsvolu("ESMP","PARA", idtmed[607], dpara_sm3, 6); gMC->Gsatt("ESMP", "SEEN", 0); // gMC->Gsvolu("ESMQ","PARA", idtmed[607], dpara_sm3, 6); gMC->Gsatt("ESMQ", "SEEN", 0); Float_t dpara3[6] = {12.5,12.5,0.4,30.,0.,0.}; dpara3[0] = dpara_sm3[0]; dpara3[1] = dpara_sm3[1]; dpara3[2] = cell_depth/2.; gMC->Gsvolu("EHC3","PARA", idtmed[698], dpara3, 6); gMC->Gsatt("EHC3", "SEEN", 1); // Air residing between the PCB and the base Float_t dpara3_air[6] = {12.5,12.5,8.,30.,0.,0.}; dpara3_air[0]= dpara_sm3[0]; dpara3_air[1]= dpara_sm3[1]; dpara3_air[2]= th_air/2.; gMC->Gsvolu("EAIP","PARA", idtmed[698], dpara3_air, 6); gMC->Gsatt("EAIP", "SEEN", 0); // Place hexagonal single cells ECCU inside EHC3 // skip cells which go into the hole in top left corner. xrow=1; yb = -dpara3[1] + (1./root3_2)*hexd1[6]; zb = 0.; for (j = 1; j <= ncell_hole; ++j) { xb =-(dpara3[0] + dpara3[1]*0.577) + 2*hexd1[6]; if(xrow >= 2){ xb = xb+(xrow-1)*hexd1[6]; } for (i = 1; i <= (ncell_sm - ncell_hole); ++i) { number = i+(j-1)*(ncell_sm - ncell_hole); gMC->Gspos("ECCU", number, "EHC3", xb,yb,zb, ihrotm, "ONLY"); xb += (hexd1[6]*2.); } xrow = xrow+1; yb += (hexd1[6]*TMath::Sqrt(3.)); } // ESMP is normal supermodule with base at bottom, with EHC3 z_air1= -dpara_sm3[2] + th_base + dpara3_air[2]; gMC->Gspos("EAIP", 1, "ESMP", 0., 0., z_air1, 0, "ONLY"); z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2]; //Line below Commented for version 0 of PMD routine // gMC->Gspos("EHC3", 1, "ESMP", 0., 0., z_gas, 0, "ONLY"); z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2]; gMC->Gspos("EAIP", 2, "ESMP", 0., 0., z_air2, 0, "ONLY"); // ESMQ is mirror image of ESMP with base at bottom, with EHC3 z_air1= -dpara_sm3[2] + th_pcb + dpara3_air[2]; gMC->Gspos("EAIP", 3, "ESMQ", 0., 0., z_air1, 0, "ONLY"); z_gas=z_air1+dpara3_air[2]+ th_pcb + dpara3[2]; //Line below Commented for version 0 of PMD routine // gMC->Gspos("EHC3", 2, "ESMQ", 0., 0., z_gas, 0, "ONLY"); z_air2=z_gas+dpara3[2]+ th_pcb + dpara3_air[2]; gMC->Gspos("EAIP", 4, "ESMQ", 0., 0., z_air2, 0, "ONLY"); } //_____________________________________________________________________________ void AliPMDv0::CreatePMD() { // // Create final detector from supermodules // // -- Author : Y.P. VIYOGI, 07/05/1996. // -- Modified: P.V.K.S.Baba(JU), 15-12-97. // -- Modified: For New Geometry YPV, March 2001. const Float_t root3_2 = TMath::Sqrt(3.)/2.; const Float_t pi = 3.14159; Int_t i,j; Float_t xp, yp, zp; Int_t num_mod; Int_t jhrot12,jhrot13, irotdm; Int_t *idtmed = fIdtmed->GetArray()-599; // VOLUMES Names : begining with "E" for all PMD volumes, // The names of SIZE variables begin with S and have more meaningful // characters as shown below. // VOLUME SIZE MEDIUM : REMARKS // ------ ----- ------ : --------------------------- // EPMD GASPMD AIR : INSIDE PMD and its SIZE // *** Define the EPMD Volume and fill with air *** // Gaspmd, the dimension of HEXAGONAL mother volume of PMD, Float_t gaspmd[10] = {0.,360.,6,2,-4.,12.,150.,4.,12.,150.}; gaspmd[5] = ncell_hole * cell_radius * 2. * root3_2; gaspmd[8] = gaspmd[5]; gMC->Gsvolu("EPMD", "PGON", idtmed[698], gaspmd, 10); gMC->Gsatt("EPMD", "SEEN", 0); AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.); AliMatrix(jhrot12, 90., 120., 90., 210., 0., 0.); AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.); Float_t dm_thick = 2. * sm_thick + th_lead + th_steel; // dpara_emm1 array contains parameters of the imaginary volume EMM1, // EMM1 is a master module of type 1, which has 24 copies in the PMD. // EMM1 : normal volume as in old cases Float_t dpara_emm1[6] = {12.5,12.5,0.8,30.,0.,0.}; dpara_emm1[0] = sm_length/2.; dpara_emm1[1] = dpara_emm1[0] *root3_2; dpara_emm1[2] = dm_thick/2.; gMC->Gsvolu("EMM1","PARA", idtmed[698], dpara_emm1, 6); gMC->Gsatt("EMM1", "SEEN", 1); // // --- DEFINE Modules, iron, and lead volumes // Pb Convertor for EMM1 Float_t dpara_pb1[6] = {12.5,12.5,8.,30.,0.,0.}; dpara_pb1[0] = sm_length/2.; dpara_pb1[1] = dpara_pb1[0] * root3_2; dpara_pb1[2] = th_lead/2.; gMC->Gsvolu("EPB1","PARA", idtmed[600], dpara_pb1, 6); gMC->Gsatt ("EPB1", "SEEN", 0); // Fe Support for EMM1 Float_t dpara_fe1[6] = {12.5,12.5,8.,30.,0.,0.}; dpara_fe1[0] = dpara_pb1[0]; dpara_fe1[1] = dpara_pb1[1]; dpara_fe1[2] = th_steel/2.; gMC->Gsvolu("EFE1","PARA", idtmed[618], dpara_fe1, 6); gMC->Gsatt ("EFE1", "SEEN", 0); // // position supermodule ESMA, ESMB, EPB1, EFE1 inside EMM1 Float_t z_ps,z_pb,z_fe,z_cv; z_ps = - dpara_emm1[2] + sm_thick/2.; gMC->Gspos("ESMB", 1, "EMM1", 0., 0., z_ps, 0, "ONLY"); z_pb=z_ps+sm_thick/2.+dpara_pb1[2]; gMC->Gspos("EPB1", 1, "EMM1", 0., 0., z_pb, 0, "ONLY"); z_fe=z_pb+dpara_pb1[2]+dpara_fe1[2]; gMC->Gspos("EFE1", 1, "EMM1", 0., 0., z_fe, 0, "ONLY"); z_cv=z_fe+dpara_fe1[2]+sm_thick/2.; gMC->Gspos("ESMA", 1, "EMM1", 0., 0., z_cv, 0, "ONLY"); // EMM2 : special master module having full row of cells but the number // of rows limited by hole. Float_t dpara_emm2[6] = {12.5,12.5,0.8,30.,0.,0.}; dpara_emm2[0] = sm_length/2.; dpara_emm2[1] = (ncell_sm - ncell_hole + 0.25) * cell_radius * root3_2; dpara_emm2[2] = dm_thick/2.; gMC->Gsvolu("EMM2","PARA", idtmed[698], dpara_emm2, 6); gMC->Gsatt("EMM2", "SEEN", 1); // Pb Convertor for EMM2 Float_t dpara_pb2[6] = {12.5,12.5,8.,30.,0.,0.}; dpara_pb2[0] = dpara_emm2[0]; dpara_pb2[1] = dpara_emm2[1]; dpara_pb2[2] = th_lead/2.; gMC->Gsvolu("EPB2","PARA", idtmed[600], dpara_pb2, 6); gMC->Gsatt ("EPB2", "SEEN", 0); // Fe Support for EMM2 Float_t dpara_fe2[6] = {12.5,12.5,8.,30.,0.,0.}; dpara_fe2[0] = dpara_pb2[0]; dpara_fe2[1] = dpara_pb2[1]; dpara_fe2[2] = th_steel/2.; gMC->Gsvolu("EFE2","PARA", idtmed[618], dpara_fe2, 6); gMC->Gsatt ("EFE2", "SEEN", 0); // position supermodule ESMX, ESMY inside EMM2 z_ps = - dpara_emm2[2] + sm_thick/2.; gMC->Gspos("ESMY", 1, "EMM2", 0., 0., z_ps, 0, "ONLY"); z_pb = z_ps + sm_thick/2.+dpara_pb2[2]; gMC->Gspos("EPB2", 1, "EMM2", 0., 0., z_pb, 0, "ONLY"); z_fe = z_pb + dpara_pb2[2]+dpara_fe2[2]; gMC->Gspos("EFE2", 1, "EMM2", 0., 0., z_fe, 0, "ONLY"); z_cv = z_fe + dpara_fe2[2]+sm_thick/2.; gMC->Gspos("ESMX", 1, "EMM2", 0., 0., z_cv, 0, "ONLY"); // // EMM3 : special master module having truncated rows and columns of cells // limited by hole. Float_t dpara_emm3[6] = {12.5,12.5,0.8,30.,0.,0.}; dpara_emm3[0] = dpara_emm2[1]/root3_2; dpara_emm3[1] = (ncell_hole + 0.25) * cell_radius *root3_2; dpara_emm3[2] = dm_thick/2.; gMC->Gsvolu("EMM3","PARA", idtmed[698], dpara_emm3, 6); gMC->Gsatt("EMM3", "SEEN", 1); // Pb Convertor for EMM3 Float_t dpara_pb3[6] = {12.5,12.5,8.,30.,0.,0.}; dpara_pb3[0] = dpara_emm3[0]; dpara_pb3[1] = dpara_emm3[1]; dpara_pb3[2] = th_lead/2.; gMC->Gsvolu("EPB3","PARA", idtmed[600], dpara_pb3, 6); gMC->Gsatt ("EPB3", "SEEN", 0); // Fe Support for EMM3 Float_t dpara_fe3[6] = {12.5,12.5,8.,30.,0.,0.}; dpara_fe3[0] = dpara_pb3[0]; dpara_fe3[1] = dpara_pb3[1]; dpara_fe3[2] = th_steel/2.; gMC->Gsvolu("EFE3","PARA", idtmed[618], dpara_fe3, 6); gMC->Gsatt ("EFE3", "SEEN", 0); // position supermodule ESMP, ESMQ inside EMM3 z_ps = - dpara_emm3[2] + sm_thick/2.; gMC->Gspos("ESMQ", 1, "EMM3", 0., 0., z_ps, 0, "ONLY"); z_pb = z_ps + sm_thick/2.+dpara_pb3[2]; gMC->Gspos("EPB3", 1, "EMM3", 0., 0., z_pb, 0, "ONLY"); z_fe = z_pb + dpara_pb3[2]+dpara_fe3[2]; gMC->Gspos("EFE3", 1, "EMM3", 0., 0., z_fe, 0, "ONLY"); z_cv = z_fe + dpara_fe3[2] + sm_thick/2.; gMC->Gspos("ESMP", 1, "EMM3", 0., 0., z_cv, 0, "ONLY"); // // EHOL is a tube structure made of air // //Float_t d_hole[3]; //d_hole[0] = 0.; //d_hole[1] = ncell_hole * cell_radius *2. * root3_2 + boundary; //d_hole[2] = dm_thick/2.; // //gMC->Gsvolu("EHOL", "TUBE", idtmed[698], d_hole, 3); //gMC->Gsatt("EHOL", "SEEN", 1); //Al-rod as boundary of the supermodules Float_t Al_rod[3] ; Al_rod[0] = sm_length * 3/2. - gaspmd[5]/2 - boundary ; Al_rod[1] = boundary; Al_rod[2] = dm_thick/2.; gMC->Gsvolu("EALM","BOX ", idtmed[698], Al_rod, 3); gMC->Gsatt ("EALM", "SEEN", 1); Float_t xalm[3]; xalm[0]=Al_rod[0] + gaspmd[5] + 3.0*boundary; xalm[1]=-xalm[0]/2.; xalm[2]=xalm[1]; Float_t yalm[3]; yalm[0]=0.; yalm[1]=xalm[0]*root3_2; yalm[2]=-yalm[1]; // delx = full side of the supermodule Float_t delx=sm_length * 3.; Float_t x1= delx*root3_2 /2.; Float_t x4=delx/4.; // placing master modules and Al-rod in PMD Float_t dx = sm_length; Float_t dy = dx * root3_2; Float_t xsup[9] = {-dx/2., dx/2., 3.*dx/2., -dx, 0., dx, -3.*dx/2., -dx/2., dx/2.}; Float_t ysup[9] = {dy, dy, dy, 0., 0., 0., -dy, -dy, -dy}; // xpos and ypos are the x & y coordinates of the centres of EMM1 volumes Float_t xoff = boundary * TMath::Tan(pi/6.); Float_t xmod[3]={x4 + xoff , x4 + xoff, -2.*x4-boundary/root3_2}; Float_t ymod[3] = {-x1 - boundary, x1 + boundary, 0.}; Float_t xpos[9], ypos[9], x2, y2, x3, y3; Float_t xemm2 = sm_length/2. - (ncell_sm + ncell_hole + 0.25) * cell_radius * 0.5 + xoff; Float_t yemm2 = -(ncell_sm + ncell_hole + 0.25) * cell_radius * root3_2 - boundary; Float_t xemm3 = (ncell_sm + 0.5 * ncell_hole + 0.25) * cell_radius + xoff; Float_t yemm3 = - (ncell_hole - 0.25) * cell_radius * root3_2 - boundary; Float_t theta[3] = {0., 2.*pi/3., 4.*pi/3.}; Int_t irotate[3] = {0, jhrot12, jhrot13}; num_mod=0; for (j=0; j<3; ++j) { gMC->Gspos("EALM", j+1, "EPMD", xalm[j],yalm[j], 0., irotate[j], "ONLY"); x2=xemm2*TMath::Cos(theta[j]) - yemm2*TMath::Sin(theta[j]); y2=xemm2*TMath::Sin(theta[j]) + yemm2*TMath::Cos(theta[j]); gMC->Gspos("EMM2", j+1, "EPMD", x2,y2, 0., irotate[j], "ONLY"); x3=xemm3*TMath::Cos(theta[j]) - yemm3*TMath::Sin(theta[j]); y3=xemm3*TMath::Sin(theta[j]) + yemm3*TMath::Cos(theta[j]); gMC->Gspos("EMM3", j+4, "EPMD", x3,y3, 0., irotate[j], "ONLY"); for (i=1; i<9; ++i) { xpos[i]=xmod[j] + xsup[i]*TMath::Cos(theta[j]) - ysup[i]*TMath::Sin(theta[j]); ypos[i]=ymod[j] + xsup[i]*TMath::Sin(theta[j]) + ysup[i]*TMath::Cos(theta[j]); if(fDebug) printf("%s: %f %f \n", ClassName(), xpos[i], ypos[i]); num_mod = num_mod+1; if(fDebug) printf("\n%s: Num_mod %d\n",ClassName(),num_mod); gMC->Gspos("EMM1", num_mod + 6, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY"); } } // place EHOL in the centre of EPMD // gMC->Gspos("EHOL", 1, "EPMD", 0.,0.,0., 0, "ONLY"); // --- Place the EPMD in ALICE xp = 0.; yp = 0.; zp = zdist1; gMC->Gspos("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY"); } //_____________________________________________________________________________ void AliPMDv0::DrawModule() { // // Draw a shaded view of the Photon Multiplicity Detector // gMC->Gsatt("*", "seen", -1); gMC->Gsatt("alic", "seen", 0); // // Set the visibility of the components // gMC->Gsatt("ECAR","seen",0); gMC->Gsatt("ECCU","seen",1); gMC->Gsatt("EHC1","seen",1); gMC->Gsatt("EHC1","seen",1); gMC->Gsatt("EHC2","seen",1); gMC->Gsatt("EMM1","seen",1); gMC->Gsatt("EHOL","seen",1); gMC->Gsatt("EPMD","seen",0); // gMC->Gdopt("hide", "on"); gMC->Gdopt("shad", "on"); gMC->Gsatt("*", "fill", 7); gMC->SetClipBox("."); gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000); gMC->DefaultRange(); gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02); gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1"); //gMC->Gdman(17, 5, "MAN"); gMC->Gdopt("hide", "off"); } //_____________________________________________________________________________ void AliPMDv0::CreateMaterials() { // // Create materials for the PMD // // ORIGIN : Y. P. VIYOGI // // --- The Argon- CO2 mixture --- Float_t ag[2] = { 39.95 }; Float_t zg[2] = { 18. }; Float_t wg[2] = { .8,.2 }; Float_t dar = .001782; // --- Ar density in g/cm3 --- // --- CO2 --- Float_t ac[2] = { 12.,16. }; Float_t zc[2] = { 6.,8. }; Float_t wc[2] = { 1.,2. }; Float_t dc = .001977; Float_t dco = .002; // --- CO2 density in g/cm3 --- Float_t absl, radl, a, d, z; Float_t dg; Float_t x0ar; //Float_t x0xe=2.4; //Float_t dxe=0.005858; Float_t buf[1]; Int_t nbuf; Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 }; Float_t zsteel[4] = { 26.,24.,28.,14. }; Float_t wsteel[4] = { .715,.18,.1,.005 }; Int_t *idtmed = fIdtmed->GetArray()-599; Int_t isxfld = gAlice->Field()->Integ(); Float_t sxmgmx = gAlice->Field()->Max(); // --- Define the various materials for GEANT --- AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5); x0ar = 19.55 / dar; AliMaterial(2, "Argon$", 39.95, 18., dar, x0ar, 6.5e4); AliMixture(3, "CO2 $", ac, zc, dc, -2, wc); AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5); AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5); AliMaterial(7, "W $", 183.85, 74., 19.3, .35, 10.3); AliMaterial(8, "G10 $", 20., 10., 1.7, 19.4, 999.); AliMaterial(9, "SILIC$", 28.09, 14., 2.33, 9.36, 45.); AliMaterial(10, "Be $", 9.01, 4., 1.848, 35.3, 36.7); AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.); AliMaterial(16, "C $", 12.01, 6., 2.265, 18.8, 49.9); AliMaterial(17, "POLYCARBONATE $", 20., 10., 1.2, 34.6, 999.); AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel); // AliMaterial(31, "Xenon$", 131.3, 54., dxe, x0xe, 6.5e4); AliMaterial(96, "MYLAR$", 8.73, 4.55, 1.39, 28.7, 62.); AliMaterial(97, "CONCR$", 20., 10., 2.5, 10.7, 40.); AliMaterial(98, "Vacum$", 1e-9, 1e-9, 1e-9, 1e16, 1e16); AliMaterial(99, "Air $", 14.61, 7.3, .0012, 30420., 67500.); // define gas-mixtures char namate[21]; gMC->Gfmate((*fIdmate)[3], namate, a, z, d, radl, absl, buf, nbuf); ag[1] = a; zg[1] = z; dg = (dar * 4 + dco) / 5; AliMixture(5, "ArCO2$", ag, zg, dg, 2, wg); // Define tracking media AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(7, "W conv.$", 7, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1); AliMedium(9, "SILICON $", 9, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1); AliMedium(10, "Be $", 10, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .1, 10); AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .1, .1); AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(16, "C $", 16, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(17, "PLOYCARB$", 17, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(19, " S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); // AliMedium(31, "Xenon $", 31, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1); // --- Generate explicitly delta rays in the iron, aluminium and lead --- gMC->Gstpar(idtmed[600], "LOSS", 3.); gMC->Gstpar(idtmed[600], "DRAY", 1.); gMC->Gstpar(idtmed[603], "LOSS", 3.); gMC->Gstpar(idtmed[603], "DRAY", 1.); gMC->Gstpar(idtmed[604], "LOSS", 3.); gMC->Gstpar(idtmed[604], "DRAY", 1.); gMC->Gstpar(idtmed[605], "LOSS", 3.); gMC->Gstpar(idtmed[605], "DRAY", 1.); gMC->Gstpar(idtmed[606], "LOSS", 3.); gMC->Gstpar(idtmed[606], "DRAY", 1.); gMC->Gstpar(idtmed[607], "LOSS", 3.); gMC->Gstpar(idtmed[607], "DRAY", 1.); // --- Energy cut-offs in the Pb and Al to gain time in tracking --- // --- without affecting the hit patterns --- gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4); gMC->Gstpar(idtmed[600], "CUTELE", 1e-4); gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4); gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4); gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4); gMC->Gstpar(idtmed[605], "CUTELE", 1e-4); gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4); gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4); gMC->Gstpar(idtmed[606], "CUTGAM", 1e-4); gMC->Gstpar(idtmed[606], "CUTELE", 1e-4); gMC->Gstpar(idtmed[606], "CUTNEU", 1e-4); gMC->Gstpar(idtmed[606], "CUTHAD", 1e-4); gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4); gMC->Gstpar(idtmed[603], "CUTELE", 1e-4); gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4); gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4); gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4); gMC->Gstpar(idtmed[609], "CUTELE", 1e-4); gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4); gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4); // --- Prevent particles stopping in the gas due to energy cut-off --- gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5); gMC->Gstpar(idtmed[604], "CUTELE", 1e-5); gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5); gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5); gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5); } //_____________________________________________________________________________ void AliPMDv0::Init() { // // Initialises PMD detector after it has been built // Int_t i; kdet=1; // if(fDebug) { printf("\n%s: ",ClassName()); for(i=0;i<35;i++) printf("*"); printf(" PMD_INIT "); for(i=0;i<35;i++) printf("*"); printf("\n%s: ",ClassName()); printf(" PMD simulation package (v0) initialised\n"); printf("%s: parameters of pmd\n", ClassName()); printf("%s: %10.2f %10.2f %10.2f \ %10.2f\n",ClassName(),cell_radius,cell_wall,cell_depth,zdist1 ); printf("%s: ",ClassName()); for(i=0;i<80;i++) printf("*"); printf("\n"); } Int_t *idtmed = fIdtmed->GetArray()-599; fMedSens=idtmed[605-1]; } //_____________________________________________________________________________ void AliPMDv0::StepManager() { // // Called at each step in the PMD // Int_t copy; Float_t hits[4], destep; Float_t center[3] = {0,0,0}; Int_t vol[5]; //char *namep; if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) { gMC->CurrentVolID(copy); //namep=gMC->CurrentVolName(); //printf("Current vol is %s \n",namep); vol[0]=copy; gMC->CurrentVolOffID(1,copy); //namep=gMC->CurrentVolOffName(1); //printf("Current vol 11 is %s \n",namep); vol[1]=copy; gMC->CurrentVolOffID(2,copy); //namep=gMC->CurrentVolOffName(2); //printf("Current vol 22 is %s \n",namep); vol[2]=copy; // if(strncmp(namep,"EHC1",4))vol[2]=1; gMC->CurrentVolOffID(3,copy); //namep=gMC->CurrentVolOffName(3); //printf("Current vol 33 is %s \n",namep); vol[3]=copy; gMC->CurrentVolOffID(4,copy); //namep=gMC->CurrentVolOffName(4); //printf("Current vol 44 is %s \n",namep); vol[4]=copy; //printf("volume number %d,%d,%d,%d,%d,%f \n",vol[0],vol[1],vol[2],vol[3],vol[4],destep*1000000); gMC->Gdtom(center,hits,1); hits[3] = destep*1e9; //Number in eV AddHit(gAlice->CurrentTrack(), vol, hits); } } //------------------------------------------------------------------------ // Get parameters void AliPMDv0::GetParameters() { Int_t ncell_um, num_um; ncell_um=24; num_um=3; ncell_hole=24; cell_radius=0.25; cell_wall=0.02; cell_depth=0.25 * 2.; // boundary=0.7; ncell_sm=ncell_um * num_um; //no. of cells in a row in one supermodule sm_length= ((ncell_sm + 0.25 ) * cell_radius) * 2.; // th_base=0.3; th_air=0.1; th_pcb=0.16; // sm_thick = th_base + th_air + th_pcb + cell_depth + th_pcb + th_air + th_pcb; // th_lead=1.5; th_steel=0.5; // zdist1 = -365.; }