/*************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ // /////////////////////////////////////////////////////////////////////////////// // // // Photon Multiplicity Detector Version 1 // // // //Begin_Html /* */ //End_Html // // /////////////////////////////////////////////////////////////////////////////// //// #include #include #include #include #include "AliConst.h" #include "AliMagF.h" #include "AliPMDv0.h" #include "AliRun.h" #include "AliMC.h" #include "AliLog.h" const Int_t AliPMDv0::fgkNcellHole = 24; // Hole dimension const Float_t AliPMDv0::fgkCellRadius = 0.25; // Radius of a hexagonal cell const Float_t AliPMDv0::fgkCellWall = 0.02; // Thickness of cell Wall const Float_t AliPMDv0::fgkCellDepth = 0.50; // Gas thickness const Float_t AliPMDv0::fgkBoundary = 0.7; // Thickness of Boundary wall const Float_t AliPMDv0::fgkThBase = 0.3; // Thickness of Base plate const Float_t AliPMDv0::fgkThAir = 0.1; // Thickness of Air const Float_t AliPMDv0::fgkThPCB = 0.16; // Thickness of PCB const Float_t AliPMDv0::fgkThLead = 1.5; // Thickness of Pb const Float_t AliPMDv0::fgkThSteel = 0.5; // Thickness of Steel const Float_t AliPMDv0::fgkZdist = 361.5; // z-position of the detector const Float_t AliPMDv0::fgkSqroot3 = 1.7320508;// Square Root of 3 const Float_t AliPMDv0::fgkSqroot3by2 = 0.8660254;// Square Root of 3 by 2 const Float_t AliPMDv0::fgkPi = 3.14159; // pi ClassImp(AliPMDv0) //_____________________________________________________________________________ AliPMDv0::AliPMDv0(): fSMthick(0.), fSMLength(0.), fMedSens(0), fNcellSM(0) { // // Default constructor // } //_____________________________________________________________________________ AliPMDv0::AliPMDv0(const char *name, const char *title): AliPMD(name,title), fSMthick(0.), fSMLength(0.), fMedSens(0), fNcellSM(0) { // // Standard constructor // } //_____________________________________________________________________________ void AliPMDv0::CreateGeometry() { // // Create geometry for Photon Multiplicity Detector Version 3 : // April 2, 2001 // //Begin_Html /* */ //End_Html //Begin_Html /* */ //End_Html GetParameters(); CreateSupermodule(); CreatePMD(); } //_____________________________________________________________________________ void AliPMDv0::CreateSupermodule() { // // Creates the geometry of the cells, places them in supermodule which // is a rhombus object. // *** DEFINITION OF THE GEOMETRY OF THE PMD *** // *** HEXAGONAL CELLS WITH CELL RADIUS 0.25 cm (see "GetParameters") // -- Author : S. Chattopadhyay, 02/04/1999. // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is placed inside another // hexagonal cell made of Cu (ECCU) with larger radius, compared to ECAR. The difference // in radius gives the dimension of half width of each cell wall. // These cells are placed as 72 x 72 array in a // rhombus shaped supermodule (EHC1). The rhombus shaped modules are designed // to have closed packed structure. // // Each supermodule (ESMA, ESMB), made of G10 is filled with following components // EAIR --> Air gap between gas hexagonal cells and G10 backing. // EHC1 --> Rhombus shaped parallelopiped containing the hexagonal cells // EAIR --> Air gap between gas hexagonal cells and G10 backing. // // ESMA, ESMB are placed in EMM1 along with EMPB (Pb converter) // and EMFE (iron support) // EMM1 made of // ESMB --> Normal supermodule, mirror image of ESMA // EMPB --> Pb converter // EMFE --> Fe backing // ESMA --> Normal supermodule // // ESMX, ESMY are placed in EMM2 along with EMPB (Pb converter) // and EMFE (iron support) // EMM2 made of // ESMY --> Special supermodule, mirror image of ESMX, // EMPB --> Pb converter // EMFE --> Fe backing // ESMX --> First of the two Special supermodules near the hole // EMM3 made of // ESMQ --> Special supermodule, mirror image of ESMX, // EMPB --> Pb converter // EMFE --> Fe backing // ESMP --> Second of the two Special supermodules near the hole // EMM2 and EMM3 are used to create the hexagonal HOLE // // EPMD // | // | // --------------------------------------------------------------------------- // | | | | | // EHOL EMM1 EMM2 EMM3 EALM // | | | // -------------------- -------------------- -------------------- // | | | | | | | | | | | | // ESMB EMPB EMFE ESMA ESMY EMPB EMFE ESMX ESMQ EMPB EMFE ESMP // | | | // ------------ ------------ ------------- // | | | | | | | | | // EAIR EHC1 EAIR EAIR EHC2 EAIR EAIR EHC3 EAIR // | | | // ECCU ECCU ECCU // | | | // ECAR ECAR ECAR Int_t i, j; Float_t xb, yb, zb; Int_t number; Int_t ihrotm,irotdm; Int_t *idtmed = fIdtmed->GetArray()-599; AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.); AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.); //Subhasis, dimensional parameters of rhombus (dpara) as given to gsvolu // rhombus to accomodate 72 x 72 hexagons, and with total 1.2cm extension //(1mm tolerance on both side and 5mm thick G10 wall) // // **** CELL SIZE 20 mm^2 EQUIVALENT // Inner hexagon filled with gas (Ar+CO2) Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23}; hexd2[4]= -fgkCellDepth/2.; hexd2[7]= fgkCellDepth/2.; hexd2[6]= fgkCellRadius - fgkCellWall; hexd2[9]= fgkCellRadius - fgkCellWall; // Gas replaced by vacuum for v0(insensitive) version of PMD. TVirtualMC::GetMC()->Gsvolu("ECAR", "PGON", idtmed[697], hexd2,10); gGeoManager->SetVolumeAttribute("ECAR", "SEEN", 0); // Outer hexagon made of Copper Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25}; hexd1[4]= -fgkCellDepth/2.; hexd1[7]= fgkCellDepth/2.; hexd1[6]= fgkCellRadius; hexd1[9]= fgkCellRadius; TVirtualMC::GetMC()->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10); gGeoManager->SetVolumeAttribute("ECCU", "SEEN", 1); // --- place inner hex inside outer hex TVirtualMC::GetMC()->Gspos("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY"); // Rhombus shaped supermodules (defined by PARA) // volume for SUPERMODULE Float_t dparasm1[6] = {12.5,12.5,0.8,30.,0.,0.}; dparasm1[0] = (fNcellSM+0.25)*hexd1[6] ; dparasm1[1] = dparasm1[0] *fgkSqroot3by2; dparasm1[2] = fSMthick/2.; // TVirtualMC::GetMC()->Gsvolu("ESMA","PARA", idtmed[607], dparasm1, 6); gGeoManager->SetVolumeAttribute("ESMA", "SEEN", 0); // TVirtualMC::GetMC()->Gsvolu("ESMB","PARA", idtmed[607], dparasm1, 6); gGeoManager->SetVolumeAttribute("ESMB", "SEEN", 0); // Air residing between the PCB and the base Float_t dparaair[6] = {12.5,12.5,8.,30.,0.,0.}; dparaair[0]= dparasm1[0]; dparaair[1]= dparasm1[1]; dparaair[2]= fgkThAir/2.; TVirtualMC::GetMC()->Gsvolu("EAIR","PARA", idtmed[698], dparaair, 6); gGeoManager->SetVolumeAttribute("EAIR", "SEEN", 0); // volume for honeycomb chamber EHC1 Float_t dpara1[6] = {12.5,12.5,0.4,30.,0.,0.}; dpara1[0] = dparasm1[0]; dpara1[1] = dparasm1[1]; dpara1[2] = fgkCellDepth/2.; TVirtualMC::GetMC()->Gsvolu("EHC1","PARA", idtmed[698], dpara1, 6); gGeoManager->SetVolumeAttribute("EHC1", "SEEN", 1); // Place hexagonal cells ECCU cells inside EHC1 (72 X 72) Int_t xrow = 1; yb = -dpara1[1] + (1./fgkSqroot3by2)*hexd1[6]; zb = 0.; for (j = 1; j <= fNcellSM; ++j) { xb =-(dpara1[0] + dpara1[1]*0.577) + 2*hexd1[6]; //0.577=tan(30deg) if(xrow >= 2){ xb = xb+(xrow-1)*hexd1[6]; } for (i = 1; i <= fNcellSM; ++i) { number = i+(j-1)*fNcellSM; TVirtualMC::GetMC()->Gspos("ECCU", number, "EHC1", xb,yb,zb, ihrotm, "ONLY"); xb += (hexd1[6]*2.); } xrow = xrow+1; yb += (hexd1[6]*fgkSqroot3); } // Place EHC1 and EAIR into ESMA and ESMB Float_t zAir1,zAir2,zGas; //ESMA is normal supermodule with base at bottom, with EHC1 zAir1= -dparasm1[2] + fgkThBase + dparaair[2]; TVirtualMC::GetMC()->Gspos("EAIR", 1, "ESMA", 0., 0., zAir1, 0, "ONLY"); zGas=zAir1+dparaair[2]+ fgkThPCB + dpara1[2]; //Line below Commented for version 0 of PMD routine // TVirtualMC::GetMC()->Gspos("EHC1", 1, "ESMA", 0., 0., zGas, 0, "ONLY"); zAir2=zGas+dpara1[2]+ fgkThPCB + dparaair[2]; TVirtualMC::GetMC()->Gspos("EAIR", 2, "ESMA", 0., 0., zAir2, 0, "ONLY"); // ESMB is mirror image of ESMA, with base at top, with EHC1 zAir1= -dparasm1[2] + fgkThPCB + dparaair[2]; TVirtualMC::GetMC()->Gspos("EAIR", 3, "ESMB", 0., 0., zAir1, 0, "ONLY"); zGas=zAir1+dparaair[2]+ fgkThPCB + dpara1[2]; //Line below Commented for version 0 of PMD routine // TVirtualMC::GetMC()->Gspos("EHC1", 2, "ESMB", 0., 0., zGas, 0, "ONLY"); zAir2=zGas+dpara1[2]+ fgkThPCB + dparaair[2]; TVirtualMC::GetMC()->Gspos("EAIR", 4, "ESMB", 0., 0., zAir2, 0, "ONLY"); // special supermodule EMM2(GEANT only) containing 6 unit modules // volume for SUPERMODULE Float_t dparasm2[6] = {12.5,12.5,0.8,30.,0.,0.}; dparasm2[0]=(fNcellSM+0.25)*hexd1[6] ; dparasm2[1] = (fNcellSM - fgkNcellHole + 0.25) * fgkSqroot3by2 * hexd1[6]; dparasm2[2] = fSMthick/2.; TVirtualMC::GetMC()->Gsvolu("ESMX","PARA", idtmed[607], dparasm2, 6); gGeoManager->SetVolumeAttribute("ESMX", "SEEN", 0); // TVirtualMC::GetMC()->Gsvolu("ESMY","PARA", idtmed[607], dparasm2, 6); gGeoManager->SetVolumeAttribute("ESMY", "SEEN", 0); Float_t dpara2[6] = {12.5,12.5,0.4,30.,0.,0.}; dpara2[0] = dparasm2[0]; dpara2[1] = dparasm2[1]; dpara2[2] = fgkCellDepth/2.; TVirtualMC::GetMC()->Gsvolu("EHC2","PARA", idtmed[698], dpara2, 6); gGeoManager->SetVolumeAttribute("EHC2", "SEEN", 1); // Air residing between the PCB and the base Float_t dpara2Air[6] = {12.5,12.5,8.,30.,0.,0.}; dpara2Air[0]= dparasm2[0]; dpara2Air[1]= dparasm2[1]; dpara2Air[2]= fgkThAir/2.; TVirtualMC::GetMC()->Gsvolu("EAIX","PARA", idtmed[698], dpara2Air, 6); gGeoManager->SetVolumeAttribute("EAIX", "SEEN", 0); // Place hexagonal single cells ECCU inside EHC2 // skip cells which go into the hole in top left corner. xrow=1; yb = -dpara2[1] + (1./fgkSqroot3by2)*hexd1[6]; zb = 0.; for (j = 1; j <= (fNcellSM - fgkNcellHole); ++j) { xb =-(dpara2[0] + dpara2[1]*0.577) + 2*hexd1[6]; if(xrow >= 2){ xb = xb+(xrow-1)*hexd1[6]; } for (i = 1; i <= fNcellSM; ++i) { number = i+(j-1)*fNcellSM; TVirtualMC::GetMC()->Gspos("ECCU", number, "EHC2", xb,yb,zb, ihrotm, "ONLY"); xb += (hexd1[6]*2.); } xrow = xrow+1; yb += (hexd1[6]*fgkSqroot3); } // ESMX is normal supermodule with base at bottom, with EHC2 zAir1= -dparasm2[2] + fgkThBase + dpara2Air[2]; TVirtualMC::GetMC()->Gspos("EAIX", 1, "ESMX", 0., 0., zAir1, 0, "ONLY"); zGas=zAir1+dpara2Air[2]+ fgkThPCB + dpara2[2]; //Line below Commented for version 0 of PMD routine // TVirtualMC::GetMC()->Gspos("EHC2", 1, "ESMX", 0., 0., zGas, 0, "ONLY"); zAir2=zGas+dpara2[2]+ fgkThPCB + dpara2Air[2]; TVirtualMC::GetMC()->Gspos("EAIX", 2, "ESMX", 0., 0., zAir2, 0, "ONLY"); // ESMY is mirror image of ESMX with base at bottom, with EHC2 zAir1= -dparasm2[2] + fgkThPCB + dpara2Air[2]; TVirtualMC::GetMC()->Gspos("EAIX", 3, "ESMY", 0., 0., zAir1, 0, "ONLY"); zGas=zAir1+dpara2Air[2]+ fgkThPCB + dpara2[2]; //Line below Commented for version 0 of PMD routine // TVirtualMC::GetMC()->Gspos("EHC2", 2, "ESMY", 0., 0., zGas, 0, "ONLY"); zAir2=zGas+dpara2[2]+ fgkThPCB + dpara2Air[2]; TVirtualMC::GetMC()->Gspos("EAIX", 4, "ESMY", 0., 0., zAir2, 0, "ONLY"); // // special supermodule EMM3 (GEANT only) containing 2 unit modules // volume for SUPERMODULE // Float_t dparaSM3[6] = {12.5,12.5,0.8,30.,0.,0.}; dparaSM3[0]=(fNcellSM - fgkNcellHole +0.25)*hexd1[6] ; dparaSM3[1] = (fgkNcellHole + 0.25) * hexd1[6] * fgkSqroot3by2; dparaSM3[2] = fSMthick/2.; TVirtualMC::GetMC()->Gsvolu("ESMP","PARA", idtmed[607], dparaSM3, 6); gGeoManager->SetVolumeAttribute("ESMP", "SEEN", 0); // TVirtualMC::GetMC()->Gsvolu("ESMQ","PARA", idtmed[607], dparaSM3, 6); gGeoManager->SetVolumeAttribute("ESMQ", "SEEN", 0); Float_t dpara3[6] = {12.5,12.5,0.4,30.,0.,0.}; dpara3[0] = dparaSM3[0]; dpara3[1] = dparaSM3[1]; dpara3[2] = fgkCellDepth/2.; TVirtualMC::GetMC()->Gsvolu("EHC3","PARA", idtmed[698], dpara3, 6); gGeoManager->SetVolumeAttribute("EHC3", "SEEN", 1); // Air residing between the PCB and the base Float_t dpara3Air[6] = {12.5,12.5,8.,30.,0.,0.}; dpara3Air[0]= dparaSM3[0]; dpara3Air[1]= dparaSM3[1]; dpara3Air[2]= fgkThAir/2.; TVirtualMC::GetMC()->Gsvolu("EAIP","PARA", idtmed[698], dpara3Air, 6); gGeoManager->SetVolumeAttribute("EAIP", "SEEN", 0); // Place hexagonal single cells ECCU inside EHC3 // skip cells which go into the hole in top left corner. xrow=1; yb = -dpara3[1] + (1./fgkSqroot3by2)*hexd1[6]; zb = 0.; for (j = 1; j <= fgkNcellHole; ++j) { xb =-(dpara3[0] + dpara3[1]*0.577) + 2*hexd1[6]; if(xrow >= 2){ xb = xb+(xrow-1)*hexd1[6]; } for (i = 1; i <= (fNcellSM - fgkNcellHole); ++i) { number = i+(j-1)*(fNcellSM - fgkNcellHole); TVirtualMC::GetMC()->Gspos("ECCU", number, "EHC3", xb,yb,zb, ihrotm, "ONLY"); xb += (hexd1[6]*2.); } xrow = xrow+1; yb += (hexd1[6]*fgkSqroot3); } // ESMP is normal supermodule with base at bottom, with EHC3 zAir1= -dparaSM3[2] + fgkThBase + dpara3Air[2]; TVirtualMC::GetMC()->Gspos("EAIP", 1, "ESMP", 0., 0., zAir1, 0, "ONLY"); zGas=zAir1+dpara3Air[2]+ fgkThPCB + dpara3[2]; //Line below Commented for version 0 of PMD routine // TVirtualMC::GetMC()->Gspos("EHC3", 1, "ESMP", 0., 0., zGas, 0, "ONLY"); zAir2=zGas+dpara3[2]+ fgkThPCB + dpara3Air[2]; TVirtualMC::GetMC()->Gspos("EAIP", 2, "ESMP", 0., 0., zAir2, 0, "ONLY"); // ESMQ is mirror image of ESMP with base at bottom, with EHC3 zAir1= -dparaSM3[2] + fgkThPCB + dpara3Air[2]; TVirtualMC::GetMC()->Gspos("EAIP", 3, "ESMQ", 0., 0., zAir1, 0, "ONLY"); zGas=zAir1+dpara3Air[2]+ fgkThPCB + dpara3[2]; //Line below Commented for version 0 of PMD routine // TVirtualMC::GetMC()->Gspos("EHC3", 2, "ESMQ", 0., 0., zGas, 0, "ONLY"); zAir2=zGas+dpara3[2]+ fgkThPCB + dpara3Air[2]; TVirtualMC::GetMC()->Gspos("EAIP", 4, "ESMQ", 0., 0., zAir2, 0, "ONLY"); } //_____________________________________________________________________________ void AliPMDv0::CreatePMD() { // // Create final detector from supermodules // // -- Author : Y.P. VIYOGI, 07/05/1996. // -- Modified: P.V.K.S.Baba(JU), 15-12-97. // -- Modified: For New Geometry YPV, March 2001. Float_t xp, yp, zp; Int_t i,j; Int_t nummod; Int_t jhrot12,jhrot13, irotdm; Int_t *idtmed = fIdtmed->GetArray()-599; // VOLUMES Names : begining with "E" for all PMD volumes, // The names of SIZE variables begin with S and have more meaningful // characters as shown below. // VOLUME SIZE MEDIUM : REMARKS // ------ ----- ------ : --------------------------- // EPMD GASPMD AIR : INSIDE PMD and its SIZE // *** Define the EPMD Volume and fill with air *** // Gaspmd, the dimension of HEXAGONAL mother volume of PMD, Float_t gaspmd[10] = {0.,360.,6,2,-4.,12.,150.,4.,12.,150.}; gaspmd[5] = fgkNcellHole * fgkCellRadius * 2. * fgkSqroot3by2; gaspmd[8] = gaspmd[5]; TVirtualMC::GetMC()->Gsvolu("EPMD", "PGON", idtmed[698], gaspmd, 10); gGeoManager->SetVolumeAttribute("EPMD", "SEEN", 0); AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.); AliMatrix(jhrot12, 90., 120., 90., 210., 0., 0.); AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.); Float_t dmthick = 2. * fSMthick + fgkThLead + fgkThSteel; // dparaemm1 array contains parameters of the imaginary volume EMM1, // EMM1 is a master module of type 1, which has 24 copies in the PMD. // EMM1 : normal volume as in old cases Float_t dparaemm1[6] = {12.5,12.5,0.8,30.,0.,0.}; dparaemm1[0] = fSMLength/2.; dparaemm1[1] = dparaemm1[0] *fgkSqroot3by2; dparaemm1[2] = dmthick/2.; TVirtualMC::GetMC()->Gsvolu("EMM1","PARA", idtmed[698], dparaemm1, 6); gGeoManager->SetVolumeAttribute("EMM1", "SEEN", 1); // // --- DEFINE Modules, iron, and lead volumes // Pb Convertor for EMM1 Float_t dparapb1[6] = {12.5,12.5,8.,30.,0.,0.}; dparapb1[0] = fSMLength/2.; dparapb1[1] = dparapb1[0] * fgkSqroot3by2; dparapb1[2] = fgkThLead/2.; TVirtualMC::GetMC()->Gsvolu("EPB1","PARA", idtmed[600], dparapb1, 6); gGeoManager->SetVolumeAttribute ("EPB1", "SEEN", 0); // Fe Support for EMM1 Float_t dparafe1[6] = {12.5,12.5,8.,30.,0.,0.}; dparafe1[0] = dparapb1[0]; dparafe1[1] = dparapb1[1]; dparafe1[2] = fgkThSteel/2.; TVirtualMC::GetMC()->Gsvolu("EFE1","PARA", idtmed[618], dparafe1, 6); gGeoManager->SetVolumeAttribute ("EFE1", "SEEN", 0); // // position supermodule ESMA, ESMB, EPB1, EFE1 inside EMM1 Float_t zps,zpb,zfe,zcv; zps = -dparaemm1[2] + fSMthick/2.; TVirtualMC::GetMC()->Gspos("ESMB", 1, "EMM1", 0., 0., zps, 0, "ONLY"); zpb = zps+fSMthick/2.+dparapb1[2]; TVirtualMC::GetMC()->Gspos("EPB1", 1, "EMM1", 0., 0., zpb, 0, "ONLY"); zfe = zpb+dparapb1[2]+dparafe1[2]; TVirtualMC::GetMC()->Gspos("EFE1", 1, "EMM1", 0., 0., zfe, 0, "ONLY"); zcv = zfe+dparafe1[2]+fSMthick/2.; TVirtualMC::GetMC()->Gspos("ESMA", 1, "EMM1", 0., 0., zcv, 0, "ONLY"); // EMM2 : special master module having full row of cells but the number // of rows limited by hole. Float_t dparaemm2[6] = {12.5,12.5,0.8,30.,0.,0.}; dparaemm2[0] = fSMLength/2.; dparaemm2[1] = (fNcellSM - fgkNcellHole + 0.25)*fgkCellRadius*fgkSqroot3by2; dparaemm2[2] = dmthick/2.; TVirtualMC::GetMC()->Gsvolu("EMM2","PARA", idtmed[698], dparaemm2, 6); gGeoManager->SetVolumeAttribute("EMM2", "SEEN", 1); // Pb Convertor for EMM2 Float_t dparapb2[6] = {12.5,12.5,8.,30.,0.,0.}; dparapb2[0] = dparaemm2[0]; dparapb2[1] = dparaemm2[1]; dparapb2[2] = fgkThLead/2.; TVirtualMC::GetMC()->Gsvolu("EPB2","PARA", idtmed[600], dparapb2, 6); gGeoManager->SetVolumeAttribute ("EPB2", "SEEN", 0); // Fe Support for EMM2 Float_t dparafe2[6] = {12.5,12.5,8.,30.,0.,0.}; dparafe2[0] = dparapb2[0]; dparafe2[1] = dparapb2[1]; dparafe2[2] = fgkThSteel/2.; TVirtualMC::GetMC()->Gsvolu("EFE2","PARA", idtmed[618], dparafe2, 6); gGeoManager->SetVolumeAttribute ("EFE2", "SEEN", 0); // position supermodule ESMX, ESMY inside EMM2 zps = -dparaemm2[2] + fSMthick/2.; TVirtualMC::GetMC()->Gspos("ESMY", 1, "EMM2", 0., 0., zps, 0, "ONLY"); zpb = zps + fSMthick/2.+dparapb2[2]; TVirtualMC::GetMC()->Gspos("EPB2", 1, "EMM2", 0., 0., zpb, 0, "ONLY"); zfe = zpb + dparapb2[2]+dparafe2[2]; TVirtualMC::GetMC()->Gspos("EFE2", 1, "EMM2", 0., 0., zfe, 0, "ONLY"); zcv = zfe + dparafe2[2]+fSMthick/2.; TVirtualMC::GetMC()->Gspos("ESMX", 1, "EMM2", 0., 0., zcv, 0, "ONLY"); // // EMM3 : special master module having truncated rows and columns of cells // limited by hole. Float_t dparaemm3[6] = {12.5,12.5,0.8,30.,0.,0.}; dparaemm3[0] = dparaemm2[1]/fgkSqroot3by2; dparaemm3[1] = (fgkNcellHole + 0.25) * fgkCellRadius *fgkSqroot3by2; dparaemm3[2] = dmthick/2.; TVirtualMC::GetMC()->Gsvolu("EMM3","PARA", idtmed[698], dparaemm3, 6); gGeoManager->SetVolumeAttribute("EMM3", "SEEN", 1); // Pb Convertor for EMM3 Float_t dparapb3[6] = {12.5,12.5,8.,30.,0.,0.}; dparapb3[0] = dparaemm3[0]; dparapb3[1] = dparaemm3[1]; dparapb3[2] = fgkThLead/2.; TVirtualMC::GetMC()->Gsvolu("EPB3","PARA", idtmed[600], dparapb3, 6); gGeoManager->SetVolumeAttribute ("EPB3", "SEEN", 0); // Fe Support for EMM3 Float_t dparafe3[6] = {12.5,12.5,8.,30.,0.,0.}; dparafe3[0] = dparapb3[0]; dparafe3[1] = dparapb3[1]; dparafe3[2] = fgkThSteel/2.; TVirtualMC::GetMC()->Gsvolu("EFE3","PARA", idtmed[618], dparafe3, 6); gGeoManager->SetVolumeAttribute ("EFE3", "SEEN", 0); // position supermodule ESMP, ESMQ inside EMM3 zps = -dparaemm3[2] + fSMthick/2.; TVirtualMC::GetMC()->Gspos("ESMQ", 1, "EMM3", 0., 0., zps, 0, "ONLY"); zpb = zps + fSMthick/2.+dparapb3[2]; TVirtualMC::GetMC()->Gspos("EPB3", 1, "EMM3", 0., 0., zpb, 0, "ONLY"); zfe = zpb + dparapb3[2]+dparafe3[2]; TVirtualMC::GetMC()->Gspos("EFE3", 1, "EMM3", 0., 0., zfe, 0, "ONLY"); zcv = zfe + dparafe3[2] + fSMthick/2.; TVirtualMC::GetMC()->Gspos("ESMP", 1, "EMM3", 0., 0., zcv, 0, "ONLY"); // // EHOL is a tube structure made of air // //Float_t d_hole[3]; //d_hole[0] = 0.; //d_hole[1] = fgkNcellHole * fgkCellRadius *2. * fgkSqroot3by2 + boundary; //d_hole[2] = dmthick/2.; // //TVirtualMC::GetMC()->Gsvolu("EHOL", "TUBE", idtmed[698], d_hole, 3); //gGeoManager->SetVolumeAttribute("EHOL", "SEEN", 1); //Al-rod as boundary of the supermodules Float_t alRod[3] ; alRod[0] = fSMLength * 3/2. - gaspmd[5]/2 - fgkBoundary ; alRod[1] = fgkBoundary; alRod[2] = dmthick/2.; TVirtualMC::GetMC()->Gsvolu("EALM","BOX ", idtmed[698], alRod, 3); gGeoManager->SetVolumeAttribute ("EALM", "SEEN", 1); Float_t xalm[3]; xalm[0]=alRod[0] + gaspmd[5] + 3.0*fgkBoundary; xalm[1]=-xalm[0]/2.; xalm[2]=xalm[1]; Float_t yalm[3]; yalm[0]=0.; yalm[1]=xalm[0]*fgkSqroot3by2; yalm[2]=-yalm[1]; // delx = full side of the supermodule Float_t delx=fSMLength * 3.; Float_t x1= delx*fgkSqroot3by2 /2.; Float_t x4=delx/4.; // placing master modules and Al-rod in PMD Float_t dx = fSMLength; Float_t dy = dx * fgkSqroot3by2; Float_t xsup[9] = {static_cast(-dx/2.), static_cast(dx/2.), static_cast(3.*dx/2.), -dx, 0., dx, static_cast(-3.*dx/2.), static_cast(-dx/2.), static_cast(dx/2.)}; Float_t ysup[9] = {dy, dy, dy, 0., 0., 0., -dy, -dy, -dy}; // xpos and ypos are the x & y coordinates of the centres of EMM1 volumes Float_t xoff = fgkBoundary * TMath::Tan(fgkPi/6.); Float_t xmod[3]={x4 + xoff , x4 + xoff, static_cast(-2.*x4-fgkBoundary/fgkSqroot3by2)}; Float_t ymod[3] = {-x1 - fgkBoundary, x1 + fgkBoundary, 0.}; Float_t xpos[9], ypos[9], x2, y2, x3, y3; Float_t xemm2 = fSMLength/2. - (fNcellSM + fgkNcellHole + 0.25) * fgkCellRadius * 0.5 + xoff; Float_t yemm2 = -(fNcellSM + fgkNcellHole + 0.25)*fgkCellRadius*fgkSqroot3by2 - fgkBoundary; Float_t xemm3 = (fNcellSM + 0.5 * fgkNcellHole + 0.25) * fgkCellRadius + xoff; Float_t yemm3 = - (fgkNcellHole - 0.25) * fgkCellRadius * fgkSqroot3by2 - fgkBoundary; Float_t theta[3] = {0., static_cast(2.*fgkPi/3.), static_cast(4.*fgkPi/3.)}; Int_t irotate[3] = {0, jhrot12, jhrot13}; nummod=0; for (j=0; j<3; ++j) { TVirtualMC::GetMC()->Gspos("EALM", j+1, "EPMD", xalm[j],yalm[j], 0., irotate[j], "ONLY"); x2=xemm2*TMath::Cos(theta[j]) - yemm2*TMath::Sin(theta[j]); y2=xemm2*TMath::Sin(theta[j]) + yemm2*TMath::Cos(theta[j]); TVirtualMC::GetMC()->Gspos("EMM2", j+1, "EPMD", x2,y2, 0., irotate[j], "ONLY"); x3=xemm3*TMath::Cos(theta[j]) - yemm3*TMath::Sin(theta[j]); y3=xemm3*TMath::Sin(theta[j]) + yemm3*TMath::Cos(theta[j]); TVirtualMC::GetMC()->Gspos("EMM3", j+4, "EPMD", x3,y3, 0., irotate[j], "ONLY"); for (i=1; i<9; ++i) { xpos[i]=xmod[j] + xsup[i]*TMath::Cos(theta[j]) - ysup[i]*TMath::Sin(theta[j]); ypos[i]=ymod[j] + xsup[i]*TMath::Sin(theta[j]) + ysup[i]*TMath::Cos(theta[j]); AliDebugClass(1,Form("xpos: %f, ypos: %f", xpos[i], ypos[i])); nummod = nummod+1; AliDebugClass(1,Form("nummod %d",nummod)); TVirtualMC::GetMC()->Gspos("EMM1", nummod + 6, "EPMD", xpos[i],ypos[i], 0., irotate[j], "ONLY"); } } // place EHOL in the centre of EPMD // TVirtualMC::GetMC()->Gspos("EHOL", 1, "EPMD", 0.,0.,0., 0, "ONLY"); // --- Place the EPMD in ALICE xp = 0.; yp = 0.; zp = fgkZdist; TVirtualMC::GetMC()->Gspos("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY"); } //_____________________________________________________________________________ void AliPMDv0::CreateMaterials() { // // Create materials for the PMD // // ORIGIN : Y. P. VIYOGI // // cout << " Inside create materials " << endl; Int_t isxfld = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Integ(); Float_t sxmgmx = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Max(); // --- Define the various materials for GEANT --- AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5); // Argon Float_t dAr = 0.001782; // --- Ar density in g/cm3 --- Float_t x0Ar = 19.55 / dAr; AliMaterial(2, "Argon$", 39.95, 18., dAr, x0Ar, 6.5e4); // --- CO2 --- Float_t aCO2[2] = { 12.,16. }; Float_t zCO2[2] = { 6.,8. }; Float_t wCO2[2] = { 1.,2. }; Float_t dCO2 = 0.001977; AliMixture(3, "CO2 $", aCO2, zCO2, dCO2, -2, wCO2); AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5); // ArCO2 Float_t aArCO2[3] = {39.948,12.0107,15.9994}; Float_t zArCO2[3] = {18.,6.,8.}; Float_t wArCO2[3] = {0.7,0.08,0.22}; Float_t dArCO2 = dAr * 0.7 + dCO2 * 0.3; AliMixture(5, "ArCO2$", aArCO2, zArCO2, dArCO2, 3, wArCO2); AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5); // G10 Float_t aG10[4]={1.,12.011,15.9994,28.086}; Float_t zG10[4]={1.,6.,8.,14.}; //PH Float_t wG10[4]={0.148648649,0.104054054,0.483499056,0.241666667}; Float_t wG10[4]={0.15201,0.10641,0.49444,0.24714}; AliMixture(8,"G10",aG10,zG10,1.7,4,wG10); AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.); // Steel Float_t aSteel[4] = { 55.847,51.9961,58.6934,28.0855 }; Float_t zSteel[4] = { 26.,24.,28.,14. }; Float_t wSteel[4] = { .715,.18,.1,.005 }; Float_t dSteel = 7.88; AliMixture(19, "STAINLESS STEEL$", aSteel, zSteel, dSteel, 4, wSteel); //Air Float_t aAir[4]={12.0107,14.0067,15.9994,39.948}; Float_t zAir[4]={6.,7.,8.,18.}; Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827}; Float_t dAir1 = 1.20479E-10; Float_t dAir = 1.20479E-3; AliMixture(98, "Vacum$", aAir, zAir, dAir1, 4, wAir); AliMixture(99, "Air $", aAir, zAir, dAir , 4, wAir); // Define tracking media AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .10, .1); AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(19, "S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .10, 10); AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .10, .1); } //_____________________________________________________________________________ void AliPMDv0::Init() { // // Initialises PMD detector after it has been built // Int_t i; // kdet=1; // if(AliLog::GetGlobalDebugLevel()>0) { printf("\n%s: ",ClassName()); for(i=0;i<35;i++) printf("*"); printf(" PMD_INIT "); for(i=0;i<35;i++) printf("*"); printf("\n%s: ",ClassName()); printf(" PMD simulation package (v0) initialised\n"); printf("%s: parameters of pmd\n", ClassName()); printf("%s: %10.2f %10.2f %10.2f \ %10.2f\n",ClassName(),fgkCellRadius,fgkCellWall,fgkCellDepth,fgkZdist ); printf("%s: ",ClassName()); for(i=0;i<80;i++) printf("*"); printf("\n"); } Int_t *idtmed = fIdtmed->GetArray()-599; fMedSens=idtmed[605-1]; // --- Generate explicitly delta rays in the iron, aluminium and lead --- // removed all Gstpar and energy cut-offs moved to galice.cuts } //_____________________________________________________________________________ void AliPMDv0::StepManager() { // // Called at each step in the PMD // Int_t copy; Float_t hits[5], destep; Float_t center[3] = {0,0,0}; Int_t vol[6]; //char *namep; if(TVirtualMC::GetMC()->CurrentMedium() == fMedSens && (destep = TVirtualMC::GetMC()->Edep())) { TVirtualMC::GetMC()->CurrentVolID(copy); vol[0] = copy; TVirtualMC::GetMC()->CurrentVolOffID(1,copy); vol[1] = copy; TVirtualMC::GetMC()->CurrentVolOffID(2,copy); vol[2] = copy; TVirtualMC::GetMC()->CurrentVolOffID(3,copy); vol[3] = copy; TVirtualMC::GetMC()->CurrentVolOffID(4,copy); vol[4] = copy; TVirtualMC::GetMC()->CurrentVolOffID(5,copy); vol[5] = copy; TVirtualMC::GetMC()->Gdtom(center,hits,1); hits[3] = destep*1e9; //Number in eV // this is for pile-up events hits[4] = TVirtualMC::GetMC()->TrackTime(); AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } } //------------------------------------------------------------------------ // Get parameters void AliPMDv0::GetParameters() { // This gives all the parameters of the detector // such as Length of Supermodules // thickness of the Supermodule // Int_t ncellum, numum; ncellum = 24; numum = 3; fNcellSM = ncellum * numum; //no. of cells in a row in one supermodule fSMLength = (fNcellSM + 0.25 )*fgkCellRadius*2.; fSMthick = fgkThBase + fgkThAir + fgkThPCB + fgkCellDepth + fgkThPCB + fgkThAir + fgkThPCB; }