/*************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.36 2004/06/26 08:01:14 bnandi syntax correction for Mylar Revision 1.35 2004/01/07 10:49:49 hristov Initialization to avoid runtime problems (valgrind) Revision 1.34 2003/12/18 04:25:03 bnandi overlap with beam pipe fixed and Gsposp changed to Gspos Revision 1.33 2003/11/03 14:33:26 hristov Correct initialization of static data members Revision 1.32 2003/11/03 11:53:05 bnandi global variables are removed Revision 1.31 2003/10/31 12:25:36 bnandi variable names are changed according to ALICE convention Revision 1.30 2003/10/23 16:32:19 hristov MC-dependent part of AliRun extracted in AliMC (F.Carminati) Revision 1.29 2003/10/13 05:28:59 bnandi gaspmd[2] value changed 0.25->7.0 because of overlap Revision 1.28 2003/10/08 12:59:08 bnandi zpos is positive Revision 1.27 2003/10/08 12:56:58 bnandi gaspmd[2] value changed from 7.0 to 0.25 Revision 1.26 2003/10/03 06:04:10 bnandi z_psa and z_psb bugs fixed Revision 1.25 2003/10/01 11:08:04 bnandi changes for NewIO Revision 1.24 2003/10/01 08:32:51 hristov CurrentTrack replaced by GetCurrentTrackNumber Revision 1.23 2003/10/01 05:07:51 bnandi New geometry in new Alice Coordinate system New rectangular geometry for ALICE PMD - Bedanga Mohanty and Y. P. Viyogi June 2003 */ // /////////////////////////////////////////////////////////////////////////////// // // // Photon Multiplicity Detector Version 1 // // // //Begin_Html /* */ //End_Html // // /////////////////////////////////////////////////////////////////////////////// //// #include "AliPMDv1.h" #include "AliRun.h" #include "AliConst.h" #include "AliMagF.h" #include "Riostream.h" #include #include "AliMC.h" const Int_t AliPMDv1::fgkNcolUM1 = 48; // Number of cols in UM, type 1 const Int_t AliPMDv1::fgkNcolUM2 = 96; // Number of cols in UM, type 2 const Int_t AliPMDv1::fgkNrowUM1 = 96; // Number of rows in UM, type 1 const Int_t AliPMDv1::fgkNrowUM2 = 48; // Number of rows in UM, type 2 const Float_t AliPMDv1::fgkCellRadius = 0.25; // Radius of a hexagonal cell const Float_t AliPMDv1::fgkCellWall = 0.02; // Thickness of cell Wall const Float_t AliPMDv1::fgkCellDepth = 0.50; // Gas thickness const Float_t AliPMDv1::fgkBoundary = 0.7; // Thickness of Boundary wall const Float_t AliPMDv1::fgkThBase = 0.3; // Thickness of Base plate const Float_t AliPMDv1::fgkThAir = 0.1; // Thickness of Air const Float_t AliPMDv1::fgkThPCB = 0.16; // Thickness of PCB const Float_t AliPMDv1::fgkThLead = 1.5; // Thickness of Pb const Float_t AliPMDv1::fgkThSteel = 0.5; // Thickness of Steel const Float_t AliPMDv1::fgkGap = 0.025; // Air Gap const Float_t AliPMDv1::fgkZdist = 361.5; // z-position of the detector const Float_t AliPMDv1::fgkSqroot3 = 1.7320508;// Square Root of 3 const Float_t AliPMDv1::fgkSqroot3by2 = 0.8660254;// Square Root of 3 by 2 ClassImp(AliPMDv1) //_____________________________________________________________________________ AliPMDv1::AliPMDv1() { // // Default constructor // fMedSens=0; } //_____________________________________________________________________________ AliPMDv1::AliPMDv1(const char *name, const char *title) : AliPMD(name,title) { // // Standard constructor // fMedSens=0; } //_____________________________________________________________________________ void AliPMDv1::CreateGeometry() { // Create geometry for Photon Multiplicity Detector GetParameters(); CreateSupermodule(); CreatePMD(); } //_____________________________________________________________________________ void AliPMDv1::CreateSupermodule() { // // Creates the geometry of the cells of PMD, places them in supermodule // which is a rectangular object. // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is // placed inside another hexagonal cell made of Cu (ECCU) with larger // radius, compared to ECAR. The difference in radius gives the dimension // of half width of each cell wall. // These cells are placed in a rectangular strip which are of 2 types // EST1 and EST2 // 2 types of unit modules are made EUM1 and EUM2 which contains these strips // placed repeatedly // Each supermodule (ESMA, ESMB), made of G10 is filled with following //components. They have 9 unit moudles inside them // ESMA, ESMB are placed in EPMD along with EMPB (Pb converter) // and EMFE (iron support) Int_t i,j; Int_t number; Int_t ihrotm,irotdm; Float_t xb, yb, zb; Int_t *idtmed = fIdtmed->GetArray()-599; AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.); AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.); // First create the sensitive medium of a hexagon cell (ECAR) // Inner hexagon filled with gas (Ar+CO2) Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23}; hexd2[4] = -fgkCellDepth/2.; hexd2[7] = fgkCellDepth/2.; hexd2[6] = fgkCellRadius - fgkCellWall; hexd2[9] = fgkCellRadius - fgkCellWall; gMC->Gsvolu("ECAR", "PGON", idtmed[604], hexd2,10); gMC->Gsatt("ECAR", "SEEN", 0); // Place the sensitive medium inside a hexagon copper cell (ECCU) // Outer hexagon made of Copper Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25}; hexd1[4] = -fgkCellDepth/2.; hexd1[7] = fgkCellDepth/2.; hexd1[6] = fgkCellRadius; hexd1[9] = fgkCellRadius; gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10); gMC->Gsatt("ECCU", "SEEN", 0); // Place inner hex (sensitive volume) inside outer hex (copper) gMC->Gspos("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY"); // Now create Rectangular TWO strips (EST1, EST2) // of 1 column and 48 or 96 cells length // volume for first strip EST1 made of AIR Float_t dbox1[3]; dbox1[0] = fgkNcolUM1*fgkCellRadius; dbox1[1] = fgkCellRadius/fgkSqroot3by2; dbox1[2] = fgkCellDepth/2.; gMC->Gsvolu("EST1","BOX", idtmed[698], dbox1, 3); gMC->Gsatt("EST1", "SEEN", 0); // volume for second strip EST2 Float_t dbox2[3]; dbox2[0] = fgkNcolUM2*fgkCellRadius; dbox2[1] = dbox1[1]; dbox2[2] = dbox1[2]; gMC->Gsvolu("EST2","BOX", idtmed[698], dbox2, 3); gMC->Gsatt("EST2", "SEEN", 0); // Place hexagonal cells ECCU placed inside EST1 yb = 0.; zb = 0.; xb = -(dbox1[0]) + fgkCellRadius; for (i = 1; i <= fgkNcolUM1; ++i) { number = i; gMC->Gspos("ECCU", number, "EST1", xb,yb,zb, ihrotm, "ONLY"); xb += (fgkCellRadius*2.); } // Place hexagonal cells ECCU placed inside EST2 yb = 0.; zb = 0.; xb = -(dbox2[0]) + fgkCellRadius; for (i = 1; i <= fgkNcolUM2; ++i) { number = i; gMC->Gspos("ECCU", number, "EST2", xb,yb,zb, ihrotm, "ONLY"); xb += (fgkCellRadius*2.); } // 2 types of rectangular shaped unit modules EUM1 and EUM2 (defined by BOX) // Create EUM1 Float_t dbox3[3]; dbox3[0] = dbox1[0]+fgkCellRadius/2.; dbox3[1] = (dbox1[1]*fgkNrowUM1)-(fgkCellRadius*fgkSqroot3*(fgkNrowUM1-1)/6.); dbox3[2] = fgkCellDepth/2.; gMC->Gsvolu("EUM1","BOX", idtmed[698], dbox3, 3); gMC->Gsatt("EUM1", "SEEN", 1); // Place rectangular strips EST1 inside EUM1 unit module yb = -dbox3[1]+dbox1[1]; for (j = 1; j <= fgkNrowUM1; ++j) { if(j%2 == 0) { xb = fgkCellRadius/2.0; } else { xb = -fgkCellRadius/2.0; } number = j; gMC->Gspos("EST1",number, "EUM1", xb, yb , 0. , 0, "MANY"); yb = (-dbox3[1]+dbox1[1])+j*1.0*fgkCellRadius*fgkSqroot3; } // Create EUM2 Float_t dbox4[3]; dbox4[0] = dbox2[0] + fgkCellRadius/2.; dbox4[1] =(dbox2[1]*fgkNrowUM2)-(fgkCellRadius*fgkSqroot3*(fgkNrowUM2-1)/6.); dbox4[2] = dbox3[2]; gMC->Gsvolu("EUM2","BOX", idtmed[698], dbox4, 3); gMC->Gsatt("EUM2", "SEEN", 1); // Place rectangular strips EST2 inside EUM2 unit module yb = -dbox4[1]+dbox2[1]; for (j = 1; j <= fgkNrowUM2; ++j) { if(j%2 == 0) { xb = fgkCellRadius/2.0; } else { xb = -fgkCellRadius/2.0; } number = j; gMC->Gspos("EST2",number, "EUM2", xb, yb , 0. , 0, "MANY"); yb = (-dbox4[1]+dbox2[1])+j*1.0*fgkCellRadius*fgkSqroot3; } // 2 types of Rectangular shaped supermodules (BOX) //each with 6 unit modules // volume for SUPERMODULE ESMA //Space added to provide a gapping for HV between UM's Float_t dboxSM1[3]; dboxSM1[0] = 3.0*dbox3[0]+(2.0*0.025); dboxSM1[1] = 2.0*dbox3[1]+0.025; dboxSM1[2] = fgkCellDepth/2.; gMC->Gsvolu("ESMA","BOX", idtmed[698], dboxSM1, 3); gMC->Gsatt("ESMA", "SEEN", 1); //Position the 6 unit modules in EMSA Float_t xa1,xa2,xa3,ya1,ya2; xa1 = -dboxSM1[0] + dbox3[0]; xa2 = 0.; xa3 = dboxSM1[0] - dbox3[0]; ya1 = dboxSM1[1] - dbox3[1]; ya2 = -dboxSM1[1] + dbox3[1]; gMC->Gspos("EUM1", 1, "ESMA", xa1, ya1, 0., 0, "ONLY"); gMC->Gspos("EUM1", 2, "ESMA", xa2, ya1, 0., 0, "ONLY"); gMC->Gspos("EUM1", 3, "ESMA", xa3, ya1, 0., 0, "ONLY"); gMC->Gspos("EUM1", 4, "ESMA", xa1, ya2, 0., 0, "ONLY"); gMC->Gspos("EUM1", 5, "ESMA", xa2, ya2, 0., 0, "ONLY"); gMC->Gspos("EUM1", 6, "ESMA", xa3, ya2, 0., 0, "ONLY"); // volume for SUPERMODULE ESMB //Space is added to provide a gapping for HV between UM's Float_t dboxSM2[3]; dboxSM2[0] = 2.0*dbox4[0]+0.025; dboxSM2[1] = 3.0*dbox4[1]+(2.0*0.025); dboxSM2[2] = fgkCellDepth/2.; gMC->Gsvolu("ESMB","BOX", idtmed[698], dboxSM2, 3); gMC->Gsatt("ESMB", "SEEN", 1); //Position the 6 unit modules in EMSB Float_t xb1,xb2,yb1,yb2,yb3; xb1 = -dboxSM2[0] +dbox4[0]; xb2 = dboxSM2[0]-dbox4[0]; yb1 = dboxSM2[1]-dbox4[1]; yb2 = 0.; yb3 = -dboxSM2[1]+dbox4[1]; gMC->Gspos("EUM2", 1, "ESMB", xb1, yb1, 0., 0, "ONLY"); gMC->Gspos("EUM2", 2, "ESMB", xb2, yb1, 0., 0, "ONLY"); gMC->Gspos("EUM2", 3, "ESMB", xb1, yb2, 0., 0, "ONLY"); gMC->Gspos("EUM2", 4, "ESMB", xb2, yb2, 0., 0, "ONLY"); gMC->Gspos("EUM2", 5, "ESMB", xb1, yb3, 0., 0, "ONLY"); gMC->Gspos("EUM2", 6, "ESMB", xb2, yb3, 0., 0, "ONLY"); // Make a 3mm thick G10 Base plate for ESMA Float_t dboxG1a[3]; dboxG1a[0] = dboxSM1[0]; dboxG1a[1] = dboxSM1[1]; dboxG1a[2] = fgkThBase/2.; gMC->Gsvolu("EBPA","BOX", idtmed[607], dboxG1a, 3); gMC->Gsatt("EBPA", "SEEN", 1); // Make a 1.6mm thick G10 PCB for ESMA Float_t dboxG2a[3]; dboxG2a[0] = dboxSM1[0]; dboxG2a[1] = dboxSM1[1]; dboxG2a[2] = fgkThPCB/2.; gMC->Gsvolu("EPCA","BOX", idtmed[607], dboxG2a, 3); gMC->Gsatt("EPCA", "SEEN", 1); // Make a Full module EFPA of AIR to place EBPA, // 1mm AIR, EPCA, ESMA,EPCA for PMD Float_t dboxAlla[3]; dboxAlla[0] = dboxSM1[0]; dboxAlla[1] = dboxSM1[1]; dboxAlla[2] = (fgkThBase+fgkThAir+fgkThPCB+dboxSM1[2]+fgkThPCB)/2.; gMC->Gsvolu("EFPA","BOX", idtmed[698], dboxAlla, 3); gMC->Gsatt("EFPA", "SEEN", 1); // Make a Full module EFCA of AIR to place EBPA, // 1mm AIR, EPCA, ESMA,EPC for CPV Float_t dboxAlla2[3]; dboxAlla2[0] = dboxSM1[0]; dboxAlla2[1] = dboxSM1[1]; dboxAlla2[2] = (fgkThBase+fgkThAir+fgkThPCB+dboxSM1[2]+fgkThPCB)/2.; gMC->Gsvolu("EFCA","BOX", idtmed[698], dboxAlla2, 3); gMC->Gsatt("EFCA", "SEEN", 1); // Now place everything in EFPA for PMD Float_t zbpa,zpcba1,zpcba2,zsma; zpcba1 = - dboxAlla[2]+fgkThPCB/2.0; gMC->Gspos("EPCA", 1, "EFPA", 0., 0., zpcba1, 0, "ONLY"); zsma = zpcba1+dboxSM1[2]; gMC->Gspos("ESMA", 1, "EFPA", 0., 0., zsma, 0, "ONLY"); zpcba2 = zsma+fgkThPCB/2.0; gMC->Gspos("EPCA", 2, "EFPA", 0., 0., zpcba2, 0, "ONLY"); zbpa = zpcba2+fgkThAir+fgkThBase/2.0; gMC->Gspos("EBPA", 1, "EFPA", 0., 0., zbpa, 0, "ONLY"); // Now place everything in EFCA for CPV Float_t zbpa2,zpcba12,zpcba22,zsma2; zbpa2 = - dboxAlla2[2]+fgkThBase/2.0; gMC->Gspos("EBPA", 1, "EFCA", 0., 0., zbpa2, 0, "ONLY"); zpcba12 = zbpa2+fgkThAir+fgkThPCB/2.0; gMC->Gspos("EPCA", 1, "EFCA", 0., 0., zpcba12, 0, "ONLY"); zsma2 = zpcba12+dboxSM1[2]; gMC->Gspos("ESMA", 1, "EFCA", 0., 0., zsma2, 0, "ONLY"); zpcba22 = zsma2+fgkThPCB/2.0; gMC->Gspos("EPCA", 2, "EFCA", 0., 0., zpcba22, 0, "ONLY"); // Make a 3mm thick G10 Base plate for ESMB Float_t dboxG1b[3]; dboxG1b[0] = dboxSM2[0]; dboxG1b[1] = dboxSM2[1]; dboxG1b[2] = fgkThBase/2.; gMC->Gsvolu("EBPB","BOX", idtmed[607], dboxG1b, 3); gMC->Gsatt("EBPB", "SEEN", 1); // Make a 1.6mm thick G10 PCB for ESMB Float_t dboxG2b[3]; dboxG2b[0] = dboxSM2[0]; dboxG2b[1] = dboxSM2[1]; dboxG2b[2] = fgkThPCB/2.; gMC->Gsvolu("EPCB","BOX", idtmed[607], dboxG2b, 3); gMC->Gsatt("EPCB", "SEEN", 1); // Make a Full module EFPB of AIR to place EBPB, //1mm AIR, EPCB, ESMB,EPCB for PMD Float_t dboxAllb[3]; dboxAllb[0] = dboxSM2[0]; dboxAllb[1] = dboxSM2[1]; dboxAllb[2] = (fgkThBase+fgkThAir+fgkThPCB+dboxSM2[2]+fgkThPCB)/2.; gMC->Gsvolu("EFPB","BOX", idtmed[698], dboxAllb, 3); gMC->Gsatt("EFPB", "SEEN", 1); // Make a Full module EFCB of AIR to place EBPB, //1mm AIR, EPCB, ESMB,EPCB for CPV Float_t dboxAllb2[3]; dboxAllb2[0] = dboxSM2[0]; dboxAllb2[1] = dboxSM2[1]; dboxAllb2[2] = (fgkThBase+fgkThAir+fgkThPCB+dboxSM2[2]+fgkThPCB)/2.; gMC->Gsvolu("EFCB","BOX", idtmed[698], dboxAllb2, 3); gMC->Gsatt("EFCB", "SEEN", 1); // Now place everything in EFPB for PMD Float_t zbpb,zpcbb1,zpcbb2,zsmb; zpcbb1 = - dboxAllb[2]+fgkThPCB/2.0; gMC->Gspos("EPCB", 1, "EFPB", 0., 0., zpcbb1, 0, "ONLY"); zsmb = zpcbb1+dboxSM2[2]; gMC->Gspos("ESMB", 1, "EFPB", 0., 0., zsmb, 0, "ONLY"); zpcbb2 = zsmb+fgkThPCB/2.0; gMC->Gspos("EPCB", 2, "EFPB", 0., 0., zpcbb2, 0, "ONLY"); zbpb = zpcbb2+fgkThAir+fgkThBase/2.0; gMC->Gspos("EBPB", 1, "EFPB", 0., 0., zbpb, 0, "ONLY"); // Now place everything in EFCB for CPV Float_t zbpb2,zpcbb12,zpcbb22,zsmb2; zbpb2 = - dboxAllb2[2]+fgkThBase/2.0; gMC->Gspos("EBPB", 1, "EFCB", 0., 0., zbpb2, 0, "ONLY"); zpcbb12 = zbpb2+0.1+fgkThPCB/2.0; gMC->Gspos("EPCB", 1, "EFCB", 0., 0., zpcbb12, 0, "ONLY"); zsmb2 = zpcbb12+dboxSM2[2]; gMC->Gspos("ESMB", 1, "EFCB", 0., 0., zsmb2, 0, "ONLY"); zpcbb22 = zsmb2+fgkThPCB/2.0; gMC->Gspos("EPCB", 2, "EFCB", 0., 0., zpcbb22, 0, "ONLY"); // Master MODULE EMPA of aluminum for PMD fDboxmm1[0] = dboxSM1[0]+fgkBoundary; fDboxmm1[1] = dboxSM1[1]+fgkBoundary; fDboxmm1[2] = dboxAlla[2]; gMC->Gsvolu("EMPA","BOX", idtmed[603], fDboxmm1, 3); gMC->Gsatt("EMPA", "SEEN", 1); // Master MODULE EMCA of aluminum for CPV fDboxmm12[0] = dboxSM1[0]+fgkBoundary; fDboxmm12[1] = dboxSM1[1]+fgkBoundary; fDboxmm12[2] = dboxAlla[2]; gMC->Gsvolu("EMCA","BOX", idtmed[603], fDboxmm12, 3); gMC->Gsatt("EMCA", "SEEN", 1); //Position EFMA inside EMMA for PMD and CPV gMC->Gspos("EFPA", 1, "EMPA", 0., 0., 0., 0, "ONLY"); gMC->Gspos("EFCA", 1, "EMCA", 0., 0., 0., 0, "ONLY"); // Master MODULE EMPB of aluminum for PMD fDboxmm2[0] = dboxSM2[0]+fgkBoundary; fDboxmm2[1] = dboxSM2[1]+fgkBoundary; fDboxmm2[2] = dboxAllb[2]; gMC->Gsvolu("EMPB","BOX", idtmed[603], fDboxmm2, 3); gMC->Gsatt("EMPB", "SEEN", 1); // Master MODULE EMCB of aluminum for CPV fDboxmm22[0] = dboxSM2[0]+fgkBoundary; fDboxmm22[1] = dboxSM2[1]+fgkBoundary; fDboxmm22[2] = dboxAllb[2]; gMC->Gsvolu("EMCB","BOX", idtmed[603], fDboxmm22, 3); gMC->Gsatt("EMCB", "SEEN", 1); //Position EFMB inside EMMB gMC->Gspos("EFPB", 1, "EMPB", 0., 0., 0., 0, "ONLY"); gMC->Gspos("EFCB", 1, "EMCB", 0., 0., 0., 0, "ONLY"); } //_____________________________________________________________________________ void AliPMDv1::CreatePMD() { // // Create final detector from supermodules // -- Author : Bedanga and Viyogi June 2003 Float_t xp, yp, zp; Int_t jhrot12,jhrot13, irotdm; Int_t *idtmed = fIdtmed->GetArray()-599; //VOLUMES Names : begining with "E" for all PMD volumes, // --- DEFINE Iron, and lead volumes for SM A Float_t dboxPba[3]; dboxPba[0] = fSMLengthax; dboxPba[1] = fSMLengthay; dboxPba[2] = fgkThLead/2.; gMC->Gsvolu("EPBA","BOX", idtmed[600], dboxPba, 3); gMC->Gsatt ("EPBA", "SEEN", 0); // Fe Support Float_t dboxFea[3]; dboxFea[0] = fSMLengthax; dboxFea[1] = fSMLengthay; dboxFea[2] = fgkThSteel/2.; gMC->Gsvolu("EFEA","BOX", idtmed[618], dboxFea, 3); gMC->Gsatt ("EFEA", "SEEN", 0); // --- DEFINE Iron, and lead volumes for SM B Float_t dboxPbb[3]; dboxPbb[0] = fSMLengthbx; dboxPbb[1] = fSMLengthby; dboxPbb[2] = fgkThLead/2.; gMC->Gsvolu("EPBB","BOX", idtmed[600], dboxPbb, 3); gMC->Gsatt ("EPBB", "SEEN", 0); // Fe Support Float_t dboxFeb[3]; dboxFeb[0] = fSMLengthbx; dboxFeb[1] = fSMLengthby; dboxFeb[2] = fgkThSteel/2.; gMC->Gsvolu("EFEB","BOX", idtmed[618], dboxFeb, 3); gMC->Gsatt ("EFEB", "SEEN", 0); AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.); AliMatrix(jhrot12, 90., 180., 90., 270., 0., 0.); AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.); // Gaspmd, the dimension of RECTANGULAR mother volume of PMD, // Four mother volumes EPM1,EPM2 for A-type and // volumes EPM3 and EPM4 for B-type. Four to create a hole // and avoid overlap with beam pipe Float_t gaspmd[3]; gaspmd[0] = fDboxmm1[0]; gaspmd[1] = fDboxmm1[1]; gaspmd[2] = 7.0; // for the entire detector, including connectors etc gMC->Gsvolu("EPM1", "BOX", idtmed[698], gaspmd, 3); gMC->Gsatt("EPM1", "SEEN", 1); gMC->Gsvolu("EPM2", "BOX", idtmed[698], gaspmd, 3); gMC->Gsatt("EPM2", "SEEN", 1); //Complete detector for Type A //Position Super modules type A for both CPV and PMD in EPMD Float_t zpsa,zpba,zfea,zcva; // zpsa = - gaspmd[2] + fSMthick/2.; // -2.5 is given to place PMD at -361.5 // BM : In future after putting proper electronics // -2.5 will be replaced by -gaspmd[2] zpsa = -2.5 + fSMthick/2.; gMC->Gspos("EMPA", 1, "EPM1", 0., 0., zpsa, 0, "ONLY"); gMC->Gspos("EMPA", 2, "EPM2", 0., 0., zpsa, jhrot12, "ONLY"); zpba=zpsa+fSMthick/2.+dboxPba[2]; gMC->Gspos("EPBA", 1, "EPM1", 0., 0., zpba, 0, "ONLY"); gMC->Gspos("EPBA", 2, "EPM2", 0., 0., zpba, 0, "ONLY"); zfea=zpba+dboxPba[2]+dboxFea[2]; gMC->Gspos("EFEA", 1, "EPM1", 0., 0., zfea, 0, "ONLY"); gMC->Gspos("EFEA", 2, "EPM2", 0., 0., zfea, 0, "ONLY"); zcva=zfea+dboxFea[2]+fSMthick/2.; gMC->Gspos("EMCA", 1, "EPM1", 0., 0., zcva, 0, "ONLY"); gMC->Gspos("EMCA", 2, "EPM2", 0., 0., zcva, jhrot12, "ONLY"); gaspmd[0] = fDboxmm2[0]; gaspmd[1] = fDboxmm2[1]; gaspmd[2] = 7.0; // for the entire detector, including connectors etc gMC->Gsvolu("EPM3", "BOX", idtmed[698], gaspmd, 3); gMC->Gsatt("EPM3", "SEEN", 1); gMC->Gsvolu("EPM4", "BOX", idtmed[698], gaspmd, 3); gMC->Gsatt("EPM4", "SEEN", 1); //Complete detector for Type B //Position Super modules type B for both CPV and PMD in EPMD Float_t zpsb,zpbb,zfeb,zcvb; // zpsb = - gaspmd[2] + fSMthick/2.; // -2.5 is given to place PMD at -361.5 // BM: In future after putting proper electronics // -2.5 will be replaced by -gaspmd[2] zpsb = -2.5 + fSMthick/2.; gMC->Gspos("EMPB", 3, "EPM3", 0., 0., zpsb, 0, "ONLY"); gMC->Gspos("EMPB", 4, "EPM4", 0., 0., zpsb, jhrot12, "ONLY"); zpbb=zpsb+fSMthick/2.+dboxPbb[2]; gMC->Gspos("EPBB", 3, "EPM3", 0., 0., zpbb, 0, "ONLY"); gMC->Gspos("EPBB", 4, "EPM4", 0., 0., zpbb, 0, "ONLY"); zfeb=zpbb+dboxPbb[2]+dboxFeb[2]; gMC->Gspos("EFEB", 3, "EPM3", 0., 0., zfeb, 0, "ONLY"); gMC->Gspos("EFEB", 4, "EPM4", 0., 0., zfeb, 0, "ONLY"); zcvb=zfeb+dboxFeb[2]+fSMthick/2.; gMC->Gspos("EMCB", 3, "EPM3", 0., 0., zcvb, 0, "ONLY"); gMC->Gspos("EMCB", 4, "EPM4", 0., 0., zcvb, jhrot12, "ONLY"); // --- Place the EPMD in ALICE xp = 0.; yp = 0.; zp = fgkZdist; Float_t xsma,ysma; Float_t xsmb,ysmb; xsma = -fSMLengthbx; ysma = fSMLengthby; xsmb = -fSMLengthax; ysmb = -fSMLengthay; //Position Full PMD in ALICE gMC->Gspos("EPM1", 1, "ALIC", xsma,ysma,zp, 0, "ONLY"); gMC->Gspos("EPM2", 1, "ALIC", -xsma,-ysma,zp, 0, "ONLY"); gMC->Gspos("EPM3", 1, "ALIC", xsmb,ysmb,zp, 0, "ONLY"); gMC->Gspos("EPM4", 1, "ALIC", -xsmb,-ysmb,zp, 0, "ONLY"); } //_____________________________________________________________________________ void AliPMDv1::DrawModule() const { // Draw a shaded view of the Photon Multiplicity Detector // // cout << " Inside Draw Modules " << endl; gMC->Gsatt("*", "seen", -1); gMC->Gsatt("alic", "seen", 0); // // Set the visibility of the components // gMC->Gsatt("ECAR","seen",0); gMC->Gsatt("ECCU","seen",1); gMC->Gsatt("EST1","seen",1); gMC->Gsatt("EST2","seen",1); gMC->Gsatt("EUM1","seen",1); gMC->Gsatt("EUM2","seen",1); gMC->Gsatt("ESMA","seen",1); gMC->Gsatt("EPMD","seen",1); // gMC->Gdopt("hide", "on"); gMC->Gdopt("shad", "on"); gMC->Gsatt("*", "fill", 7); gMC->SetClipBox("."); gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000); gMC->DefaultRange(); gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02); gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1"); //gMC->Gdman(17, 5, "MAN"); gMC->Gdopt("hide", "off"); cout << " Outside Draw Modules " << endl; } //_____________________________________________________________________________ void AliPMDv1::CreateMaterials() { // Create materials for the PMD // // ORIGIN : Y. P. VIYOGI // // cout << " Inside create materials " << endl; Int_t *idtmed = fIdtmed->GetArray()-599; Int_t isxfld = gAlice->Field()->Integ(); Float_t sxmgmx = gAlice->Field()->Max(); // --- Define the various materials for GEANT --- AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5); // Argon Float_t dAr = 0.001782; // --- Ar density in g/cm3 --- Float_t x0Ar = 19.55 / dAr; AliMaterial(2, "Argon$", 39.95, 18., dAr, x0Ar, 6.5e4); // --- CO2 --- Float_t aCO2[2] = { 12.,16. }; Float_t zCO2[2] = { 6.,8. }; Float_t wCO2[2] = { 1.,2. }; Float_t dCO2 = 0.001977; AliMixture(3, "CO2 $", aCO2, zCO2, dCO2, -2, wCO2); AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5); // ArCO2 Float_t aArCO2[3] = {39.948,12.0107,15.9994}; Float_t zArCO2[3] = {18.,6.,8.}; Float_t wArCO2[3] = {0.7,0.08,0.22}; Float_t dArCO2 = dAr * 0.7 + dCO2 * 0.3; AliMixture(5, "ArCO2$", aArCO2, zArCO2, dArCO2, 3, wArCO2); AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5); // G10 Float_t aG10[4]={1.,12.011,15.9994,28.086}; Float_t zG10[4]={1.,6.,8.,14.}; Float_t wG10[4]={0.148648649,0.104054054,0.483499056,0.241666667}; AliMixture(8,"G10",aG10,zG10,1.7,4,wG10); AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.); // Steel Float_t aSteel[4] = { 55.847,51.9961,58.6934,28.0855 }; Float_t zSteel[4] = { 26.,24.,28.,14. }; Float_t wSteel[4] = { .715,.18,.1,.005 }; Float_t dSteel = 7.88; AliMixture(19, "STAINLESS STEEL$", aSteel, zSteel, dSteel, 4, wSteel); //Air Float_t aAir[4]={12.0107,14.0067,15.9994,39.948}; Float_t zAir[4]={6.,7.,8.,18.}; Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827}; Float_t dAir1 = 1.20479E-10; Float_t dAir = 1.20479E-3; AliMixture(98, "Vacum$", aAir, zAir, dAir1, 4, wAir); AliMixture(99, "Air $", aAir, zAir, dAir , 4, wAir); // Define tracking media AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .10, .1); AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(19, "S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .10, 10); AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .10, .1); // --- Generate explicitly delta rays in the iron, aluminium and lead --- gMC->Gstpar(idtmed[600], "LOSS", 3.); gMC->Gstpar(idtmed[600], "DRAY", 1.); gMC->Gstpar(idtmed[603], "LOSS", 3.); gMC->Gstpar(idtmed[603], "DRAY", 1.); gMC->Gstpar(idtmed[604], "LOSS", 3.); gMC->Gstpar(idtmed[604], "DRAY", 1.); gMC->Gstpar(idtmed[605], "LOSS", 3.); gMC->Gstpar(idtmed[605], "DRAY", 1.); gMC->Gstpar(idtmed[607], "LOSS", 3.); gMC->Gstpar(idtmed[607], "DRAY", 1.); // --- Energy cut-offs in the Pb and Al to gain time in tracking --- // --- without affecting the hit patterns --- gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4); gMC->Gstpar(idtmed[600], "CUTELE", 1e-4); gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4); gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4); gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4); gMC->Gstpar(idtmed[605], "CUTELE", 1e-4); gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4); gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4); gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4); gMC->Gstpar(idtmed[603], "CUTELE", 1e-4); gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4); gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4); gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4); gMC->Gstpar(idtmed[609], "CUTELE", 1e-4); gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4); gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4); // --- Prevent particles stopping in the gas due to energy cut-off --- gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5); gMC->Gstpar(idtmed[604], "CUTELE", 1e-5); gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5); gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5); gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5); cout << " Outside create materials " << endl; } //_____________________________________________________________________________ void AliPMDv1::Init() { // // Initialises PMD detector after it has been built // Int_t i; // gAliKdet=1; // cout << " Inside Init " << endl; if(fDebug) { printf("\n%s: ",ClassName()); for(i=0;i<35;i++) printf("*"); printf(" PMD_INIT "); for(i=0;i<35;i++) printf("*"); printf("\n%s: ",ClassName()); printf(" PMD simulation package (v1) initialised\n"); printf("%s: parameters of pmd\n",ClassName()); printf("%s: %10.2f %10.2f %10.2f \ %10.2f\n",ClassName(),fgkCellRadius,fgkCellWall,fgkCellDepth,fgkZdist ); printf("%s: ",ClassName()); for(i=0;i<80;i++) printf("*"); printf("\n"); } Int_t *idtmed = fIdtmed->GetArray()-599; fMedSens=idtmed[605-1]; } //_____________________________________________________________________________ void AliPMDv1::StepManager() { // // Called at each step in the PMD // Int_t copy; Float_t hits[4], destep; Float_t center[3] = {0,0,0}; Int_t vol[8]; //const char *namep; if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) { gMC->CurrentVolID(copy); //namep=gMC->CurrentVolName(); //printf("Current vol is %s \n",namep); vol[0]=copy; gMC->CurrentVolOffID(1,copy); //namep=gMC->CurrentVolOffName(1); //printf("Current vol 11 is %s \n",namep); vol[1]=copy; gMC->CurrentVolOffID(2,copy); //namep=gMC->CurrentVolOffName(2); //printf("Current vol 22 is %s \n",namep); vol[2]=copy; // if(strncmp(namep,"EHC1",4))vol[2]=1; gMC->CurrentVolOffID(3,copy); //namep=gMC->CurrentVolOffName(3); //printf("Current vol 33 is %s \n",namep); vol[3]=copy; gMC->CurrentVolOffID(4,copy); //namep=gMC->CurrentVolOffName(4); //printf("Current vol 44 is %s \n",namep); vol[4]=copy; gMC->CurrentVolOffID(5,copy); //namep=gMC->CurrentVolOffName(5); //printf("Current vol 55 is %s \n",namep); vol[5]=copy; gMC->CurrentVolOffID(6,copy); //namep=gMC->CurrentVolOffName(6); //printf("Current vol 66 is %s \n",namep); vol[6]=copy; gMC->CurrentVolOffID(7,copy); //namep=gMC->CurrentVolOffName(7); //printf("Current vol 77 is %s \n",namep); vol[7]=copy; //printf("volume number %4d %4d %4d %4d %4d %4d %4d %4d %10.3f \n",vol[0],vol[1],vol[2],vol[3],vol[4],vol[5],vol[6],vol[7],destep*1000000); gMC->Gdtom(center,hits,1); hits[3] = destep*1e9; //Number in eV AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } } //------------------------------------------------------------------------ // Get parameters void AliPMDv1::GetParameters() { // This gives all the parameters of the detector // such as Length of Supermodules, type A, type B, // thickness of the Supermodule // fSMLengthax = (3.0*(fgkNcolUM1*fgkCellRadius+fgkCellRadius/2.) + (2.0*fgkGap)) + fgkBoundary; fSMLengthbx = 2.0*(fgkNcolUM2*fgkCellRadius+fgkCellRadius/2.) + fgkGap + fgkBoundary; fSMLengthay = 2.0*(((fgkCellRadius/fgkSqroot3by2)*fgkNrowUM1) - (fgkCellRadius*fgkSqroot3*(fgkNrowUM1-1)/6.)) + fgkGap + fgkBoundary; fSMLengthby = 3.0*(((fgkCellRadius/fgkSqroot3by2)*fgkNrowUM2) - (fgkCellRadius*fgkSqroot3*(fgkNrowUM2-1)/6.)) + (2.0*fgkGap) + fgkBoundary; fSMthick = fgkThBase + fgkThAir + fgkThPCB + fgkCellDepth + fgkThPCB + fgkThAir + fgkThPCB; }