/*************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Log$ Revision 1.29 2003/10/13 05:28:59 bnandi gaspmd[2] value changed 0.25->7.0 because of overlap Revision 1.28 2003/10/08 12:59:08 bnandi zpos is positive Revision 1.27 2003/10/08 12:56:58 bnandi gaspmd[2] value changed from 7.0 to 0.25 Revision 1.26 2003/10/03 06:04:10 bnandi z_psa and z_psb bugs fixed Revision 1.25 2003/10/01 11:08:04 bnandi changes for NewIO Revision 1.24 2003/10/01 08:32:51 hristov CurrentTrack replaced by GetCurrentTrackNumber Revision 1.23 2003/10/01 05:07:51 bnandi New geometry in new Alice Coordinate system New rectangular geometry for ALICE PMD - Bedanga Mohanty and Y. P. Viyogi June 2003 */ // /////////////////////////////////////////////////////////////////////////////// // // // Photon Multiplicity Detector Version 1 // // // //Begin_Html /* */ //End_Html // // /////////////////////////////////////////////////////////////////////////////// //// #include "AliPMDv1.h" #include "AliRun.h" #include "AliConst.h" #include "AliMagF.h" #include "Riostream.h" #include #include "AliMC.h" static Int_t ncol_um1,ncol_um2, nrow_um1, nrow_um2; static Int_t kdet; static Float_t sm_length_ax,sm_length_ay; static Float_t sm_length_bx,sm_length_by; static Float_t zdist, zdist1; static Float_t sm_thick, cell_radius, cell_wall, cell_depth; static Float_t boundary, th_base, th_air, th_pcb; static Float_t th_lead, th_steel; ClassImp(AliPMDv1) //_____________________________________________________________________________ AliPMDv1::AliPMDv1() { // // Default constructor // fMedSens=0; } //_____________________________________________________________________________ AliPMDv1::AliPMDv1(const char *name, const char *title) : AliPMD(name,title) { // // Standard constructor // fMedSens=0; } //_____________________________________________________________________________ void AliPMDv1::CreateGeometry() { // Create geometry for Photon Multiplicity Detector GetParameters(); CreateSupermodule(); CreatePMD(); } //_____________________________________________________________________________ void AliPMDv1::CreateSupermodule() { // // Creates the geometry of the cells of PMD, places them in supermodule // which is a rectangular object. // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is // placed inside another hexagonal cell made of Cu (ECCU) with larger // radius, compared to ECAR. The difference in radius gives the dimension // of half width of each cell wall. // These cells are placed in a rectangular strip which are of 2 types // EST1 and EST2 // 2 types of unit modules are made EUM1 and EUM2 which contains these strips // placed repeatedly // Each supermodule (ESMA, ESMB), made of G10 is filled with following //components. They have 9 unit moudles inside them // ESMA, ESMB are placed in EPMD along with EMPB (Pb converter) // and EMFE (iron support) Int_t i,j; Float_t xb, yb, zb; Int_t number; Int_t ihrotm,irotdm; const Float_t root3_2 = TMath::Sqrt(3.) /2.; const Float_t root3 = TMath::Sqrt(3.); Int_t *idtmed = fIdtmed->GetArray()-599; AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.); AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.); zdist = TMath::Abs(zdist1); // First create the sensitive medium of a hexagon cell (ECAR) // Inner hexagon filled with gas (Ar+CO2) Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23}; hexd2[4] = -cell_depth/2.; hexd2[7] = cell_depth/2.; hexd2[6] = cell_radius - cell_wall; hexd2[9] = cell_radius - cell_wall; gMC->Gsvolu("ECAR", "PGON", idtmed[604], hexd2,10); gMC->Gsatt("ECAR", "SEEN", 0); // Place the sensitive medium inside a hexagon copper cell (ECCU) // Outer hexagon made of Copper Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25}; hexd1[4] = -cell_depth/2.; hexd1[7] = cell_depth/2.; hexd1[6] = cell_radius; hexd1[9] = cell_radius; gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10); gMC->Gsatt("ECCU", "SEEN", 0); // Place inner hex (sensitive volume) inside outer hex (copper) gMC->Gsposp("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY", hexd2, 10); // Now create Rectangular TWO strips (EST1, EST2) // of 1 column and 48 or 96 cells length // volume for first strip EST1 made of AIR Float_t dbox1[3]; dbox1[0] = ncol_um1*cell_radius; dbox1[1] = cell_radius/root3_2; dbox1[2] = cell_depth/2.; gMC->Gsvolu("EST1","BOX", idtmed[698], dbox1, 3); gMC->Gsatt("EST1", "SEEN", 0); // volume for second strip EST2 Float_t dbox2[3]; dbox2[0] = ncol_um2*cell_radius; dbox2[1] = dbox1[1]; dbox2[2] = dbox1[2]; gMC->Gsvolu("EST2","BOX", idtmed[698], dbox2, 3); gMC->Gsatt("EST2", "SEEN", 0); // Place hexagonal cells ECCU placed inside EST1 yb = 0.; zb = 0.; xb = -(dbox1[0]) + cell_radius; for (i = 1; i <= ncol_um1; ++i) { number = i; gMC->Gsposp("ECCU", number, "EST1", xb,yb,zb, ihrotm, "ONLY", hexd1,10); xb += (cell_radius*2.); } // Place hexagonal cells ECCU placed inside EST2 yb = 0.; zb = 0.; xb = -(dbox2[0]) + cell_radius; for (i = 1; i <= ncol_um2; ++i) { number = i; gMC->Gsposp("ECCU", number, "EST2", xb,yb,zb, ihrotm, "ONLY", hexd1,10); xb += (cell_radius*2.); } // 2 types of rectangular shaped unit modules EUM1 and EUM2 (defined by BOX) // Create EUM1 Float_t dbox3[3]; dbox3[0] = dbox1[0]+cell_radius/2.; dbox3[1] = (dbox1[1]*nrow_um1)-(cell_radius*root3*(nrow_um1-1)/6.); dbox3[2] = cell_depth/2.; gMC->Gsvolu("EUM1","BOX", idtmed[698], dbox3, 3); gMC->Gsatt("EUM1", "SEEN", 1); // Place rectangular strips EST1 inside EUM1 unit module yb = -dbox3[1]+dbox1[1]; for (j = 1; j <= nrow_um1; ++j) { if(j%2 == 0) { xb =cell_radius/2.0; } else { xb = -cell_radius/2.0; } number = j; gMC->Gsposp("EST1",number, "EUM1", xb, yb , 0. , 0, "MANY",dbox1,3); yb = (-dbox3[1]+dbox1[1])+j*1.0*cell_radius*root3; } // Create EUM2 Float_t dbox4[3]; dbox4[0] = dbox2[0]+cell_radius/2.; dbox4[1] =(dbox2[1]*nrow_um2)-(cell_radius*root3*(nrow_um2-1)/6.); dbox4[2] = dbox3[2]; gMC->Gsvolu("EUM2","BOX", idtmed[698], dbox4, 3); gMC->Gsatt("EUM2", "SEEN", 1); // Place rectangular strips EST2 inside EUM2 unit module yb = -dbox4[1]+dbox2[1]; for (j = 1; j <= nrow_um2; ++j) { if(j%2 == 0) { xb =cell_radius/2.0; } else { xb = -cell_radius/2.0; } number = j; gMC->Gsposp("EST2",number, "EUM2", xb, yb , 0. , 0, "MANY",dbox2,3); yb = (-dbox4[1]+dbox2[1])+j*1.0*cell_radius*root3; } // 2 types of Rectangular shaped supermodules (BOX) //each with 6 unit modules // volume for SUPERMODULE ESMA //Space added to provide a gapping for HV between UM's Float_t dbox_sm1[3]; dbox_sm1[0] = 3.0*dbox3[0]+(2.0*0.025); dbox_sm1[1] = 2.0*dbox3[1]+0.025; dbox_sm1[2] = cell_depth/2.; gMC->Gsvolu("ESMA","BOX", idtmed[698], dbox_sm1, 3); gMC->Gsatt("ESMA", "SEEN", 1); //Position the 6 unit modules in EMSA Float_t x_a1,x_a2,x_a3,y_a1,y_a2; x_a1 = -dbox_sm1[0] + dbox3[0]; x_a2 = 0.; x_a3 = dbox_sm1[0] - dbox3[0]; y_a1 = dbox_sm1[1] - dbox3[1]; y_a2 = -dbox_sm1[1] + dbox3[1]; gMC->Gsposp("EUM1", 1, "ESMA", x_a1, y_a1, 0., 0, "ONLY",dbox3,3); gMC->Gsposp("EUM1", 2, "ESMA", x_a2, y_a1, 0., 0, "ONLY",dbox3,3); gMC->Gsposp("EUM1", 3, "ESMA", x_a3, y_a1, 0., 0, "ONLY",dbox3,3); gMC->Gsposp("EUM1", 4, "ESMA", x_a1, y_a2, 0., 0, "ONLY",dbox3,3); gMC->Gsposp("EUM1", 5, "ESMA", x_a2, y_a2, 0., 0, "ONLY",dbox3,3); gMC->Gsposp("EUM1", 6, "ESMA", x_a3, y_a2, 0., 0, "ONLY",dbox3,3); // volume for SUPERMODULE ESMB //Space is added to provide a gapping for HV between UM's Float_t dbox_sm2[3]; dbox_sm2[0] = 2.0*dbox4[0]+0.025; dbox_sm2[1] = 3.0*dbox4[1]+(2.0*0.025); dbox_sm2[2] = cell_depth/2.; gMC->Gsvolu("ESMB","BOX", idtmed[698], dbox_sm2, 3); gMC->Gsatt("ESMB", "SEEN", 1); //Position the 6 unit modules in EMSB Float_t x_b1,x_b2,y_b1,y_b2,y_b3; x_b1 = -dbox_sm2[0] +dbox4[0]; x_b2 = dbox_sm2[0]-dbox4[0]; y_b1 =dbox_sm2[1]-dbox4[1]; y_b2 = 0.; y_b3 = -dbox_sm2[1]+dbox4[1]; gMC->Gsposp("EUM2", 1, "ESMB", x_b1, y_b1, 0., 0, "ONLY",dbox4,3); gMC->Gsposp("EUM2", 2, "ESMB", x_b2, y_b1, 0., 0, "ONLY",dbox4,3); gMC->Gsposp("EUM2", 3, "ESMB", x_b1, y_b2, 0., 0, "ONLY",dbox4,3); gMC->Gsposp("EUM2", 4, "ESMB", x_b2, y_b2, 0., 0, "ONLY",dbox4,3); gMC->Gsposp("EUM2", 5, "ESMB", x_b1, y_b3, 0., 0, "ONLY",dbox4,3); gMC->Gsposp("EUM2", 6, "ESMB", x_b2, y_b3, 0., 0, "ONLY",dbox4,3); // Make a 3mm thick G10 Base plate for ESMA Float_t dbox_g1a[3]; dbox_g1a[0] = dbox_sm1[0]; dbox_g1a[1] = dbox_sm1[1]; dbox_g1a[2] = th_base/2.; gMC->Gsvolu("EBPA","BOX", idtmed[607], dbox_g1a, 3); gMC->Gsatt("EBPA", "SEEN", 1); // Make a 1.6mm thick G10 PCB for ESMA Float_t dbox_g2a[3]; dbox_g2a[0] = dbox_sm1[0]; dbox_g2a[1] = dbox_sm1[1]; dbox_g2a[2] = th_pcb/2.; gMC->Gsvolu("EPCA","BOX", idtmed[607], dbox_g2a, 3); gMC->Gsatt("EPCA", "SEEN", 1); // Make a Full module EFPA of AIR to place EBPA, // 1mm AIR, EPCA, ESMA,EPCA for PMD Float_t dbox_alla[3]; dbox_alla[0] = dbox_sm1[0]; dbox_alla[1] = dbox_sm1[1]; dbox_alla[2] = (th_base+0.1+th_pcb+dbox_sm1[2]+th_pcb)/2.; gMC->Gsvolu("EFPA","BOX", idtmed[698], dbox_alla, 3); gMC->Gsatt("EFPA", "SEEN", 1); // Make a Full module EFCA of AIR to place EBPA, // 1mm AIR, EPCA, ESMA,EPC for CPV Float_t dbox_alla2[3]; dbox_alla2[0] = dbox_sm1[0]; dbox_alla2[1] = dbox_sm1[1]; dbox_alla2[2] = (th_base+0.1+th_pcb+dbox_sm1[2]+th_pcb)/2.; gMC->Gsvolu("EFCA","BOX", idtmed[698], dbox_alla2, 3); gMC->Gsatt("EFCA", "SEEN", 1); // Now place everything in EFPA for PMD Float_t z_bpa,z_pcba1,z_pcba2,z_sma; z_pcba1 = - dbox_alla[2]+th_pcb/2.0; gMC->Gsposp("EPCA", 1, "EFPA", 0., 0., z_pcba1, 0, "ONLY",dbox_g2a,3); z_sma = z_pcba1+dbox_sm1[2]; gMC->Gsposp("ESMA", 1, "EFPA", 0., 0., z_sma, 0, "ONLY",dbox_sm1,3); z_pcba2 = z_sma+th_pcb/2.0; gMC->Gsposp("EPCA", 2, "EFPA", 0., 0., z_pcba2, 0, "ONLY",dbox_g2a,3); z_bpa = z_pcba2+0.1+th_base/2.0; // 0.1 for 0.1 mm Air gap gMC->Gsposp("EBPA", 1, "EFPA", 0., 0., z_bpa, 0, "ONLY",dbox_g1a,3); // Now place everything in EFCA for CPV Float_t z_bpa2,z_pcba12,z_pcba22,z_sma2; z_bpa2 = - dbox_alla2[2]+th_base/2.0; gMC->Gsposp("EBPA", 1, "EFCA", 0., 0., z_bpa2, 0, "ONLY",dbox_g1a,3); z_pcba12 = z_bpa2+0.1+th_pcb/2.0; gMC->Gsposp("EPCA", 1, "EFCA", 0., 0., z_pcba12, 0, "ONLY",dbox_g2a,3); z_sma2 = z_pcba12+dbox_sm1[2]; gMC->Gsposp("ESMA", 1, "EFCA", 0., 0., z_sma2, 0, "ONLY",dbox_sm1,3); z_pcba22 = z_sma2+th_pcb/2.0; gMC->Gsposp("EPCA", 2, "EFCA", 0., 0., z_pcba22, 0, "ONLY",dbox_g2a,3); // Make a 3mm thick G10 Base plate for ESMB Float_t dbox_g1b[3]; dbox_g1b[0] = dbox_sm2[0]; dbox_g1b[1] = dbox_sm2[1]; dbox_g1b[2] = th_base/2.; gMC->Gsvolu("EBPB","BOX", idtmed[607], dbox_g1b, 3); gMC->Gsatt("EBPB", "SEEN", 1); // Make a 1.6mm thick G10 PCB for ESMB Float_t dbox_g2b[3]; dbox_g2b[0] = dbox_sm2[0]; dbox_g2b[1] = dbox_sm2[1]; dbox_g2b[2] = th_pcb/2.; gMC->Gsvolu("EPCB","BOX", idtmed[607], dbox_g2b, 3); gMC->Gsatt("EPCB", "SEEN", 1); // Make a Full module EFPB of AIR to place EBPB, //1mm AIR, EPCB, ESMB,EPCB for PMD Float_t dbox_allb[3]; dbox_allb[0] = dbox_sm2[0]; dbox_allb[1] = dbox_sm2[1]; dbox_allb[2] = (th_base+0.1+th_pcb+dbox_sm2[2]+th_pcb)/2.; gMC->Gsvolu("EFPB","BOX", idtmed[698], dbox_allb, 3); gMC->Gsatt("EFPB", "SEEN", 1); // Make a Full module EFCB of AIR to place EBPB, //1mm AIR, EPCB, ESMB,EPCB for CPV Float_t dbox_allb2[3]; dbox_allb2[0] = dbox_sm2[0]; dbox_allb2[1] = dbox_sm2[1]; dbox_allb2[2] = (th_base+0.1+th_pcb+dbox_sm2[2]+th_pcb)/2.; gMC->Gsvolu("EFCB","BOX", idtmed[698], dbox_allb2, 3); gMC->Gsatt("EFCB", "SEEN", 1); // Now place everything in EFPB for PMD Float_t z_bpb,z_pcbb1,z_pcbb2,z_smb; z_pcbb1 = - dbox_allb[2]+th_pcb/2.0; gMC->Gsposp("EPCB", 1, "EFPB", 0., 0., z_pcbb1, 0, "ONLY",dbox_g2b,3); z_smb = z_pcbb1+dbox_sm2[2]; gMC->Gsposp("ESMB", 1, "EFPB", 0., 0., z_smb, 0, "ONLY",dbox_sm2,3); z_pcbb2 = z_smb+th_pcb/2.0; gMC->Gsposp("EPCB", 2, "EFPB", 0., 0., z_pcbb2, 0, "ONLY",dbox_g2b,3); z_bpb = z_pcbb2+0.1+th_base/2.0; // 0.1 for 0.1 mm Air gap gMC->Gsposp("EBPB", 1, "EFPB", 0., 0., z_bpb, 0, "ONLY",dbox_g1b,3); // Now place everything in EFCB for CPV Float_t z_bpb2,z_pcbb12,z_pcbb22,z_smb2; z_bpb2 = - dbox_allb2[2]+th_base/2.0; gMC->Gsposp("EBPB", 1, "EFCB", 0., 0., z_bpb2, 0, "ONLY",dbox_g1b,3); z_pcbb12 = z_bpb2+0.1+th_pcb/2.0; gMC->Gsposp("EPCB", 1, "EFCB", 0., 0., z_pcbb12, 0, "ONLY",dbox_g2b,3); z_smb2 = z_pcbb12+dbox_sm2[2]; gMC->Gsposp("ESMB", 1, "EFCB", 0., 0., z_smb2, 0, "ONLY",dbox_sm2,3); z_pcbb22 = z_smb2+th_pcb/2.0; gMC->Gsposp("EPCB", 2, "EFCB", 0., 0., z_pcbb22, 0, "ONLY",dbox_g2b,3); // Master MODULE EMPA of aluminum for PMD //Float_t dbox_mm1[3]; dbox_mm1[0] = dbox_sm1[0]+boundary; dbox_mm1[1] = dbox_sm1[1]+boundary; dbox_mm1[2] = dbox_alla[2]; gMC->Gsvolu("EMPA","BOX", idtmed[603], dbox_mm1, 3); gMC->Gsatt("EMPA", "SEEN", 1); // Master MODULE EMCA of aluminum for CPV //Float_t dbox_mm12[3]; dbox_mm12[0] = dbox_sm1[0]+boundary; dbox_mm12[1] = dbox_sm1[1]+boundary; dbox_mm12[2] = dbox_alla[2]; gMC->Gsvolu("EMCA","BOX", idtmed[603], dbox_mm12, 3); gMC->Gsatt("EMCA", "SEEN", 1); //Position EFMA inside EMMA for PMD and CPV gMC->Gsposp("EFPA", 1, "EMPA", 0., 0., 0., 0, "ONLY",dbox_alla,3); gMC->Gsposp("EFCA", 1, "EMCA", 0., 0., 0., 0, "ONLY",dbox_alla2,3); // Master MODULE EMPB of aluminum for PMD //Float_t dbox_mm2[3]; dbox_mm2[0] = dbox_sm2[0]+boundary; dbox_mm2[1] = dbox_sm2[1]+boundary; dbox_mm2[2] = dbox_allb[2]; gMC->Gsvolu("EMPB","BOX", idtmed[603], dbox_mm2, 3); gMC->Gsatt("EMPB", "SEEN", 1); // Master MODULE EMCB of aluminum for CPV //Float_t dbox_mm22[3]; dbox_mm22[0] = dbox_sm2[0]+boundary; dbox_mm22[1] = dbox_sm2[1]+boundary; dbox_mm22[2] = dbox_allb[2]; gMC->Gsvolu("EMCB","BOX", idtmed[603], dbox_mm22, 3); gMC->Gsatt("EMCB", "SEEN", 1); //Position EFMB inside EMMB gMC->Gsposp("EFPB", 1, "EMPB", 0., 0., 0., 0, "ONLY",dbox_allb,3); gMC->Gsposp("EFCB", 1, "EMCB", 0., 0., 0., 0, "ONLY",dbox_allb2,3); } //_____________________________________________________________________________ void AliPMDv1::CreatePMD() { // // Create final detector from supermodules // -- Author : Bedanga and Viyogi June 2003 Float_t xp, yp, zp; Int_t jhrot12,jhrot13, irotdm; Int_t *idtmed = fIdtmed->GetArray()-599; //VOLUMES Names : begining with "E" for all PMD volumes, // --- DEFINE Iron, and lead volumes for SM A Float_t dbox_pba[3]; dbox_pba[0] = sm_length_ax; dbox_pba[1] = sm_length_ay; dbox_pba[2] = th_lead/2.; gMC->Gsvolu("EPBA","BOX", idtmed[600], dbox_pba, 3); gMC->Gsatt ("EPBA", "SEEN", 0); // Fe Support Float_t dbox_fea[3]; dbox_fea[0] = sm_length_ax; dbox_fea[1] = sm_length_ay; dbox_fea[2] = th_steel/2.; gMC->Gsvolu("EFEA","BOX", idtmed[618], dbox_fea, 3); gMC->Gsatt ("EFEA", "SEEN", 0); // --- DEFINE Iron, and lead volumes for SM B Float_t dbox_pbb[3]; dbox_pbb[0] = sm_length_bx; dbox_pbb[1] = sm_length_by; dbox_pbb[2] = th_lead/2.; gMC->Gsvolu("EPBB","BOX", idtmed[600], dbox_pbb, 3); gMC->Gsatt ("EPBB", "SEEN", 0); // Fe Support Float_t dbox_feb[3]; dbox_feb[0] = sm_length_bx; dbox_feb[1] = sm_length_by; dbox_feb[2] = th_steel/2.; gMC->Gsvolu("EFEB","BOX", idtmed[618], dbox_feb, 3); gMC->Gsatt ("EFEB", "SEEN", 0); // Gaspmd, the dimension of RECTANGULAR mother volume of PMD, Float_t gaspmd[3] = {81.5,94.5,7.}; gaspmd[0] = sm_length_ax+sm_length_bx; gaspmd[1] = sm_length_ay+sm_length_by; gMC->Gsvolu("EPMD", "BOX", idtmed[698], gaspmd, 3); gMC->Gsatt("EPMD", "SEEN", 1); AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.); AliMatrix(jhrot12, 90., 180., 90., 270., 0., 0.); AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.); Float_t x_sma,y_sma; Float_t x_smb,y_smb; x_sma = -(sm_length_bx)/1.0; y_sma = sm_length_by; x_smb = -sm_length_ax; y_smb = -sm_length_ay; //Complete detector for Type A //Position Super modules type A for both CPV and PMD in EPMD Float_t z_psa,z_pba,z_fea,z_cva; z_psa = - gaspmd[2] + sm_thick/2.; gMC->Gsposp("EMPA", 1, "EPMD", x_sma, y_sma, z_psa, 0, "ONLY",dbox_mm1,3); gMC->Gsposp("EMPA", 2, "EPMD", -x_sma, -y_sma, z_psa, jhrot12, "ONLY",dbox_mm1,3); z_pba=z_psa+sm_thick/2.+dbox_pba[2]; gMC->Gsposp("EPBA", 1, "EPMD", x_sma, y_sma, z_pba, 0, "ONLY",dbox_pba,3); gMC->Gsposp("EPBA", 2, "EPMD", -x_sma, -y_sma, z_pba, 0, "ONLY",dbox_pba,3); z_fea=z_pba+dbox_pba[2]+dbox_fea[2]; gMC->Gsposp("EFEA", 1, "EPMD", x_sma, y_sma, z_fea, 0, "ONLY",dbox_fea,3); gMC->Gsposp("EFEA", 2, "EPMD", -x_sma, -y_sma, z_fea, 0, "ONLY",dbox_fea,3); z_cva=z_fea+dbox_fea[2]+sm_thick/2.; gMC->Gsposp("EMCA", 1, "EPMD", x_sma, y_sma, z_cva, 0, "ONLY",dbox_mm12,3); gMC->Gsposp("EMCA", 2, "EPMD", -x_sma,-y_sma, z_cva, jhrot12, "ONLY",dbox_mm12,3); //Complete detector for Type B //Position Super modules type B for both CPV and PMD in EPMD Float_t z_psb,z_pbb,z_feb,z_cvb; z_psb = - gaspmd[2] + sm_thick/2.; gMC->Gsposp("EMPB", 3, "EPMD", x_smb, y_smb, z_psb, 0, "ONLY",dbox_mm2,3); gMC->Gsposp("EMPB", 4, "EPMD", -x_smb, -y_smb, z_psb, jhrot12, "ONLY",dbox_mm2,3); z_pbb=z_psb+sm_thick/2.+dbox_pbb[2]; gMC->Gsposp("EPBB", 3, "EPMD", x_smb, y_smb, z_pbb, 0, "ONLY",dbox_pbb,3); gMC->Gsposp("EPBB", 4, "EPMD", -x_smb, -y_smb, z_pbb, 0, "ONLY",dbox_pbb,3); z_feb=z_pbb+dbox_pbb[2]+dbox_feb[2]; gMC->Gsposp("EFEB", 3, "EPMD", x_smb, y_smb, z_feb, 0, "ONLY",dbox_feb,3); gMC->Gsposp("EFEB", 4, "EPMD", -x_smb, -y_smb, z_feb, 0, "ONLY",dbox_feb,3); z_cvb=z_feb+dbox_feb[2]+sm_thick/2.; gMC->Gsposp("EMCB", 3, "EPMD", x_smb, y_smb, z_cvb, 0, "ONLY",dbox_mm22,3); gMC->Gsposp("EMCB", 4, "EPMD", -x_smb,-y_smb, z_cvb, jhrot12, "ONLY",dbox_mm22,3); // --- Place the EPMD in ALICE xp = 0.; yp = 0.; zp = zdist1; //Position Full PMD in ALICE gMC->Gsposp("EPMD", 1, "ALIC", xp,yp,zp, 0, "ONLY",gaspmd,3); } //_____________________________________________________________________________ void AliPMDv1::DrawModule() { cout << " Inside Draw Modules " << endl; // // Draw a shaded view of the Photon Multiplicity Detector // gMC->Gsatt("*", "seen", -1); gMC->Gsatt("alic", "seen", 0); // // Set the visibility of the components // gMC->Gsatt("ECAR","seen",0); gMC->Gsatt("ECCU","seen",1); gMC->Gsatt("EST1","seen",1); gMC->Gsatt("EST2","seen",1); gMC->Gsatt("EUM1","seen",1); gMC->Gsatt("EUM2","seen",1); gMC->Gsatt("ESMA","seen",1); gMC->Gsatt("EPMD","seen",1); // gMC->Gdopt("hide", "on"); gMC->Gdopt("shad", "on"); gMC->Gsatt("*", "fill", 7); gMC->SetClipBox("."); gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000); gMC->DefaultRange(); gMC->Gdraw("alic", 40, 30, 0, 22, 20.5, .02, .02); gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1"); //gMC->Gdman(17, 5, "MAN"); gMC->Gdopt("hide", "off"); cout << " Outside Draw Modules " << endl; } //_____________________________________________________________________________ void AliPMDv1::CreateMaterials() { cout << " Inside create materials " << endl; // // Create materials for the PMD // // ORIGIN : Y. P. VIYOGI // // --- The Argon- CO2 mixture --- Float_t ag[2] = { 39.95 }; Float_t zg[2] = { 18. }; Float_t wg[2] = { .7,.3 }; Float_t dar = .001782; // --- Ar density in g/cm3 --- // --- CO2 --- Float_t ac[2] = { 12.,16. }; Float_t zc[2] = { 6.,8. }; Float_t wc[2] = { 1.,2. }; Float_t dc = .001977; Float_t dco = .002; // --- CO2 density in g/cm3 --- Float_t absl, radl, a, d, z; Float_t dg; Float_t x0ar; Float_t buf[1]; Int_t nbuf; Float_t asteel[4] = { 55.847,51.9961,58.6934,28.0855 }; Float_t zsteel[4] = { 26.,24.,28.,14. }; Float_t wsteel[4] = { .715,.18,.1,.005 }; Int_t *idtmed = fIdtmed->GetArray()-599; Int_t isxfld = gAlice->Field()->Integ(); Float_t sxmgmx = gAlice->Field()->Max(); // --- Define the various materials for GEANT --- AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5); x0ar = 19.55 / dar; AliMaterial(2, "Argon$", 39.95, 18., dar, x0ar, 6.5e4); AliMixture(3, "CO2 $", ac, zc, dc, -2, wc); AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5); AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5); AliMaterial(7, "W $", 183.85, 74., 19.3, .35, 10.3); AliMaterial(8, "G10 $", 20., 10., 1.7, 19.4, 999.); AliMaterial(9, "SILIC$", 28.09, 14., 2.33, 9.36, 45.); AliMaterial(10, "Be $", 9.01, 4., 1.848, 35.3, 36.7); AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.); AliMaterial(16, "C $", 12.01, 6., 2.265, 18.8, 49.9); AliMaterial(17, "POLYCARBONATE $", 20., 10., 1.2, 34.6, 999.); AliMixture(19, "STAINLESS STEEL$", asteel, zsteel, 7.88, 4, wsteel); // AliMaterial(31, "Xenon$", 131.3, 54., dxe, x0xe, 6.5e4); AliMaterial(96, "MYLAR$", 8.73, 4.55, 1.39, 28.7, 62.); AliMaterial(97, "CONCR$", 20., 10., 2.5, 10.7, 40.); AliMaterial(98, "Vacum$", 1e-9, 1e-9, 1e-9, 1e16, 1e16); AliMaterial(99, "Air $", 14.61, 7.3, .0012, 30420., 67500.); // define gas-mixtures char namate[21]; gMC->Gfmate((*fIdmate)[3], namate, a, z, d, radl, absl, buf, nbuf); ag[1] = a; zg[1] = z; dg = (dar * 4 + dco) / 5; AliMixture(5, "ArCO2$", ag, zg, dg, 2, wg); // Define tracking media AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(7, "W conv.$", 7, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1); AliMedium(9, "SILICON $", 9, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1); AliMedium(10, "Be $", 10, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .1, 10); AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .1, .1); AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(16, "C $", 16, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(17, "PLOYCARB$", 17, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(19, " S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); // AliMedium(31, "Xenon $", 31, 1, 0, isxfld, sxmgmx, .1, .1, .1, .1); // --- Generate explicitly delta rays in the iron, aluminium and lead --- gMC->Gstpar(idtmed[600], "LOSS", 3.); gMC->Gstpar(idtmed[600], "DRAY", 1.); gMC->Gstpar(idtmed[603], "LOSS", 3.); gMC->Gstpar(idtmed[603], "DRAY", 1.); gMC->Gstpar(idtmed[604], "LOSS", 3.); gMC->Gstpar(idtmed[604], "DRAY", 1.); gMC->Gstpar(idtmed[605], "LOSS", 3.); gMC->Gstpar(idtmed[605], "DRAY", 1.); gMC->Gstpar(idtmed[606], "LOSS", 3.); gMC->Gstpar(idtmed[606], "DRAY", 1.); gMC->Gstpar(idtmed[607], "LOSS", 3.); gMC->Gstpar(idtmed[607], "DRAY", 1.); // --- Energy cut-offs in the Pb and Al to gain time in tracking --- // --- without affecting the hit patterns --- gMC->Gstpar(idtmed[600], "CUTGAM", 1e-4); gMC->Gstpar(idtmed[600], "CUTELE", 1e-4); gMC->Gstpar(idtmed[600], "CUTNEU", 1e-4); gMC->Gstpar(idtmed[600], "CUTHAD", 1e-4); gMC->Gstpar(idtmed[605], "CUTGAM", 1e-4); gMC->Gstpar(idtmed[605], "CUTELE", 1e-4); gMC->Gstpar(idtmed[605], "CUTNEU", 1e-4); gMC->Gstpar(idtmed[605], "CUTHAD", 1e-4); gMC->Gstpar(idtmed[606], "CUTGAM", 1e-4); gMC->Gstpar(idtmed[606], "CUTELE", 1e-4); gMC->Gstpar(idtmed[606], "CUTNEU", 1e-4); gMC->Gstpar(idtmed[606], "CUTHAD", 1e-4); gMC->Gstpar(idtmed[603], "CUTGAM", 1e-4); gMC->Gstpar(idtmed[603], "CUTELE", 1e-4); gMC->Gstpar(idtmed[603], "CUTNEU", 1e-4); gMC->Gstpar(idtmed[603], "CUTHAD", 1e-4); gMC->Gstpar(idtmed[609], "CUTGAM", 1e-4); gMC->Gstpar(idtmed[609], "CUTELE", 1e-4); gMC->Gstpar(idtmed[609], "CUTNEU", 1e-4); gMC->Gstpar(idtmed[609], "CUTHAD", 1e-4); // --- Prevent particles stopping in the gas due to energy cut-off --- gMC->Gstpar(idtmed[604], "CUTGAM", 1e-5); gMC->Gstpar(idtmed[604], "CUTELE", 1e-5); gMC->Gstpar(idtmed[604], "CUTNEU", 1e-5); gMC->Gstpar(idtmed[604], "CUTHAD", 1e-5); gMC->Gstpar(idtmed[604], "CUTMUO", 1e-5); cout << " Outside create materials " << endl; } //_____________________________________________________________________________ void AliPMDv1::Init() { // // Initialises PMD detector after it has been built // Int_t i; kdet=1; // cout << " Inside Init " << endl; if(fDebug) { printf("\n%s: ",ClassName()); for(i=0;i<35;i++) printf("*"); printf(" PMD_INIT "); for(i=0;i<35;i++) printf("*"); printf("\n%s: ",ClassName()); printf(" PMD simulation package (v1) initialised\n"); printf("%s: parameters of pmd\n",ClassName()); printf("%s: %10.2f %10.2f %10.2f \ %10.2f\n",ClassName(),cell_radius,cell_wall,cell_depth,zdist1 ); printf("%s: ",ClassName()); for(i=0;i<80;i++) printf("*"); printf("\n"); } Int_t *idtmed = fIdtmed->GetArray()-599; fMedSens=idtmed[605-1]; } //_____________________________________________________________________________ void AliPMDv1::StepManager() { // // Called at each step in the PMD // Int_t copy; Float_t hits[4], destep; Float_t center[3] = {0,0,0}; Int_t vol[8]; //5 //const char *namep; if(gMC->GetMedium() == fMedSens && (destep = gMC->Edep())) { gMC->CurrentVolID(copy); //namep=gMC->CurrentVolName(); //printf("Current vol is %s \n",namep); vol[0]=copy; gMC->CurrentVolOffID(1,copy); //namep=gMC->CurrentVolOffName(1); //printf("Current vol 11 is %s \n",namep); vol[1]=copy; gMC->CurrentVolOffID(2,copy); //namep=gMC->CurrentVolOffName(2); //printf("Current vol 22 is %s \n",namep); vol[2]=copy; // if(strncmp(namep,"EHC1",4))vol[2]=1; gMC->CurrentVolOffID(3,copy); //namep=gMC->CurrentVolOffName(3); //printf("Current vol 33 is %s \n",namep); vol[3]=copy; gMC->CurrentVolOffID(4,copy); //namep=gMC->CurrentVolOffName(4); //printf("Current vol 44 is %s \n",namep); vol[4]=copy; gMC->CurrentVolOffID(5,copy); //namep=gMC->CurrentVolOffName(5); //printf("Current vol 55 is %s \n",namep); vol[5]=copy; gMC->CurrentVolOffID(6,copy); //namep=gMC->CurrentVolOffName(6); //printf("Current vol 66 is %s \n",namep); vol[6]=copy; gMC->CurrentVolOffID(7,copy); //namep=gMC->CurrentVolOffName(7); //printf("Current vol 77 is %s \n",namep); vol[7]=copy; //printf("volume number %4d %4d %4d %4d %4d %4d %4d %4d %10.3f \n",vol[0],vol[1],vol[2],vol[3],vol[4],vol[5],vol[6],vol[7],destep*1000000); gMC->Gdtom(center,hits,1); hits[3] = destep*1e9; //Number in eV AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } } //------------------------------------------------------------------------ // Get parameters void AliPMDv1::GetParameters() { const Float_t root3 = TMath::Sqrt(3.); const Float_t root3_2 = TMath::Sqrt(3.) /2.; // cell_radius=0.25; cell_wall=0.02; cell_depth=0.25 * 2.; // ncol_um1 = 48; ncol_um2 = 96; nrow_um1 = 96;//each strip has 1 row nrow_um2 = 48;//each strip has 1 row // sm_length_ax = (3.0*(ncol_um1*cell_radius+cell_radius/2.)+(2.0*0.025)) + 0.7; sm_length_bx = 2.0*(ncol_um2*cell_radius+cell_radius/2.)+0.025+0.7; sm_length_ay = 2.0*(((cell_radius/root3_2)*nrow_um1)-(cell_radius*root3*(nrow_um1-1)/6.))+0.025+0.7; sm_length_by = 3.0*(((cell_radius/root3_2)*nrow_um2)-(cell_radius*root3*(nrow_um2-1)/6.))+(2.0*0.025)+0.7; // boundary=0.7; // th_base=0.3; th_air=0.1; th_pcb=0.16; // sm_thick = th_base + th_air + th_pcb + cell_depth + th_pcb + th_air + th_pcb; // th_lead=1.5; th_steel=0.5; zdist1 = 361.5; }