/*************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ // /////////////////////////////////////////////////////////////////////////////// // // // Photon Multiplicity Detector Version 1 // // Bedanga Mohanty : February 14th 2006 //--------------------------------------------------- // ALICE PMD FEE BOARDS IMPLEMENTATION // Dt: 25th February 2006 // M.M. Mondal, S.K. Prasad and P.K. Netrakanti //--------------------------------------------------- // Create final detector from Unit Modules // Author : Bedanga and Viyogi June 2003 //--------------------------------------------------- // Modified by // Dr. Y.P. Viyogi and Ranbir Singh // Dt: 2nd February 2009 // //Begin_Html /* */ //End_Html // // ///////////////////////////////////////////////////////////////////////////// //// #include #include #include #include "AliConst.h" #include "AliLog.h" #include "AliMC.h" #include "AliMagF.h" #include "AliPMDv1.h" #include "AliRun.h" #include "AliTrackReference.h" const Int_t AliPMDv1::fgkNcolUM1 = 48; // Number of cols in UM, type 1 const Int_t AliPMDv1::fgkNcolUM2 = 96; // Number of cols in UM, type 2 const Int_t AliPMDv1::fgkNrowUM1 = 96; // Number of rows in UM, type 1 const Int_t AliPMDv1::fgkNrowUM2 = 48; // Number of rows in UM, type 2 const Float_t AliPMDv1::fgkCellRadius = 0.25; // Radius of a hexagonal cell const Float_t AliPMDv1::fgkCellWall = 0.02; // Thickness of cell Wall const Float_t AliPMDv1::fgkCellDepth = 0.50; // Gas thickness const Float_t AliPMDv1::fgkThPCB = 0.16; // Thickness of PCB const Float_t AliPMDv1::fgkThLead = 1.5; // Thickness of Pb const Float_t AliPMDv1::fgkThSteel = 0.5; // Thickness of Steel const Float_t AliPMDv1::fgkGap = 0.025; // Air Gap const Float_t AliPMDv1::fgkZdist = 361.5; // z-position of the detector const Float_t AliPMDv1::fgkSqroot3 = 1.7320508;// Square Root of 3 const Float_t AliPMDv1::fgkSqroot3by2 = 0.8660254;// Square Root of 3 by 2 const Float_t AliPMDv1::fgkSSBoundary = 0.3; const Float_t AliPMDv1::fgkThSS = 1.23; // Old thickness of SS frame was 1.03 const Float_t AliPMDv1::fgkThTopG10 = 0.33; const Float_t AliPMDv1::fgkThBotG10 = 0.4; ClassImp(AliPMDv1) //_____________________________________________________________________________ AliPMDv1::AliPMDv1(): fSMthick(0.), fSMthickpmd(0.), fDthick(0.), fSMLengthax(0.), fSMLengthay(0.), fSMLengthbx(0.), fSMLengthby(0.), fMedSens(0) { // Default constructor for (Int_t i = 0; i < 3; i++) { fDboxmm1[i] = 0.; fDboxmm12[i] = 0.; fDboxmm2[i] = 0.; fDboxmm22[i] = 0.; } for (Int_t i = 0; i < 48; i++) { fModStatus[i] = 1; } } //_____________________________________________________________________________ AliPMDv1::AliPMDv1(const char *name, const char *title): AliPMD(name,title), fSMthick(0.), fSMthickpmd(0.), fDthick(0.), fSMLengthax(0.), fSMLengthay(0.), fSMLengthbx(0.), fSMLengthby(0.), fMedSens(0) { // Standard constructor for (Int_t i = 0; i < 3; i++) { fDboxmm1[i] = 0.; fDboxmm12[i] = 0.; fDboxmm2[i] = 0.; fDboxmm22[i] = 0.; } for (Int_t i = 0; i < 48; i++) { fModStatus[i] = 1; } } //_____________________________________________________________________________ void AliPMDv1::CreateGeometry() { // Create geometry for Photon Multiplicity Detector GetParameters(); CreateSupermodule(); CreatePMD(); } //_____________________________________________________________________________ void AliPMDv1::CreateSupermodule() { // // Creates the geometry of the cells of PMD, places them in modules // which are rectangular objects. // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is // placed inside another hexagonal cell made of Cu (ECCU) with larger // radius, compared to ECAR. The difference in radius gives the dimension // of half width of each cell wall. // These cells are placed in a rectangular strip which are of 2 types // EST1 and EST2. // Two types of honeycomb EHC1 & EHC2 are made using strips EST1 & EST2. // 4 types of unit modules are made EUM1 & EUM2 for PRESHOWER Plane and // EUV1 & EUV2 for VETO Plane which contains strips placed repeatedly // // These unit moules are then placed inside EPM1, EPM2, EPM3 and EPM4 along // with lead convertor ELDA & ELDB and Iron Supports EFE1, EFE2, EFE3 and EFE4 // They have 6 unit moudles inside them in each plane. Therefore, total of 48 // unit modules in both the planes (PRESHOWER Plane & VETO Plane). The numbering // of unit modules is from 0 to 47. // // Steel channels (ECHA & ECHB) are also placed which are used to place the unit modules // // In order to account for the extra material around and on the detector, Girders (EGDR), // girder's Carriage (EXGD), eight Aluminium boxes (ESV1,2,3,4 & EVV1,2,3,4) along with // LVDBs (ELVD), cables (ECB1,2,3,4), and ELMBs (ELMB) are being placed in approximations. // // Four FR4 sheets (ECC1,2,3,4) are placed parallel to the PMD on both sides, which perform // as cooling encloser // NOTE:- VOLUME Names : begining with "E" for all PMD volumes Int_t i,j; Int_t number; Int_t ihrotm,irotdm; Float_t xb, yb, zb; Int_t *idtmed = fIdtmed->GetArray()-599; AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.); AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.); //******************************************************// // STEP - I // //******************************************************// // First create the sensitive medium of a hexagon cell (ECAR) // Inner hexagon filled with gas (Ar+CO2) // Integer assigned to Ar+CO2 medium is 604 Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23}; hexd2[4] = -fgkCellDepth/2.; hexd2[7] = fgkCellDepth/2.; hexd2[6] = fgkCellRadius - fgkCellWall; hexd2[9] = fgkCellRadius - fgkCellWall; gMC->Gsvolu("ECAR", "PGON", idtmed[604], hexd2,10); //******************************************************// // STEP - II // //******************************************************// // Place the sensitive medium inside a hexagon copper cell (ECCU) // Outer hexagon made of Copper // Integer assigned to Cu medium is 614 Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25}; hexd1[4] = -fgkCellDepth/2.; hexd1[7] = fgkCellDepth/2.; hexd1[6] = fgkCellRadius; hexd1[9] = fgkCellRadius; gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10); // Place inner hex (sensitive volume) inside outer hex (copper) gMC->Gspos("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY"); //******************************************************// // STEP - III // //******************************************************// // Now create Two types of Rectangular strips (EST1, EST2) // of 1 column and 96 or 48 cells length // volume for first strip EST1 made of AIR // Integer assigned to Air medium is 698 // strip type-1 is of 1 column and 96 rows i.e. of 96 cells length Float_t dbox1[3]; dbox1[0] = fgkCellRadius/fgkSqroot3by2; dbox1[1] = fgkNrowUM1*fgkCellRadius; dbox1[2] = fgkCellDepth/2.; gMC->Gsvolu("EST1","BOX", idtmed[698], dbox1, 3); // volume for second strip EST2 // strip type-2 is of 1 column and 48 rows i.e. of 48 cells length Float_t dbox2[3]; dbox2[1] = fgkNrowUM2*fgkCellRadius; dbox2[0] = dbox1[0]; dbox2[2] = dbox1[2]; gMC->Gsvolu("EST2","BOX", idtmed[698], dbox2, 3); // Place hexagonal cells ECCU placed inside EST1 xb = 0.; zb = 0.; yb = (dbox1[1]) - fgkCellRadius; for (i = 1; i <= fgkNrowUM1; ++i) { number = i; gMC->Gspos("ECCU", number, "EST1", xb,yb,zb, 0, "ONLY"); yb -= (fgkCellRadius*2.); } // Place hexagonal cells ECCU placed inside EST2 xb = 0.; zb = 0.; yb = (dbox2[1]) - fgkCellRadius; for (i = 1; i <= fgkNrowUM2; ++i) { number = i; gMC->Gspos("ECCU", number, "EST2", xb,yb,zb, 0, "ONLY"); yb -= (fgkCellRadius*2.); } //******************************************************// // STEP - IV // //******************************************************// // Create EHC1 : The honey combs for a unit module type-1 //-------------------------EHC1 Start-------------------// // First step is to create a honey comb unit module. // This is named as EHC1 and is a volume of Air // we will lay the EST1 strips of honey comb cells inside it. // Dimensions of EHC1 // X-dimension = (dbox1[0]*fgkNcolUM1)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.)+ 0.15+0.05+0.05; // Y-dimension = Number of rows * cell radius/sqrt3by2 + 0.15+0.05+0.05; // 0.15cm is the extension in honeycomb on both side of X and Y, 0.05 for air gap and 0.05 // for G10 boundary around, which are now merged in the dimensions of EHC1 // Z-dimension = cell depth/2 Float_t ehcExt = 0.15; Float_t ehcAround = 0.05 + 0.05;; Float_t dbox3[3]; dbox3[0] = (dbox1[0]*fgkNcolUM1)- (fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.) + ehcExt + ehcAround; dbox3[1] = dbox1[1]+fgkCellRadius/2. + ehcExt + ehcAround; dbox3[2] = fgkCellDepth/2.; //Create a BOX, Material AIR gMC->Gsvolu("EHC1","BOX", idtmed[698], dbox3, 3); // Place rectangular strips EST1 inside EHC1 unit module xb = dbox3[0]-dbox1[0]; for (j = 1; j <= fgkNcolUM1; ++j) { if(j%2 == 0) { yb = -fgkCellRadius/2.0; } else { yb = fgkCellRadius/2.0; } number = j; gMC->Gspos("EST1",number, "EHC1", xb - 0.25, yb , 0. , 0, "MANY"); //The strips are being placed from top towards bottom of the module //This is because the first cell in a module in hardware is the top //left corner cell xb = (dbox3[0]-dbox1[0])-j*fgkCellRadius*fgkSqroot3; } //--------------------EHC1 done----------------------------------------// //--------------------------------EHC2 Start---------------------------// // Create EHC2 : The honey combs for a unit module type-2 // First step is to create a honey comb unit module. // This is named as EHC2, we will lay the EST2 strips of // honey comb cells inside it. // Dimensions of EHC2 // X-dimension = (dbox2[0]*fgkNcolUM2)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.)+ 0.15+0.05+0.05; // Y-dimension = Number of rows * cell radius/sqrt3by2 + 0.15+0.05+0.05; // 0.15cm is the extension in honeycomb on both side of X and Y, 0.05 for air gap and 0.05 // for G10 boundary around, which are now merged in the dimensions of EHC2 // Z-dimension = cell depth/2 Float_t dbox4[3]; dbox4[0] =(dbox2[0]*fgkNcolUM2)- (fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.) + ehcExt + ehcAround; dbox4[1] = dbox2[1] + fgkCellRadius/2. + ehcExt + ehcAround; dbox4[2] = dbox3[2]; //Create a BOX of AIR gMC->Gsvolu("EHC2","BOX", idtmed[698], dbox4, 3); // Place rectangular strips EST2 inside EHC2 unit module xb = dbox4[0]-dbox2[0]; for (j = 1; j <= fgkNcolUM2; ++j) { if(j%2 == 0) { yb = -fgkCellRadius/2.0; } else { yb = +fgkCellRadius/2.0; } number = j; gMC->Gspos("EST2",number, "EHC2", xb - 0.25, yb , 0. ,0, "MANY"); xb = (dbox4[0]-dbox2[0])-j*fgkCellRadius*fgkSqroot3; } //----------------------------EHC2 done-------------------------------// //====================================================================// // Now the job is to assmeble an Unit module // It will have the following components // (a) Base plate of G10 of 0.2cm // (b) Air gap of 0.08cm // (c) Bottom PCB of 0.16cm G10 // (d) Honey comb 0f 0.5cm // (e) Top PCB of 0.16cm G10 // (f) Back Plane of 0.1cm G10 // (g) Then all around then we have an air gap of 0.05cm // (h) Then all around 0.05cm thick G10 insulation // (i) Then all around Stainless Steel boundary channel 0.3 cm thick // In order to reduce the number of volumes and simplify the geometry // following steps are performed: // (I) Base Plate(0.2cm), Air gap(0.04cm) and Bottom PCB(0.16cm) // are taken together as a G10 Plate EDGA (0.4cm) // (II) Back Plane(0.1cm), Air Gap(0.04cm) and Top PCB(0.16cm) and extra // clearance 0.03cm are taken together as G10 Plate EEGA(0.33cm) // (III) The all around Air gap(0.05cm) and G10 boundary(0.05cm) are already // merged in the dimension of EHC1, EHC2, EDGA and EEGA. Therefore, no // separate volumes for all around materials //Let us first create them one by one //--------------------------------------------------------------------// // ---------------- Lets do it first for UM Long Type -----// // 4mm G10 Box : Bottom PCB + Air Gap + Base Plate //================================================ // Make a 4mm thick G10 Box for Unit module Long Type // X-dimension is EHC1 - ehcExt // Y-dimension is EHC1 - ehcExt // EHC1 was extended 0.15cm(ehcExt) on both sides // Z-dimension 0.4/2 = 0.2 cm // Integer assigned to G10 medium is 607 Float_t dboxCGA[3]; dboxCGA[0] = dbox3[0] - ehcExt; dboxCGA[1] = dbox3[1] - ehcExt; dboxCGA[2] = fgkThBotG10/2.; //Create a G10 BOX gMC->Gsvolu("EDGA","BOX", idtmed[607], dboxCGA, 3); //-------------------------------------------------// // 3.3mm G10 Box : Top PCB + Air GAp + Back Plane //================================================ // Make a 3.3mm thick G10 Box for Unit module Long Type // X-dimension is EHC1 - ehcExt // Y-dimension is EHC1 - ehcExt // EHC1 was extended 0.15cm(ehcExt) on both sides // Z-dimension 0.33/2 = 0.165 cm Float_t dboxEEGA[3]; dboxEEGA[0] = dboxCGA[0]; dboxEEGA[1] = dboxCGA[1]; dboxEEGA[2] = fgkThTopG10/2.; //Create a G10 BOX gMC->Gsvolu("EEGA","BOX", idtmed[607], dboxEEGA, 3); //----------------------------------------------------------// //Stainless Steel Bounadry : EUM1 & EUV1 // // Make a 3.63cm thick Stainless Steel boundary for Unit module Long Type // 3.63cm equivalent to EDGA(0.4cm)+EHC1(0.5cm)+EEGA(0.33cm)+FEE Board(2.4cm) // X-dimension is EEGA + fgkSSBoundary // Y-dimension is EEGA + fgkSSBoundary // Z-dimension 1.23/2 + 2.4/2. // FEE Boards are 2.4cm thick // Integer assigned to Stainless Steel medium is 618 //------------------------------------------------------// // A Stainless Steel Boundary Channel to house the unit module // along with the FEE Boards Float_t dboxSS1[3]; dboxSS1[0] = dboxCGA[0]+fgkSSBoundary; dboxSS1[1] = dboxCGA[1]+fgkSSBoundary; dboxSS1[2] = fgkThSS/2.+ 2.4/2.; //FOR PRESHOWER //Stainless Steel boundary - Material Stainless Steel gMC->Gsvolu("EUM1","BOX", idtmed[618], dboxSS1, 3); //FOR VETO //Stainless Steel boundary - Material Stainless Steel gMC->Gsvolu("EUV1","BOX", idtmed[618], dboxSS1, 3); //--------------------------------------------------------------------// // ============ PMD FEE BOARDS IMPLEMENTATION ======================// // FEE board // It is FR4 board of length * breadth :: 7cm * 2.4 cm // and thickness 0.2cm // Material medium is same as G10 Float_t dboxFEE[3]; dboxFEE[0] = 0.2/2.; dboxFEE[1] = 7.0/2.; dboxFEE[2] = 2.4/2.; gMC->Gsvolu("EFEE","BOX", idtmed[607], dboxFEE, 3); // Now to create the Mother volume to accomodate FEE boards // It should have the dimension few mm smaller than the back plane // But, we have taken it as big as EUM1 or EUV1 // It is to compensate the Stainless Steel medium of EUM1 or EUV1 // Create Mother volume of Air : Long TYPE Float_t dboxFEEBPlaneA[3]; dboxFEEBPlaneA[0] = dboxSS1[0]; dboxFEEBPlaneA[1] = dboxSS1[1]; dboxFEEBPlaneA[2] = 2.4/2.; //Volume of same dimension as EUM1 or EUV1 of Material AIR gMC->Gsvolu("EFBA","BOX", idtmed[698], dboxFEEBPlaneA, 3); //Placing the FEE boards in the Mother volume of AIR Float_t xFee; // X-position of FEE board Float_t yFee; // Y-position of FEE board Float_t zFee = 0.0; // Z-position of FEE board Float_t xA = 0.5; //distance from the border to 1st FEE board/Translator Float_t yA = 4.00; //distance from the border to 1st FEE board Float_t xSepa = 1.70; //Distance between two FEE boards in X-side Float_t ySepa = 8.00; //Distance between two FEE boards in Y-side // FEE Boards EFEE placed inside EFBA yFee = dboxFEEBPlaneA[1] - yA - 0.1 - 0.3; // 0.1cm and 0.3cm are subtracted to shift the FEE Boards on their actual positions // As the positions are changed, because we have taken the dimension of EFBA equal // to the dimension of EUM1 or EUV1 number = 1; // The loop for six rows of FEE Board for (i = 1; i <= 6; ++i) { // First we place the translator board xFee = -dboxFEEBPlaneA[0] + xA + 0.1 +0.3; gMC->Gspos("EFEE", number, "EFBA", xFee,yFee,zFee, 0, "ONLY"); // The first FEE board is 11mm from the translator board xFee += 1.1; number += 1; for (j = 1; j <= 12; ++j) { gMC->Gspos("EFEE", number, "EFBA", xFee,yFee,zFee, 0, "ONLY"); xFee += xSepa; number += 1; } yFee -= ySepa; } // Now Place EEGA, EDGA, EHC1 and EFBA in EUM1 & EUV1 to complete the unit module // FOR PRE SHOWER // // Placing of all components of UM in AIR BOX EUM1 // //(1) FIRST PUT the 4mm G10 Box : EDGA Float_t zedga = -dboxSS1[2] + fgkThBotG10/2.; gMC->Gspos("EDGA", 1, "EUM1", 0., 0., zedga, 0, "ONLY"); //(2) NEXT PLACING the Honeycomb EHC1 Float_t zehc1 = zedga + fgkThBotG10/2. + fgkCellDepth/2.; gMC->Gspos("EHC1", 1, "EUM1", 0., 0., zehc1, 0, "ONLY"); //(3) NEXT PLACING the 3.3mm G10 Box : EEGA Float_t zeega = zehc1 + fgkCellDepth/2. + fgkThTopG10/2.; gMC->Gspos("EEGA", 1, "EUM1", 0., 0., zeega, 0, "ONLY"); //(4) NEXT PLACING the FEE BOARD : EFBA Float_t zfeeboardA = zeega + fgkThTopG10/2. +1.2; gMC->Gspos("EFBA", 1, "EUM1", 0., 0., zfeeboardA, 0, "ONLY"); // FOR VETO // // Placing of all components of UM in AIR BOX EUV1 // //(1) FIRST PUT the FEE BOARD : EFBA zfeeboardA = -dboxSS1[2] + 1.2; gMC->Gspos("EFBA", 1, "EUV1", 0., 0., zfeeboardA, 0, "ONLY"); //(2) FIRST PLACING the 3.3mm G10 Box : EEGA zeega = zfeeboardA + 1.2 + fgkThTopG10/2.; gMC->Gspos("EEGA", 1, "EUV1", 0., 0., zeega, 0, "ONLY"); //(3) NEXT PLACING the Honeycomb EHC1 zehc1 = zeega + fgkThTopG10/2 + fgkCellDepth/2.; gMC->Gspos("EHC1", 1, "EUV1", 0., 0., zehc1, 0, "ONLY"); //(4) NEXT PUT THE 4mm G10 Box : EDGA zedga = zehc1 + fgkCellDepth/2.+ fgkThBotG10/2.; gMC->Gspos("EDGA", 1, "EUV1", 0., 0., zedga, 0, "ONLY"); //=================== LONG TYPE COMPLETED =========================// //------------ Lets do the same thing for UM Short Type -------------// // 4mm G10 Box : Bottom PCB + Air Gap + Base Plate //================================================ // Make a 4mm thick G10 Box for Unit module ShortType // X-dimension is EHC2 - ehcExt // Y-dimension is EHC2 - ehcExt // EHC2 was extended 0.15cm(ehcExt) on both sides // Z-dimension 0.4/2 = 0.2 cm // Integer assigned to G10 medium is 607 Float_t dboxCGB[3]; dboxCGB[0] = dbox4[0] - ehcExt; dboxCGB[1] = dbox4[1] - ehcExt; dboxCGB[2] = 0.4/2.; //Create a G10 BOX gMC->Gsvolu("EDGB","BOX", idtmed[607], dboxCGB, 3); //-------------------------------------------------// // 3.3mm G10 Box : PCB + Air Gap + Back Plane //================================================ // Make a 3.3mm thick G10 Box for Unit module Short Type // X-dimension is EHC2 - ehcExt // Y-dimension is EHC2 - ehcExt // EHC2 was extended 0.15cm(ehcExt) on both sides // Z-dimension 0.33/2 = 0.165 cm Float_t dboxEEGB[3]; dboxEEGB[0] = dboxCGB[0]; dboxEEGB[1] = dboxCGB[1]; dboxEEGB[2] = 0.33/2.; // Create a G10 BOX gMC->Gsvolu("EEGB","BOX", idtmed[607], dboxEEGB, 3); //Stainless Steel Bounadry : EUM2 & EUV2 //================================== // Make a 3.63cm thick Stainless Steel boundary for Unit module Short Type // 3.63cm equivalent to EDGB(0.4cm)+EHC2(0.5cm)+EEGB(0.33cm)+FEE Board(2.4cm) // X-dimension is EEGB + fgkSSBoundary // Y-dimension is EEGB + fgkSSBoundary // Z-dimension 1.23/2 + 2.4/2. // FEE Boards are 2.4cm thick // Integer assigned to Stainless Steel medium is 618 //------------------------------------------------------// // A Stainless Steel Boundary Channel to house the unit module // along with the FEE Boards Float_t dboxSS2[3]; dboxSS2[0] = dboxCGB[0] + fgkSSBoundary; dboxSS2[1] = dboxCGB[1] + fgkSSBoundary; dboxSS2[2] = fgkThSS/2.+ 2.4/2.; //PRESHOWER //Stainless Steel boundary - Material Stainless Steel gMC->Gsvolu("EUM2","BOX", idtmed[618], dboxSS2, 3); //VETO //Stainless Steel boundary - Material Stainless Steel gMC->Gsvolu("EUV2","BOX", idtmed[618], dboxSS2, 3); //----------------------------------------------------------------// //NOW THE FEE BOARD IMPLEMENTATION // To create the Mother volume to accomodate FEE boards // It should have the dimension few mm smaller than the back plane // But, we have taken it as big as EUM2 or EUV2 // It is to compensate the Stainless Steel medium of EUM2 or EUV2 // Create Mother volume of Air : SHORT TYPE //------------------------------------------------------// Float_t dboxFEEBPlaneB[3]; dboxFEEBPlaneB[0] = dboxSS2[0]; dboxFEEBPlaneB[1] = dboxSS2[1]; dboxFEEBPlaneB[2] = 2.4/2.; //Volume of same dimension as EUM2 or EUV2 of Material AIR gMC->Gsvolu("EFBB","BOX", idtmed[698], dboxFEEBPlaneB, 3); // FEE Boards EFEE placed inside EFBB yFee = dboxFEEBPlaneB[1] - yA -0.1 -0.3; // 0.1cm and 0.3cm are subtracted to shift the FEE Boards on their actual positions // As the positions are changed, because we have taken the dimension of EFBB equal // to the dimension of EUM2 or EUV2 number = 1; for (i = 1; i <= 3; ++i) { xFee = -dboxFEEBPlaneB[0] + xA + 0.1 +0.3; //First we place the translator board gMC->Gspos("EFEE", number, "EFBB", xFee,yFee,zFee, 0, "ONLY"); // The first FEE board is 11mm from the translator board xFee+=1.1; number+=1; for (j = 1; j <= 12; ++j) { gMC->Gspos("EFEE", number, "EFBB", xFee,yFee,zFee, 0, "ONLY"); xFee += xSepa; number += 1; } //Now we place Bridge Board xFee = xFee - xSepa + 0.8 ; //Bridge Board is at a distance 8mm from FEE board gMC->Gspos("EFEE", number, "EFBB", xFee,yFee,zFee, 0, "ONLY"); number+=1; xFee+=0.8; for (j = 1; j <= 12; ++j) { gMC->Gspos("EFEE", number, "EFBB", xFee,yFee,zFee, 0, "ONLY"); xFee += xSepa; number += 1; } yFee -= ySepa; } // Now Place EEGB, EDGB, EHC2 and EFBB in EUM2 & EUV2 to complete the unit module // FOR PRE SHOWER //- Placing of all components of UM in AIR BOX EUM2--// //(1) FIRST PUT the G10 Box : EDGB Float_t zedgb = -dboxSS2[2] + 0.4/2.; gMC->Gspos("EDGB", 1, "EUM2", 0., 0., zedgb, 0, "ONLY"); //(2) NEXT PLACING the Honeycomb EHC2 Float_t zehc2 = zedgb + 0.4/2. + fgkCellDepth/2.; gMC->Gspos("EHC2", 1, "EUM2", 0., 0., zehc2, 0, "ONLY"); //(3) NEXT PLACING the G10 Box : EEGB Float_t zeegb = zehc2 + fgkCellDepth/2. + 0.33/2.; gMC->Gspos("EEGB", 1, "EUM2", 0., 0., zeegb, 0, "ONLY"); //(4) NEXT PLACING FEE BOARDS : EFBB Float_t zfeeboardB = zeegb + 0.33/2.+1.2; gMC->Gspos("EFBB", 1, "EUM2", 0., 0., zfeeboardB, 0, "ONLY"); // FOR VETO // Placing of all components of UM in AIR BOX EUV2 // //(1) FIRST PUT the FEE BOARD : EUV2 zfeeboardB = -dboxSS2[2] + 1.2; gMC->Gspos("EFBB", 1, "EUV2", 0., 0., zfeeboardB, 0, "ONLY"); //(2) FIRST PLACING the G10 Box : EEGB zeegb = zfeeboardB + 1.2 + 0.33/2.; gMC->Gspos("EEGB", 1, "EUV2", 0., 0., zeegb, 0, "ONLY"); //(3) NEXT PLACING the Honeycomb EHC2 zehc2 = zeegb + 0.33/2. + fgkCellDepth/2.; gMC->Gspos("EHC2", 1, "EUV2", 0., 0., zehc2, 0, "ONLY"); //(4) NEXT PUT THE G10 Box : EDGB zedgb = zehc2 + fgkCellDepth/2.+ 0.4/2.; gMC->Gspos("EDGB", 1, "EUV2", 0., 0., zedgb, 0, "ONLY"); //===================================================================// //---------------------- UM Type B completed ------------------------// } //_______________________________________________________________________ void AliPMDv1::CreatePMD() { // Create final detector from Unit Modules // -- Author : Bedanga and Viyogi June 2003 Float_t zp = fgkZdist; //Z-distance of PMD from Interaction Point Int_t jhrot12,jhrot13, irotdm; Int_t *idtmed = fIdtmed->GetArray()-599; AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.); AliMatrix(jhrot12, 90., 180., 90., 270., 0., 0.); AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.); // Now We Will Calculate Position Co-ordinates of EUM1 & EUV1 in EPM1 & EPM2 Float_t dbox1[3]; dbox1[0] = fgkCellRadius/fgkSqroot3by2; dbox1[1] = fgkNrowUM1*fgkCellRadius; dbox1[2] = fgkCellDepth/2.; Float_t dbox3[3]; dbox3[0] = (dbox1[0]*fgkNcolUM1)- (fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.) + 0.15 + 0.05 + 0.05; dbox3[1] = dbox1[1]+fgkCellRadius/2. + 0.15 + 0.05 + 0.05; dbox3[2] = fgkCellDepth/2.; Float_t dboxCGA[3]; dboxCGA[0] = dbox3[0] - 0.15; dboxCGA[1] = dbox3[1] - 0.15; dboxCGA[2] = 0.4/2.; Float_t dboxSS1[3]; dboxSS1[0] = dboxCGA[0]+fgkSSBoundary; dboxSS1[1] = dboxCGA[1]+fgkSSBoundary; dboxSS1[2] = fgkThSS/2.; Float_t dboxUM1[3]; dboxUM1[0] = dboxSS1[0]; dboxUM1[1] = dboxSS1[1]; dboxUM1[2] = fgkThSS/2. + 1.2; Float_t dboxSM1[3]; dboxSM1[0] = fSMLengthax + 0.05; // 0.05cm for the ESC1,2 dboxSM1[1] = fSMLengthay; dboxSM1[2] = dboxUM1[2]; // Position co-ordinates of the unit modules in EPM1 & EPM2 Float_t xa1,xa2,xa3,ya1,ya2; xa1 = dboxSM1[0] - dboxUM1[0]; xa2 = xa1 - dboxUM1[0] - 0.1 - dboxUM1[0]; xa3 = xa2 - dboxUM1[0] - 0.1 - dboxUM1[0]; ya1 = dboxSM1[1] - 0.2 - dboxUM1[1]; ya2 = ya1 - dboxUM1[1] - 0.3 - dboxUM1[1]; // Next to Calculate Position Co-ordinates of EUM2 & EUV2 in EPM3 & EPM4 Float_t dbox2[3]; dbox2[1] = fgkNrowUM2*fgkCellRadius; dbox2[0] = dbox1[0]; dbox2[2] = dbox1[2]; Float_t dbox4[3]; dbox4[0] =(dbox2[0]*fgkNcolUM2)- (fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.) + 0.15 + 0.05 + 0.05; dbox4[1] = dbox2[1] + fgkCellRadius/2. + 0.15 + 0.05 + 0.05; dbox4[2] = dbox3[2]; Float_t dboxCGB[3]; dboxCGB[0] = dbox4[0] - 0.15; dboxCGB[1] = dbox4[1] - 0.15; dboxCGB[2] = 0.4/2.; Float_t dboxSS2[3]; dboxSS2[0] = dboxCGB[0] + fgkSSBoundary; dboxSS2[1] = dboxCGB[1] + fgkSSBoundary; dboxSS2[2] = fgkThSS/2.; Float_t dboxUM2[3]; dboxUM2[0] = dboxSS2[0]; dboxUM2[1] = dboxSS2[1]; dboxUM2[2] = fgkThSS/2. + 2.4/2.; // 2.4 cm is added for FEE Board thickness Float_t dboxSM2[3]; dboxSM2[0] = fSMLengthbx + 0.05; // 0.05cm for the ESC3,4 dboxSM2[1] = fSMLengthby; dboxSM2[2] = dboxUM2[2]; // Position co-ordinates of the unit modules in EPM3 & EPM4 // Space is added to provide a gapping for HV between UM's Float_t xb1,xb2,yb1,yb2,yb3; xb1 = dboxSM2[0] - 0.1 - dboxUM2[0]; xb2 = xb1 - dboxUM2[0] - 0.1 - dboxUM2[0]; yb1 = dboxSM2[1] - 0.2 - dboxUM2[1]; yb2 = yb1 - dboxUM2[1] - 0.2 - dboxUM2[1]; yb3 = yb2 - dboxUM2[1] - 0.3- dboxUM2[1]; // Create Volumes for Lead(Pb) Plates // Lead Plate For LONG TYPE // X-dimension of Lead Plate = 3*(X-dimension of EUM1 or EUV1) + gap provided between unit modules // Y-dimension of Lead Plate = 2*(Y-dimension of EUM1 or EUV1) + thickness of SS channels // + tolerance // Z-demension of Lead Plate = 1.5cm // Integer assigned to Pb-medium is 600 Float_t dboxLeadA[3]; dboxLeadA[0] = fSMLengthax; dboxLeadA[1] = fSMLengthay; dboxLeadA[2] = fgkThLead/2.; gMC->Gsvolu("ELDA","BOX", idtmed[600], dboxLeadA, 3); //LEAD Plate For SHORT TYPE // X-dimension of Lead Plate = 2*(X-dimension of EUM2 or EUV2) + gap provided between unit modules // Y-dimension of Lead Plate = 3*(Y-dimension of EUM2 or EUV2) + thickness of SS channels // + tolerance // Z-demension of Lead Plate = 1.5cm // Integer assigned to Pb-medium is 600 Float_t dboxLeadB[3]; dboxLeadB[0] = fSMLengthbx; dboxLeadB[1] = fSMLengthby; dboxLeadB[2] = fgkThLead/2.; gMC->Gsvolu("ELDB","BOX", idtmed[600], dboxLeadB, 3); //=========== CREATE MOTHER VOLUMES FOR PMD ===========================/ Float_t serviceX = 23.2; Float_t serviceYa = 5.2; Float_t serviceYb = 9.8; Float_t serviceXext = 16.0; // Five Mother Volumes of PMD are Created // Two Volumes EPM1 & EPM2 of Long Type // Other Two Volumes EPM3 & EPM4 for Short Type // Fifth Volume EFGD for Girders and its Carriage // Four Volmes EPM1, EPM2, EPM3 & EPM4 are Placed such that // to create a hole and avoid overlap with Beam Pipe // Create Volume FOR EPM1 // X-dimension = fSMLengthax + Extended Iron Support(23.2cm) + // Extension in Module(16cm) for full coverage of Detector + 1mm thick SS-Plate // Y-dimension = fSMLengthay + Extended Iron Support(5.2cm) // Z-dimension = fSMthick/2.; fSMthick=17cm is full profile of PMD in Z-Side // Note:- EPM1 is a Volume of Air Float_t gaspmd1[3]; gaspmd1[0] = fSMLengthax + serviceX/2.+ serviceXext/2. + 0.05; //0.05cm for the thickness of gaspmd1[1] = fSMLengthay + serviceYa/2.; //SS-plate for cooling encloser gaspmd1[2] = fSMthick/2.; gMC->Gsvolu("EPM1", "BOX", idtmed[698], gaspmd1, 3); // Create Volume FOR EPM2 // X-dimension = fSMLengthax + Extended Iron Support(23.2cm) + // Extension in Module(16cm) for full coverage of Detector + 1mm thick SS-Plate // Y-dimension = fSMLengthay + Extended Iron Support(9.8cm) // Z-dimension = fSMthick/2.; fSMthick=17cm is full profile of PMD in Z-Side // Note:- EPM2 is a Volume of Air Float_t gaspmd2[3]; gaspmd2[0] = fSMLengthax + serviceX/2. + serviceXext/2. + 0.05; //0.05cm for the thickness of gaspmd2[1] = fSMLengthay + serviceYb/2.; //SS-plate for cooling encloser gaspmd2[2] = fSMthick/2.; gMC->Gsvolu("EPM2", "BOX", idtmed[698], gaspmd2, 3); // Create Volume FOR EPM3 // X-dimension = fSMLengthbx + Extended Iron Support(23.2cm) + // Extension in Module(16cm) for full coverage of Detector // Y-dimension = fSMLengthby + Extended Iron Support(5.2cm) // Z-dimension = fSMthick/2.; fSMthick=17cm is full profile of PMD in Z-Side // Note:- EPM3 is a Volume of Air Float_t gaspmd3[3]; gaspmd3[0] = fSMLengthbx + serviceX/2. + serviceXext/2.+ 0.05; //0.05cm for the thickness of gaspmd3[1] = fSMLengthby + serviceYa/2.; //SS-plate for cooling encloser gaspmd3[2] = fSMthick/2.; gMC->Gsvolu("EPM3", "BOX", idtmed[698], gaspmd3, 3); // Create Volume FOR EPM4 // X-dimension = fSMLengthbx + Extended Iron Support(23.2cm) + // Extension in Module(16cm) for full coverage of Detector // Y-dimension = fSMLengthby + Extended Iron Support(9.8cm) // Z-dimension = fSMthick/2.; fSMthick=17cm is full profile of PMD in Z-Side // Note:- EPM4 is a Volume of Air Float_t gaspmd4[3]; gaspmd4[0] = fSMLengthbx + serviceX/2. + serviceXext/2.+ 0.05; //0.05cm for the thickness of gaspmd4[1] = fSMLengthby + serviceYb/2.; //SS-plate for cooling encloser gaspmd4[2] = fSMthick/2.; gMC->Gsvolu("EPM4", "BOX", idtmed[698], gaspmd4, 3); // Create the Fifth Mother Volume of Girders and its Carriage //-------------------------------------------------------------// // Create the Girders // X-dimension = 238.7cm // Y-dimension = 12.0cm // Z-dimension = 7.0cm // Girders are the Volume of Iron // And the Integer Assigned to SS is 618 Float_t grdr[3]; grdr[0] = 238.7/2.; grdr[1] = 12.0/2.; grdr[2] = 7.0/2.; gMC->Gsvolu("EGDR", "BOX", idtmed[618], grdr, 3); // Create Air Strip for Girders as the Girders are hollow // Girders are 1cm thick in Y and Z on both sides Float_t airgrdr[3]; airgrdr[0] = grdr[0]; airgrdr[1] = grdr[1] - 1.0; airgrdr[2] = grdr[2] - 1.0; gMC->Gsvolu("EAIR", "BOX", idtmed[698], airgrdr, 3); // Positioning the air strip EAIR in girder EGDR gMC->Gspos("EAIR", 1, "EGDR", 0., 0., 0., 0, "ONLY"); // Create the Carriage for Girders // Originally, Carriage is divided in two parts // 64.6cm on -X side, 44.2cm on +X side and 8.2cm is the gap between two // In approximation we have taken these together as a single Volume // With X = 64.6cm + 44.2cm + 8.2cm // Y-dimension = 4.7cm // Z-dimension = 18.5cm // Carriage is a Volume of SS Float_t xgrdr[3]; xgrdr[0] = (64.6 + 44.2 + 8.2)/2.; xgrdr[1] = 4.7/2.; xgrdr[2] = 18.5/2.; gMC->Gsvolu("EXGD", "BOX", idtmed[618], xgrdr, 3); // Create Air Strip for the Carriage EXGD as it is hollow // Carriage is 1cm thick in Y on one side and in Z on both sides Float_t xairgrdr[3]; xairgrdr[0] = xgrdr[0]; xairgrdr[1] = xgrdr[1] - 0.5; xairgrdr[2] = xgrdr[2] - 1.0; gMC->Gsvolu("EXIR", "BOX", idtmed[698], xairgrdr, 3); // Positioning the air strip EXIR in CArriage EXGD gMC->Gspos("EXIR", 1, "EXGD", 0., -0.05, 0., 0, "ONLY"); // Now Create the master volume of air containing Girders & Carriage // X-dimension = same as X-dimension of Girders(EGDR) // Y-dimension = Y of Girder(EGDR) + Y of Carriage(EXGD) + gap between two // Z-dimenson = same as Z of Carriage(EXGD) // Note:- It is a volume of Air Float_t fulgrdr[3]; fulgrdr[0] = 238.7/2.; fulgrdr[1] = 17.5/2.; fulgrdr[2] = 18.5/2.; gMC->Gsvolu("EFGD", "BOX", idtmed[698], fulgrdr, 3); // Positioning the EGDR and EXGD in EFGD gMC->Gspos("EXGD", 1, "EFGD", 0., 6.4, 0., 0, "ONLY"); gMC->Gspos("EGDR", 1, "EFGD", 0., -2.75, -5.75, 0, "ONLY"); gMC->Gspos("EGDR", 2, "EFGD", 0., -2.75, 5.75, 0, "ONLY"); //=========== Mother Volumes are Created ============================// // Create the Volume of 1mm thick SS-Plate for cooling encloser // These are placed on the side close to the Beam Pipe // SS-Plate is perpendicular to the plane of Detector // For LONG TYPE // For EPM1 // X-dimension = 0.1cm // Y-dimension = same as Y of EPM1 // Z-dimension = Y of EPM1 - 0.1; 0.1cm is subtracted as 1mm thick // FR4 sheets for the detector encloser placed on both sides // It is a Volume of SS // Integer assigned to SS is 618 Float_t sscoolencl1[3]; sscoolencl1[0] = 0.05; sscoolencl1[1] = gaspmd1[1]; sscoolencl1[2] = gaspmd1[2] - 0.2/2.; gMC->Gsvolu("ESC1", "BOX", idtmed[618], sscoolencl1, 3); // Placement of ESC1 in EPM1 gMC->Gspos("ESC1", 1, "EPM1", -gaspmd1[0] + 0.05, 0., 0., 0, "ONLY"); // For EPM2 // X-dimension = 0.1cm // Y-dimension = same as Y of EPM2 // Z-dimension = Y of EPM2 - 0.1; 0.1cm is subtracted as 1mm thick // FR4 sheets for the detector encloser placed on both sides // It is a Volume of SS Float_t sscoolencl2[3]; sscoolencl2[0] = 0.05; sscoolencl2[1] = gaspmd2[1]; sscoolencl2[2] = gaspmd2[2] - 0.2/2.; gMC->Gsvolu("ESC2", "BOX", idtmed[618], sscoolencl2, 3); // Placement of ESC2 in EPM2 gMC->Gspos("ESC2", 1, "EPM2", gaspmd2[0] - 0.05 , 0., 0., 0, "ONLY"); // For SHORT TYPE // For EPM3 // X-dimension = 0.1cm // Y-dimension = same as Y of EPM3 // Z-dimension = Y of EPM3 - 0.1; 0.1cm is subtracted as 1mm thick // FR4 sheets for the detector encloser placed on both sides // It is a Volume of SS Float_t sscoolencl3[3]; sscoolencl3[0] = 0.05; sscoolencl3[1] = gaspmd3[1]; sscoolencl3[2] = gaspmd3[2] - 0.2/2.; gMC->Gsvolu("ESC3", "BOX", idtmed[618], sscoolencl3, 3); // Placement of ESC3 in EPM3 gMC->Gspos("ESC3", 1, "EPM3", gaspmd3[0] - 0.05 , 0., 0., 0, "ONLY"); // For EPM4 // X-dimension = 0.1cm // Y-dimension = same as Y of EPM4 // Z-dimension = Y of EPM4 - 0.1; 0.1cm is subtracted as 1mm thick // FR4 sheets for the detector encloser placed on both sides // It is a Volume of SS Float_t sscoolencl4[3]; sscoolencl4[0] = 0.05; sscoolencl4[1] = gaspmd4[1]; sscoolencl4[2] = gaspmd4[2] - 0.2/2.; gMC->Gsvolu("ESC4", "BOX", idtmed[618], sscoolencl4, 3); // Placement of ESC4 in EPM4 gMC->Gspos("ESC4", 1, "EPM4", -gaspmd4[0] + 0.05 , 0., 0., 0, "ONLY"); //======== CREATE SS SUPPORTS FOR EPM1, EPM2, EPM3 & EPM4 =========// // --- DEFINE SS volumes for EPM1 & EPM2 --- // Create SS Support For EPM1 // X-dimension = fSMLengthax + Extended Iron Support(23.2cm) // Y-dimension = fSMLengthay + Extended Iron Support(5.2cm) // Z-dimension = thickness of Iron support(0.5cm) // It is a Volume of SS // Integer assigned to SS is 618 Float_t dboxFea1[3]; dboxFea1[0] = fSMLengthax + serviceX/2.; dboxFea1[1] = fSMLengthay + serviceYa/2.; dboxFea1[2] = fgkThSteel/2.; gMC->Gsvolu("EFE1","BOX", idtmed[618], dboxFea1, 3); // Create SS Support For EPM2 // X-dimension = fSMLengthax + Extended Iron Support(23.2cm) // Y-dimension = fSMLengthay + Extended Iron Support(9.8cm) // Z-dimension = thickness of Iron support(0.5cm) // It is a Volume of SS // Integer assigned to SS is 618 Float_t dboxFea2[3]; dboxFea2[0] = fSMLengthax + serviceX/2.; dboxFea2[1] = fSMLengthay + serviceYb/2.; dboxFea2[2] = fgkThSteel/2.; gMC->Gsvolu("EFE2","BOX", idtmed[618], dboxFea2, 3); // Create SS Support For EPM3 // X-dimension = fSMLengthbx + Extended Iron Support(23.2cm) // Y-dimension = fSMLengthby + Extended Iron Support(5.2cm) // Z-dimension = thickness of Iron support(0.5cm) // It is a Volume of SS // Integer assigned to SS is 618 Float_t dboxFea3[3]; dboxFea3[0] = fSMLengthbx + serviceX/2.; dboxFea3[1] = fSMLengthby + serviceYa/2.; dboxFea3[2] = fgkThSteel/2.; gMC->Gsvolu("EFE3","BOX", idtmed[618], dboxFea3, 3); // Create SS Support For EPM4 // X-dimension = fSMLengthbx + Extended Iron Support(23.2cm) // Y-dimension = fSMLengthby + Extended Iron Support(9.8cm) // Z-dimension = thickness of Iron support(0.5cm) // It is a Volume of SS // Integer assigned to SS is 618 Float_t dboxFea4[3]; dboxFea4[0] = fSMLengthbx + serviceX/2.; dboxFea4[1] = fSMLengthby + serviceYb/2.; dboxFea4[2] = fgkThSteel/2.; gMC->Gsvolu("EFE4","BOX", idtmed[618], dboxFea4, 3); //=============== Volumes for SS support are Completed =============// // Create FR4 Sheets to enclose the PMD which are Placed parallel to the // plane of the detector. Four FR4 sheets are created with the dimensions // corresponding to the Iron Supports // This is cooling encloser. // Create FR4 sheet ECC1 // X-dimension = same as EFE1 // Y-dimension = same as EFE1 // Z-dimension = 0.1cm // FR4 medium is same as that of G10 // Integer assigned to FR4 medium is 607 Float_t enclos1[3]; enclos1[0] = dboxFea1[0]; enclos1[1] = dboxFea1[1]; enclos1[2] = 0.05; gMC->Gsvolu("ECC1", "BOX", idtmed[607], enclos1, 3); // Create FR4 sheet ECC2 // X-dimension = same as EFE2 // Y-dimension = same as EFE2 // Z-dimension = 0.1cm Float_t enclos2[3]; enclos2[0] = dboxFea2[0]; enclos2[1] = dboxFea2[1]; enclos2[2] = 0.05; gMC->Gsvolu("ECC2", "BOX", idtmed[607], enclos2, 3); // Create FR4 sheet ECC3 // X-dimension = same as EFE3 // Y-dimension = same as EFE3 // Z-dimension = 0.1cm Float_t enclos3[3]; enclos3[0] = dboxFea3[0]; enclos3[1] = dboxFea3[1]; enclos3[2] = 0.05; gMC->Gsvolu("ECC3", "BOX", idtmed[607], enclos3, 3); // Create FR4 sheet ECC4 // X-dimension = same as EFE4 // Y-dimension = same as EFE4 // Z-dimension = 0.1cm Float_t enclos4[3]; enclos4[0] = dboxFea4[0]; enclos4[1] = dboxFea4[1]; enclos4[2] = 0.05; gMC->Gsvolu("ECC4", "BOX", idtmed[607], enclos4, 3); //--------------- FR4 SHEETS COMPLETED ---------------------------// //------------- Create the SS-Channels(Horizontal Rails) to Place // Unit Modules on SS Support -------------------------------------// // Two types of SS-Channels are created // as we have two types of modules // Create SS-channel for Long Type // X-dimension = same as Lead Plate ELDA // Y-dimension = 0.1cm // Z-dimension = 2.0cm // Volume medium is SS Float_t channel12[3]; channel12[0] = fSMLengthax; channel12[1] = 0.05; channel12[2] = 2.0/2.; gMC->Gsvolu("ECHA", "BOX", idtmed[618], channel12, 3); // Create SS-channel for Short Type // X-dimension = same as Lead Plate ELDB // Y-dimension = 0.1cm // Z-dimension = 2.0cm // Volume medium is SS Float_t channel34[3]; channel34[0] = fSMLengthbx; channel34[1] = 0.05; channel34[2] = 2.0/2.; gMC->Gsvolu("ECHB", "BOX", idtmed[618], channel34, 3); //----------------- SS-Channels are Copmleted --------------------// //========= POSITIONING OF SS SUPPORT AND LEAD PLATES IN QUADRANTS =====// /**************** Z-Distances of different Components **********/ Float_t zcva,zfea,zpba,zpsa,zchanVeto,zchanPS, zelvdbVeto, zelvdbPS; zpba = - fgkThSteel/2.; //z-position of Pb plate zfea = fgkThLead/2.; //z-position of SS-Support zchanVeto = zpba - fgkThLead/2. - channel12[2]; //z-position of SS-channel on Veto zchanPS = zfea + fgkThSteel/2. + channel12[2]; //z-position of SS-channel on Preshower zpsa = zfea + fgkThSteel/2. + fDthick; //z-position of Preshower zcva = zpba - fgkThLead/2.- fDthick; //z-position of Veto zelvdbVeto = zpba + fgkThLead/2. - 8.9/2.; //z-position of LVDBs on Veto side zelvdbPS = zfea + fgkThSteel/2. + 7.4/2.; //z-position of LVDBs on Preshower side // FOR LONG TYPE Float_t xLead1,yLead1,zLead1, xLead2,yLead2,zLead2; Float_t xIron1,yIron1,zIron1, xIron2,yIron2,zIron2; xIron1 = - 16.0/2. + 0.1/2.; // half of 0.1cm is added as 1mm SS sheet is placed yIron1 = 0.; zIron1 = zfea; xIron2 = 16.0/2. - 0.1/2.; // half of 0.1cm is added as 1mm SS sheet is placed yIron2 = 0.; zIron2 = zfea; xLead1 = xIron1 - 23.2/2.; yLead1 = -5.2/2.; zLead1 = zpba; xLead2 =xIron2 + 23.2/2.; yLead2 = 9.8/2.; zLead2 = zpba; gMC->Gspos("EFE1", 1, "EPM1", xIron1, yIron1, zfea, 0, "ONLY"); gMC->Gspos("ELDA", 1, "EPM1", xLead1, yLead1, zpba, 0, "ONLY"); gMC->Gspos("EFE2", 1, "EPM2", xIron2, yIron2, zfea, 0, "ONLY"); gMC->Gspos("ELDA", 1, "EPM2", xLead2, yLead2, zpba, jhrot12, "ONLY"); // FOR SHORT TYPE Float_t xLead3,yLead3,zLead3, xLead4,yLead4,zLead4; Float_t xIron3,yIron3,zIron3, xIron4,yIron4,zIron4; xIron3 = 16.0/2.- 0.1/2.; // half of 0.1cm is added as 1mm SS sheet is placed ; yIron3 = 0.; zIron3 = zfea; xIron4 = - 16.0/2.+ 0.1/2.; // half of 0.1cm is added as 1mm SS sheet is placed; yIron4 = 0.; zIron4 = zfea; xLead3 = xIron3 + 23.2/2.; yLead3 = -5.2/2.; zLead3 = zpba; xLead4 = xIron4 - 23.2/2.; yLead4 = 9.8/2.; zLead4 = zpba; gMC->Gspos("EFE3", 1, "EPM3", xIron3, yIron3, zfea, 0, "ONLY"); gMC->Gspos("ELDB", 1, "EPM3", xLead3, yLead3, zpba, 0, "ONLY"); gMC->Gspos("EFE4", 1, "EPM4", xIron4, yIron4, zfea, 0, "ONLY"); gMC->Gspos("ELDB", 1, "EPM4", xLead4, yLead4, zpba, jhrot12, "ONLY"); //===================================================================// // Placement of FR4 sheets as encloser of full profile of PMD gMC->Gspos("ECC1", 1, "EPM1", xIron1, yIron1, -8.45, 0, "ONLY"); gMC->Gspos("ECC2", 1, "EPM2", xIron2, yIron2, -8.45, 0,"ONLY"); gMC->Gspos("ECC3", 1, "EPM3", xIron3, yIron3, -8.45, 0,"ONLY"); gMC->Gspos("ECC4", 1, "EPM4", xIron4, yIron4, -8.45, 0,"ONLY"); gMC->Gspos("ECC1", 2, "EPM1", xIron1, yIron1, 8.45, 0, "ONLY"); gMC->Gspos("ECC2", 2, "EPM2", xIron2, yIron2, 8.45, 0,"ONLY"); gMC->Gspos("ECC3", 2, "EPM3", xIron3, yIron3, 8.45, 0,"ONLY"); gMC->Gspos("ECC4", 2, "EPM4", xIron4, yIron4, 8.45, 0,"ONLY"); //----------------- NOW TO PLACE SS-CHANNELS -----------------------// Float_t xchanepm11, ychanepm11,ychanepm12; Float_t xchanepm21, ychanepm21,ychanepm22; Float_t xchanepm31, ychanepm31,ychanepm32,ychanepm33,ychanepm34; Float_t xchanepm41, ychanepm41,ychanepm42,ychanepm43,ychanepm44; xchanepm11 = xLead1; ychanepm11 = ya1 + yLead1 + dboxSS1[1] + 0.1 + 0.1/2.; ychanepm12 = ya1 + yLead1 - dboxSS1[1] - 0.1 - 0.1/2.; xchanepm21 = xLead2; ychanepm21 = -ya1 + yLead2 - dboxSS1[1] - 0.1 - 0.1/2.; ychanepm22 = -ya1 + yLead2 + dboxSS1[1] + 0.1 + 0.1/2.; gMC->Gspos("ECHA", 1, "EPM1", xchanepm11, ychanepm11, zchanPS, 0, "ONLY"); gMC->Gspos("ECHA", 2, "EPM1", xchanepm11, ychanepm12, zchanPS, 0, "ONLY"); gMC->Gspos("ECHA", 3, "EPM1", xchanepm11, ychanepm11, zchanVeto, 0, "ONLY"); gMC->Gspos("ECHA", 4, "EPM1", xchanepm11, ychanepm12, zchanVeto, 0, "ONLY"); gMC->Gspos("ECHA", 1, "EPM2", xchanepm21, ychanepm21, zchanPS, 0, "ONLY"); gMC->Gspos("ECHA", 2, "EPM2", xchanepm21, ychanepm22, zchanPS, 0, "ONLY"); gMC->Gspos("ECHA", 3, "EPM2", xchanepm21, ychanepm21, zchanVeto, 0, "ONLY"); gMC->Gspos("ECHA", 4, "EPM2", xchanepm21, ychanepm22, zchanVeto, 0, "ONLY"); xchanepm31 = xLead3; ychanepm31 = yb1 + yLead3 + dboxSS2[1] + 0.1 + 0.1/2.; ychanepm32 = yb1 + yLead3 - dboxSS2[1] - 0.1 - 0.1/2.; ychanepm33 = yb3 + yLead3 + dboxSS2[1] + 0.1 + 0.1/2.; ychanepm34 = yb3 + yLead3 - dboxSS2[1] - 0.1 - 0.1/2.; xchanepm41 = xLead4; ychanepm41 = -yb1 + yLead4 - dboxSS2[1] - 0.1 - 0.1/2.; ychanepm42 = -yb1 + yLead4 + dboxSS2[1] + 0.1 + 0.1/2.; ychanepm43 = -yb3 + yLead4 - dboxSS2[1] - 0.1 - 0.1/2.; ychanepm44 = -yb3 + yLead4 + dboxSS2[1] + 0.1 + 0.1/2.; gMC->Gspos("ECHB", 1, "EPM3", xchanepm31, ychanepm31, zchanPS, 0, "ONLY"); gMC->Gspos("ECHB", 2, "EPM3", xchanepm31, ychanepm32, zchanPS, 0, "ONLY"); gMC->Gspos("ECHB", 3, "EPM3", xchanepm31, ychanepm33, zchanPS, 0, "ONLY"); gMC->Gspos("ECHB", 4, "EPM3", xchanepm31, ychanepm34 + 0.200005, zchanPS, 0, "ONLY"); // Because of overlaping a factor 0.200005 is added in ychanepm34 gMC->Gspos("ECHB", 5, "EPM3", xchanepm31, ychanepm31, zchanVeto, 0, "ONLY"); gMC->Gspos("ECHB", 6, "EPM3", xchanepm31, ychanepm32, zchanVeto, 0, "ONLY"); gMC->Gspos("ECHB", 7, "EPM3", xchanepm31, ychanepm33, zchanVeto, 0, "ONLY"); gMC->Gspos("ECHB", 8, "EPM3", xchanepm31, ychanepm34 + 0.200005, zchanVeto, 0, "ONLY"); // Because of overlaping a factor 0.200005 is added in ychanepm34 gMC->Gspos("ECHB", 1, "EPM4", xchanepm41, ychanepm41, zchanPS, 0, "ONLY"); gMC->Gspos("ECHB", 2, "EPM4", xchanepm41, ychanepm42, zchanPS, 0, "ONLY"); gMC->Gspos("ECHB", 3, "EPM4", xchanepm41, ychanepm43, zchanPS, 0, "ONLY"); gMC->Gspos("ECHB", 4, "EPM4", xchanepm41, ychanepm44 - 0.200002, zchanPS, 0, "ONLY"); // Because of overlaping a factor 0.200002 is subtracted in ychanepm44 gMC->Gspos("ECHB", 5, "EPM4", xchanepm41, ychanepm41, zchanVeto, 0, "ONLY"); gMC->Gspos("ECHB", 6, "EPM4", xchanepm41, ychanepm42, zchanVeto, 0, "ONLY"); gMC->Gspos("ECHB", 7, "EPM4", xchanepm41, ychanepm43, zchanVeto, 0, "ONLY"); gMC->Gspos("ECHB", 8, "EPM4", xchanepm41, ychanepm44 -0.200002, zchanVeto, 0, "ONLY"); // Because of overlaping a factor 0.200002 is subtracted in ychanepm44 //================= Channel Placement Completed ======================// //============ Now to Create Al Box and then LVDBs and Cables // // are Placed inside it // // Eight Al Boxes are created, four on Preshower side // and four on Veto side // FOR PRESHOWER // First to Create hollow Al Box // there are two types of modules, therefore, two Al box of // long type and two of short type are created // For Long Type // X-dimension = 16.5cm // Y-dimension = same as EFE1 // Z-dimension = 7.4cm // Integer assigned to Al medium is 603 Float_t esvdA1[3]; esvdA1[0]= 16.5/2.; esvdA1[1]= dboxFea1[1]; esvdA1[2]= 7.4/2.; gMC->Gsvolu("ESV1", "BOX", idtmed[603], esvdA1, 3); gMC->Gsvolu("ESV2", "BOX", idtmed[603], esvdA1, 3); // Create Air strip for Al Boxes type-A // Al boxes are 3mm thick In X and Z on both sides // X-dimension = 16.5cm - 0.3cm // Y-dimension = same as EFE1 // Z-dimension = 7.4cm - 0.3cm Float_t eairA1[3]; eairA1[0]= esvdA1[0] - 0.3; eairA1[1]= esvdA1[1]; eairA1[2]= esvdA1[2] - 0.3; gMC->Gsvolu("EIR1", "BOX", idtmed[698], eairA1, 3); gMC->Gsvolu("EIR2", "BOX", idtmed[698], eairA1, 3); // Put air strips EIR1 & EIR2 inside ESV1 & ESV2 respectively gMC->Gspos("EIR1", 1, "ESV1", 0., 0., 0., 0, "ONLY"); gMC->Gspos("EIR2", 1, "ESV2", 0., 0., 0., 0, "ONLY"); // For Short Type // X-dimension = 16.5cm // Y-dimension = same as EFE3 // Z-dimension = 7.4cm Float_t esvdA2[3]; esvdA2[0]= esvdA1[0]; esvdA2[1]= dboxFea3[1]; esvdA2[2]= esvdA1[2]; gMC->Gsvolu("ESV3", "BOX", idtmed[603], esvdA2, 3); gMC->Gsvolu("ESV4", "BOX", idtmed[603], esvdA2, 3); // Create Air strip for Al Boxes type-B // Al boxes are 3mm thick In X and Z on both sides // X-dimension = 16.5cm - 0.3cm // Y-dimension = same as EFE3 // Z-dimension = 7.4cm - 0.3cm Float_t eairA2[3]; eairA2[0]= esvdA2[0] - 0.3; eairA2[1]= esvdA2[1]; eairA2[2]= esvdA2[2] - 0.3; gMC->Gsvolu("EIR3", "BOX", idtmed[698], eairA2, 3); gMC->Gsvolu("EIR4", "BOX", idtmed[698], eairA2, 3); // Put air strips EIR3 & EIR4 inside ESV3 & ESV4 respectively gMC->Gspos("EIR3", 1, "ESV3", 0., 0., 0., 0, "ONLY"); gMC->Gspos("EIR4", 1, "ESV4", 0., 0., 0., 0, "ONLY"); // FOR VETO // First to Create hollow Al Box // there are two types of modules, therefore, two Al box of // long type and two of short type are created // For Long Type // X-dimension = 16.5cm // Y-dimension = same as EFE1 // Z-dimension = 8.9cm // Integer assigned to Al medium is 603 Float_t esvdB1[3]; esvdB1[0]= 16.5/2.; esvdB1[1]= dboxFea1[1]; esvdB1[2]= 8.9/2.; gMC->Gsvolu("EVV1", "BOX", idtmed[603], esvdB1, 3); gMC->Gsvolu("EVV2", "BOX", idtmed[603], esvdB1, 3); // Create Air strip for Al Boxes long type // Al boxes are 3mm thick In X and Z on both sides // X-dimension = 16.5cm - 0.3cm // Y-dimension = same as EFE1 // Z-dimension = 8.9cm - 0.3cm Float_t eairB1[3]; eairB1[0]= esvdB1[0] - 0.3; eairB1[1]= esvdB1[1]; eairB1[2]= esvdB1[2] - 0.3; gMC->Gsvolu("EIR5", "BOX", idtmed[698], eairB1, 3); gMC->Gsvolu("EIR6", "BOX", idtmed[698], eairB1, 3); // Put air strips EIR5 & EIR6 inside EVV1 & EVV2 respectively gMC->Gspos("EIR5", 1, "EVV1", 0., 0., 0., 0, "ONLY"); gMC->Gspos("EIR6", 1, "EVV2", 0., 0., 0., 0, "ONLY"); // For Short Type // X-dimension = 16.5cm // Y-dimension = same as EFE3 // Z-dimension = 8.9cm // Integer assigned to Al medium is 603 Float_t esvdB2[3]; esvdB2[0]= esvdB1[0]; esvdB2[1]= dboxFea3[1]; esvdB2[2]= esvdB1[2]; gMC->Gsvolu("EVV3", "BOX", idtmed[603], esvdB2, 3); gMC->Gsvolu("EVV4", "BOX", idtmed[603], esvdB2, 3); // Create Air strip for Al Boxes short type // Al boxes are 3mm thick In X and Z on both sides // X-dimension = 16.5cm - 0.3cm // Y-dimension = same as EFE3 // Z-dimension = 8.9cm - 0.3cm Float_t eairB2[3]; eairB2[0]= esvdB2[0] - 0.3; eairB2[1]= esvdB2[1]; eairB2[2]= esvdB2[2] - 0.3; gMC->Gsvolu("EIR7", "BOX", idtmed[698], eairB2, 3); gMC->Gsvolu("EIR8", "BOX", idtmed[698], eairB2, 3); // Put air strips EIR7 & EIR8 inside EVV3 & EVV4 respectively gMC->Gspos("EIR7", 1, "EVV3", 0., 0., 0., 0, "ONLY"); gMC->Gspos("EIR8", 1, "EVV4", 0., 0., 0., 0, "ONLY"); //------------ Al Boxes Completed ----------------------/ //--------------Now Create LVDBs----------------------/ // LVDBs are the volumes of G10 // X-dimension = 10.0cm // Y-dimension = 8.0cm // Z-dimension = 0.2cm // Integer assigned to the G10 medium is 607 Float_t elvdb[3]; elvdb[0]= 10.0/2.; elvdb[1]= 8.0/2.; elvdb[2]= 0.2/2.; gMC->Gsvolu("ELVD", "BOX", idtmed[607], elvdb, 3); // Put the LVDBs inside Air Boxes Float_t yesvd = dboxFea1[1] - 25.0 - 4.0; for(Int_t jj =1; jj<=6; jj++){ gMC->Gspos("ELVD", jj, "EIR1", 0., yesvd, 0., 0, "ONLY"); gMC->Gspos("ELVD", jj, "EIR2", 0., yesvd, 0., 0, "ONLY"); yesvd = yesvd - 4.0 - 0.5 - 4.0; } yesvd = dboxFea3[1] - 15.0 - 4.0; for(Int_t jj =1; jj<=6; jj++){ gMC->Gspos("ELVD", jj, "EIR3", 0., yesvd, 0., 0, "ONLY"); gMC->Gspos("ELVD", jj, "EIR4", 0., yesvd, 0., 0, "ONLY"); yesvd = yesvd - 4.0 - 0.5 - 4.0; } yesvd = dboxFea1[1] - 25.0 - 4.0; for(Int_t jj =1; jj<=6; jj++){ gMC->Gspos("ELVD", jj, "EIR5", 0., yesvd, 0., 0, "ONLY"); gMC->Gspos("ELVD", jj, "EIR6", 0., yesvd, 0., 0, "ONLY"); yesvd = yesvd - 4.0 - 0.5 - 4.0; } yesvd = dboxFea3[1] - 15.0 - 4.0; for(Int_t jj =1; jj<=6; jj++){ gMC->Gspos("ELVD", jj, "EIR7", 0., yesvd, 0., 0, "ONLY"); gMC->Gspos("ELVD", jj, "EIR8", 0., yesvd, 0., 0, "ONLY"); yesvd = yesvd - 4.0 - 0.5 - 4.0; } //----------------- LVDBs Placement Completed--------------// // ------------ Now Create Cables ------------------------// // There are a number of cables // We have reduced the number of volumes to 4 // And these 4 Volumes of Cables are placed repeatedly // in the four quadrants (EPM1,2,3,4) // The placement of Cables are in good approximations // The material medium for Cables is a mixture of Plastic // and Copper(Cu). Therefore, in a good approximation a mixture // is created and Integer assigned to this medium is 631 Float_t cable1[3]; cable1[0] = 2.5/2.; cable1[1] = dboxFea1[1]; cable1[2] = 2.4/2.; gMC->Gsvolu("ECB1", "BOX", idtmed[631], cable1, 3); Float_t cable2[3]; cable2[0] = 2.5/2.; cable2[1] = dboxFea3[1]; cable2[2] = 2.4/2.; gMC->Gsvolu("ECB2", "BOX", idtmed[631], cable2, 3); Float_t cable3[3]; cable3[0] = 2.5/2.; cable3[1] = dboxFea3[1] - dboxUM2[1]; cable3[2] = 2.4/2.; gMC->Gsvolu("ECB3", "BOX", idtmed[631], cable3, 3); Float_t cable4[3]; cable4[0] = 2.5/2.; cable4[1] = dboxUM2[1]; cable4[2] = 2.4/2.; gMC->Gsvolu("ECB4", "BOX", idtmed[631], cable4, 3); // Calculation of the co-ordinates of Cables Float_t xcable11pm2, xcable12pm2, xcable2pm1, xcable2pm2, xcable21pm4, xcable22pm4; Float_t xcable3pm1, xcable3pm3, xcable3pm4, xcable4pm3; Float_t ycable2pm1, ycable2pm2; Float_t ycable3pm1, ycable3pm3, ycable3pm4, ycable4pm3; Float_t zcablePS, zcableVeto; xcable2pm1 = esvdA1[0] - 3.0 - cable1[0]; xcable3pm1 = xcable2pm1 - cable1[0] - 0.5 - cable1[0]; xcable11pm2 = -esvdA1[0]+ 3.0 + cable1[0]; xcable12pm2 = xcable11pm2 + cable1[0] + 0.5 + cable1[0]; xcable2pm2 = xcable12pm2 + cable1[0] + 0.5 + cable1[0]; xcable3pm3 = -esvdB1[0] + 3.0 + cable1[0]; xcable4pm3 = xcable3pm3 + cable1[0] + 0.5 + cable1[0]; xcable21pm4 = esvdB1[0] - 3.0 - cable1[0]; xcable22pm4 = xcable21pm4 - cable1[0] -0.5 - cable1[0]; xcable3pm4 = xcable22pm4 - cable1[0] -0.5 -cable1[0]; ycable2pm1 = -(esvdA1[1] - esvdA2[1]); ycable3pm1 = -esvdA1[1] + cable3[1]; ycable2pm2 = -(esvdA1[1] - esvdA2[1]); ycable3pm3 = -dboxUM2[1]; ycable4pm3 = -esvdA2[1] + dboxUM2[1]; ycable3pm4 = -dboxUM2[1]; zcablePS = -esvdA1[2] + 0.3 + cable1[2]; zcableVeto = esvdB1[2] - 0.3 - cable1[2]; // Placement of Cables in Air Boxes gMC->Gspos("ECB2", 1, "EIR1", xcable2pm1, ycable2pm1, zcablePS, 0, "ONLY"); gMC->Gspos("ECB3", 1, "EIR1", xcable3pm1, ycable3pm1, zcablePS, 0, "ONLY"); gMC->Gspos("ECB2", 1, "EIR5", xcable2pm1, ycable2pm1, zcableVeto, 0, "ONLY"); gMC->Gspos("ECB3", 1, "EIR5", xcable3pm1, ycable3pm1, zcableVeto, 0, "ONLY"); gMC->Gspos("ECB1", 1, "EIR2", xcable11pm2, 0., zcablePS, 0, "ONLY"); gMC->Gspos("ECB1", 2, "EIR2", xcable12pm2, 0., zcablePS, 0, "ONLY"); gMC->Gspos("ECB2", 1, "EIR2", xcable2pm2, ycable2pm2, zcablePS, 0, "ONLY"); gMC->Gspos("ECB1", 1, "EIR6", xcable11pm2, 0., zcableVeto, 0, "ONLY"); gMC->Gspos("ECB1", 2, "EIR6", xcable12pm2, 0., zcableVeto, 0, "ONLY"); gMC->Gspos("ECB2", 1, "EIR6", xcable2pm2, ycable2pm2, zcableVeto, 0, "ONLY"); gMC->Gspos("ECB3", 1, "EIR3", xcable3pm3, ycable3pm3, zcablePS, 0, "ONLY"); gMC->Gspos("ECB4", 1, "EIR3", xcable4pm3, ycable4pm3, zcablePS, 0, "ONLY"); gMC->Gspos("ECB3", 1, "EIR7", xcable3pm3, ycable3pm3, zcableVeto, 0, "ONLY"); gMC->Gspos("ECB4", 1, "EIR7", xcable4pm3, ycable4pm3, zcableVeto, 0, "ONLY"); gMC->Gspos("ECB2", 1, "EIR4", xcable21pm4, 0., zcablePS, 0, "ONLY"); gMC->Gspos("ECB2", 2, "EIR4", xcable22pm4, 0., zcablePS, 0, "ONLY"); gMC->Gspos("ECB3", 1, "EIR4", xcable3pm4, ycable3pm4, zcablePS, 0, "ONLY"); gMC->Gspos("ECB2", 1, "EIR8", xcable21pm4, 0., zcableVeto, 0, "ONLY"); gMC->Gspos("ECB2", 2, "EIR8", xcable22pm4, 0., zcableVeto, 0, "ONLY"); gMC->Gspos("ECB3", 1, "EIR8", xcable3pm4, ycable3pm4, zcableVeto, 0, "ONLY"); //=============== NOW POSITIONING THE Al Boxes IN EPM'S================// gMC->Gspos("ESV1", 1, "EPM1", dboxFea1[0] - esvdA1[0] - 8.0, 0., zelvdbPS, 0, "ONLY"); gMC->Gspos("EVV1", 1, "EPM1", dboxFea1[0] - esvdB1[0] - 8.0, 0., zelvdbVeto, 0, "ONLY"); gMC->Gspos("ESV2", 1, "EPM2", -dboxFea2[0] + esvdA1[0] + 8.0, 2.3, zelvdbPS, 0, "ONLY"); gMC->Gspos("EVV2", 1, "EPM2", -dboxFea2[0] + esvdB1[0] + 8.0, 2.3, zelvdbVeto, 0, "ONLY"); gMC->Gspos("ESV3", 1, "EPM3", -dboxFea3[0] + esvdA1[0] + 8.0, 0., zelvdbPS, 0, "ONLY"); gMC->Gspos("EVV3", 1, "EPM3", -dboxFea3[0] + esvdB1[0] + 8.0, 0., zelvdbVeto, 0, "ONLY"); gMC->Gspos("ESV4", 1, "EPM4", dboxFea4[0] - esvdA1[0] - 8.0, 2.3, zelvdbPS, 0, "ONLY"); gMC->Gspos("EVV4", 1, "EPM4", dboxFea4[0] - esvdB1[0] - 8.0, 2.3, zelvdbVeto, 0, "ONLY"); //==================================================================// //====================== LAST THING IS TO INSTALL ELMB ================// // ELMB,s are the G10 Volumes // First to create Air Volume to place ELMBs Float_t xelmb[3]; xelmb[0] = 10.0; xelmb[1] = 4.0; xelmb[2] = 0.5; gMC->Gsvolu("ELMB", "BOX", idtmed[698], xelmb, 3); // There are more G10 Volumes // But in approximation, we reduced them to two // ELM1 & ELM2 Float_t xelmb1[3]; xelmb1[0] = 9.7; xelmb1[1] = 3.6; xelmb1[2] = 0.1; gMC->Gsvolu("ELM1", "BOX", idtmed[607], xelmb1, 3); Float_t xelmb2[3]; xelmb2[0] = 6.0; xelmb2[1] = 3.0; xelmb2[2] = 0.1; gMC->Gsvolu("ELM2", "BOX", idtmed[607], xelmb2, 3); /******** NOW POSITIONING THE G10 VOLUMES ELM1 & ELM2 IN ELMB **********/ gMC->Gspos("ELM1", 1, "ELMB", 0., 0., -0.3, 0, "ONLY"); gMC->Gspos("ELM2", 1, "ELMB", 0., 0., 0.3, 0, "ONLY"); // Position co-ordinates of ELMBs in EPM2 & EPM4 Float_t xelmbepm2, xelmbepm4, yelmbepm2, yelmbepm4, zelmbPS, zelmbVeto; xelmbepm2 = -gaspmd2[0] + 16.0 +23.2 + 2.5 + xelmb[0]; xelmbepm4 = gaspmd4[0] - 16.0 -23.2 - 2.5 - xelmb[0]; yelmbepm2 = -gaspmd2[1] + 1.0 + xelmb[1]; yelmbepm4 = -gaspmd4[1] + 1.0 + xelmb[1]; zelmbPS = zfea + fgkThSteel/2.+ xelmb[2]; zelmbVeto = zfea - fgkThSteel/2.- xelmb[2]; /************ NOW PLACE ELMB'S IN EPM2 & EPM4 *********************/ // There are total of 14 ELMB volumes // three on both sides of EPM2 (total of 6) // and four on both sides of EPM4 (total of 8) // The ELMBs are placed at the bottom of // SS support, which is the extended part // Placement of ELMBs on EPM2 for(Int_t kk=1;kk<=3;kk++){ gMC->Gspos("ELMB", kk, "EPM2", xelmbepm2, yelmbepm2, zelmbPS, 0, "ONLY"); xelmbepm2 = xelmbepm2 + xelmb[0] + 0.5 + xelmb[0]; } xelmbepm2 = -gaspmd2[0] + 16.0 +23.2 + 2.5 + xelmb[0]; for(Int_t kk=4;kk<=6;kk++){ gMC->Gspos("ELMB", kk, "EPM2", xelmbepm2, yelmbepm2, zelmbVeto, 0, "ONLY"); xelmbepm2 = xelmbepm2 + xelmb[0] + 0.5 + xelmb[0]; } // Placement of ELMBs on EPM4 for(Int_t kk=1;kk<=4;kk++){ gMC->Gspos("ELMB", kk, "EPM4", xelmbepm4, yelmbepm4, zelmbPS, 0, "ONLY"); xelmbepm4 = xelmbepm4 - xelmb[0] - 0.5 - xelmb[0]; } xelmbepm4 = gaspmd4[0] - 16.0 -23.2 - 2.5 - xelmb[0]; for(Int_t kk=5;kk<=8;kk++){ gMC->Gspos("ELMB", kk, "EPM4", xelmbepm4, yelmbepm4, zelmbVeto, 0, "ONLY"); xelmbepm4 = xelmbepm4 - xelmb[0] - 0.5 - xelmb[0]; } //========= Placement of ELMBs Completed ============================/ // ------------- Now to Place Unit Modules in four quadrants // EPM1, EPM2, EPM3 & EPM4 ---------------------// // Position co-ordinates of Unit Modules Double_t xcord[24]; Double_t ycord[24]; xcord[0] = xa1; xcord[1] = xa2; xcord[2] = xa3; xcord[3] = xa1; xcord[4] = xa2; xcord[5] = xa3; xcord[6] = -xa1; xcord[7] = -xa2; xcord[8] = -xa3; xcord[9] = -xa1; xcord[10] = -xa2; xcord[11] = -xa3; xcord[12] = xb1; xcord[13] = xb2; xcord[14] = xb1; xcord[15] = xb2; xcord[16] = xb1; xcord[17] = xb2; xcord[18] = -xb1; xcord[19] = -xb2; xcord[20] = -xb1; xcord[21] = -xb2; xcord[22] = -xb1; xcord[23] = -xb2; ycord[0] = ya1; ycord[1] = ya1; ycord[2] = ya1; ycord[3] = ya2; ycord[4] = ya2; ycord[5] = ya2; ycord[6] = -ya1; ycord[7] = -ya1; ycord[8] = -ya1; ycord[9] = -ya2; ycord[10] = -ya2; ycord[11] = -ya2; ycord[12] = yb1; ycord[13] = yb1; ycord[14] = yb2; ycord[15] = yb2; ycord[16] = yb3+0.100007; //Because of overlapping the factor 0.100007 ycord[17] = yb3+0.100007; // is added ycord[18] = -yb1; ycord[19] = -yb1; ycord[20] = -yb2; ycord[21] = -yb2; ycord[22] = -yb3-0.100004; //Because of overlapping the factor 0.100007 ycord[23] = -yb3-0.100004; // is added // Placement of unit modules EUM1 & EUV1(long type) // and EUM2 & EUV2(short type) // in the four quadrants EPM1, EPM2, EPM3 & EPM4 for(Int_t ii=0;ii<=5;ii++){ if(fModStatus[ii]){ gMC->Gspos("EUM1", ii, "EPM1", xcord[ii]+xLead1,ycord[ii]+yLead1, zpsa, 0, "ONLY"); } } for(Int_t ii=6;ii<=11;ii++){ if(fModStatus[ii]) { gMC->Gspos("EUM1", ii, "EPM2", xcord[ii]+xLead2, ycord[ii]+yLead2, zpsa, jhrot12, "ONLY"); } } for(Int_t ii=12;ii<=17;ii++){ if(fModStatus[ii]) { gMC->Gspos("EUM2", ii, "EPM3", xcord[ii]+xLead3, ycord[ii]+yLead3, zpsa, 0, "ONLY"); } } for(Int_t ii=18;ii<=23;ii++){ if(fModStatus[ii]) { gMC->Gspos("EUM2", ii, "EPM4", xcord[ii]+xLead4, ycord[ii]+yLead4, zpsa, jhrot12, "ONLY"); } } for(Int_t ii=24;ii<=29;ii++){ if(fModStatus[ii]) { gMC->Gspos("EUV1", ii, "EPM1", xcord[ii-24]+xLead1, ycord[ii-24]+yLead1, zcva, 0, "ONLY"); } } for(Int_t ii=30;ii<=35;ii++){ if(fModStatus[ii]) { gMC->Gspos("EUV1", ii, "EPM2", xcord[ii-24]+xLead2, ycord[ii-24]+yLead2, zcva, jhrot12, "ONLY"); } } for(Int_t ii=36;ii<=41;ii++){ if(fModStatus[ii]) { gMC->Gspos("EUV2", ii, "EPM3", xcord[ii-24]+xLead3, ycord[ii-24]+yLead3, zcva, 0, "ONLY"); } } for(Int_t ii=42;ii<=47;ii++){ if(fModStatus[ii]) { gMC->Gspos("EUV2", ii, "EPM4", xcord[ii-24]+xLead4, ycord[ii-24]+yLead4, zcva, jhrot12, "ONLY"); } } //-------------- Placement of Unit Modules Completed ---------------// // ========== PLACE THE EPMD IN ALICE ======================// // Now the Job to assemble the five mother volumes of PMD in ALICE // Z-distance of PMD from Interaction Point zp = fgkZdist; // X and Y-positions of the EPM1, EPM2, EPM3 & EPM4 Float_t xfinal,yfinal; Float_t xsm1, xsm2, xsm3, xsm4; Float_t ysm1, ysm2, ysm3, ysm4; xfinal = (fSMLengthax + serviceX/2. + serviceXext/2. + 0.05) + 0.48/2. + (fSMLengthbx + serviceX/2. + serviceXext/2.+ 0.05); //Extra width of the SS plate on Support Structure on X-side and 1mm thick SS for cooling encloser //Extra width of the SS plate on Support Structure on X-side for B-Type yfinal = (fSMLengthay + serviceYa/2.)+ 0.20/2 + (fSMLengthby + serviceYb/2.); //serviceYa is the Extra width of the SS plate on Support Structur on Y-side for EPM1 & EPM3 //serviceYb is the Extra width of the SS plate on Support Structur on Y-side for EPM2 & EPM4 xsm1 = xfinal - (fSMLengthax + serviceX/2. + serviceXext/2. + 0.05); ysm1 = yfinal - (fSMLengthay + serviceYa/2.) - 2.3; xsm2 = -xfinal + (fSMLengthax + serviceX/2. + serviceXext/2. + 0.05); ysm2 = -yfinal + (fSMLengthay + serviceYb/2.) - 2.3; xsm3 = -xfinal + (fSMLengthbx + serviceX/2. + serviceXext/2. + 0.05); ysm3 = yfinal - (fSMLengthby + serviceYa/2.) - 2.3; xsm4 = xfinal - (fSMLengthbx + serviceX/2. + serviceXext/2. + 0.05); ysm4 = -yfinal + (fSMLengthby + serviceYb/2.) - 2.3; //Position Full PMD in ALICE // // EPM1 EPM3 // // EPM4 EPM2 // (rotated EPM3) (rotated EPM1) // // EFGD // (Girders and its Carriage) gMC->Gspos("EPM1", 1, "ALIC", xsm1,ysm1,zp, 0, "ONLY"); gMC->Gspos("EPM2", 1, "ALIC", xsm2,ysm2,zp, 0, "ONLY"); gMC->Gspos("EPM3", 1, "ALIC", xsm3,ysm3,zp, 0, "ONLY"); gMC->Gspos("EPM4", 1, "ALIC", xsm4,ysm4,zp, 0, "ONLY"); gMC->Gspos("EFGD", 1, "ALIC", 0., yfinal + fulgrdr[1], zp, 0, "ONLY"); } //_____________________________________________________________________________ void AliPMDv1::DrawModule() const { // Draw a shaded view of the Photon Multiplicity Detector // // cout << " Inside Draw Modules " << endl; // Set everything unseen gMC->Gsatt("*", "seen", -1); // Set ALIC mother transparent gMC->Gsatt("ALIC", "seen", 0); // // Set the visibility of the components // gMC->Gsatt("ECAR","seen",0); gMC->Gsatt("ECCU","seen",1); gMC->Gsatt("EST1","seen",1); gMC->Gsatt("EST2","seen",1); gMC->Gsatt("EUM1","seen",1); gMC->Gsatt("EUM2","seen",1); gMC->Gsatt("EPMD","seen",1); // gMC->Gdopt("hide", "on"); gMC->Gdopt("shad", "on"); gMC->Gsatt("*", "fill", 7); gMC->SetClipBox("."); gMC->SetClipBox("*", 0, 3000, -3000, 3000, -6000, 6000); gMC->DefaultRange(); gMC->Gdraw("ALIC", 40, 30, 0, 22, 20.5, .02, .02); gMC->Gdhead(1111, "Photon Multiplicity Detector Version 1"); //gMC->Gdman(17, 5, "MAN"); gMC->Gdopt("hide", "off"); AliDebug(1,"Outside Draw Modules"); } //_____________________________________________________________________________ void AliPMDv1::CreateMaterials() { // Create materials for the PMD // // ORIGIN : Y. P. VIYOGI // // cout << " Inside create materials " << endl; Int_t isxfld = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Integ(); Float_t sxmgmx = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Max(); // --- Define the various materials for GEANT --- AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5); // Argon Float_t dAr = 0.001782; // --- Ar density in g/cm3 --- Float_t x0Ar = 19.55 / dAr; AliMaterial(2, "Argon$", 39.95, 18., dAr, x0Ar, 6.5e4); // --- CO2 --- Float_t aCO2[2] = { 12.,16. }; Float_t zCO2[2] = { 6.,8. }; Float_t wCO2[2] = { 1.,2. }; Float_t dCO2 = 0.001977; AliMixture(3, "CO2 $", aCO2, zCO2, dCO2, -2, wCO2); AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5); // ArCO2 Float_t aArCO2[3] = {39.948,12.0107,15.9994}; Float_t zArCO2[3] = {18.,6.,8.}; Float_t wArCO2[3] = {0.7,0.08,0.22}; Float_t dArCO2 = dAr * 0.7 + dCO2 * 0.3; AliMixture(5, "ArCO2$", aArCO2, zArCO2, dArCO2, 3, wArCO2); AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5); // G10 Float_t aG10[4]={1.,12.011,15.9994,28.086}; Float_t zG10[4]={1.,6.,8.,14.}; Float_t wG10[4]={0.15201,0.10641,0.49444,0.24714}; AliMixture(8,"G10",aG10,zG10,1.7,4,wG10); AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.); // Steel Float_t aSteel[4] = { 55.847,51.9961,58.6934,28.0855 }; Float_t zSteel[4] = { 26.,24.,28.,14. }; Float_t wSteel[4] = { .715,.18,.1,.005 }; Float_t dSteel = 7.88; AliMixture(19, "STAINLESS STEEL$", aSteel, zSteel, dSteel, 4, wSteel); // --- CH2 : PLASTIC --- Float_t aCH2[2] = { 12.,1.}; Float_t zCH2[2] = { 6.,1.}; Float_t wCH2[2] = { 1.,2.}; Float_t dCH2 = 0.95; AliMixture(31, "CH2 $", aCH2, zCH2, dCH2, -2, wCH2); // --- CABLES : 80% Plastic and 20% Copper --- Float_t aCABLE[3] = { 12.,1.,63.5 }; Float_t zCABLE[3] = { 6.,1.,29. }; Float_t wCABLE[3] = { 0.6857, 0.1143, 0.2}; Float_t dCABLE = dCH2*0.8 + 8.96*0.2; AliMixture(32, "CABLE $", aCABLE, zCABLE, dCABLE, 3, wCABLE); //Air Float_t aAir[4]={12.0107,14.0067,15.9994,39.948}; Float_t zAir[4]={6.,7.,8.,18.}; Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827}; Float_t dAir1 = 1.20479E-10; Float_t dAir = 1.20479E-3; AliMixture(98, "Vacum$", aAir, zAir, dAir1, 4, wAir); AliMixture(99, "Air $", aAir, zAir, dAir , 4, wAir); // Define tracking media AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .10, .1); AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(19, "S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(32, "CABLE $", 32, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .10, 10); AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .10, .1); AliDebug(1,"Outside create materials"); } //_____________________________________________________________________________ void AliPMDv1::Init() { // // Initialises PMD detector after it has been built // // AliDebug(2,"Inside Init"); AliDebug(2,"PMD simulation package (v1) initialised"); AliDebug(2,"parameters of pmd"); AliDebug(2,Form("%10.2f %10.2f %10.2f %10.2f\n", fgkCellRadius,fgkCellWall,fgkCellDepth,fgkZdist)); Int_t *idtmed = fIdtmed->GetArray()-599; fMedSens=idtmed[605-1]; // --- Generate explicitly delta rays in the iron, aluminium and lead --- // Gstpar is removed from this place and // the energy cut offs in the medium moved to galice.cuts //gMC->Gstpar(idtmed[605], "LOSS", 3.); //gMC->Gstpar(idtmed[605], "DRAY", 1.); // Visualization of volumes gMC->Gsatt("ECAR", "SEEN", 0); gMC->Gsatt("ECCU", "SEEN", 1); gMC->Gsatt("ECCU", "COLO", 4); gMC->Gsatt("EST1", "SEEN", 0); gMC->Gsatt("EST2", "SEEN", 0); gMC->Gsatt("EHC1", "SEEN", 0); gMC->Gsatt("EHC2", "SEEN", 0); gMC->Gsatt("EDGA", "SEEN", 1); gMC->Gsatt("EDGB", "SEEN", 1); gMC->Gsatt("EEGA", "SEEN", 1); gMC->Gsatt("EEGB", "SEEN", 1); gMC->Gsatt("EUM1", "SEEN", 0); gMC->Gsatt("EUV1", "SEEN", 0); gMC->Gsatt("EUM2", "SEEN", 0); gMC->Gsatt("EUV2", "SEEN", 0); gMC->Gsatt("EFEE", "SEEN", 0); gMC->Gsatt("EFEE", "COLO", 4); gMC->Gsatt("EFBA", "SEEN", 1); gMC->Gsatt("EFBA", "COLO", 4); gMC->Gsatt("EFBB", "SEEN", 0); gMC->Gsatt("EFBB", "COLO", 4); gMC->Gsatt("ELDA", "SEEN", 0); gMC->Gsatt("ELDB", "SEEN", 0); gMC->Gsatt("EFE1", "SEEN", 0); gMC->Gsatt("EFE2", "SEEN", 0); gMC->Gsatt("EFE3", "SEEN", 0); gMC->Gsatt("EFE4", "SEEN", 0); gMC->Gsatt("ESC1", "SEEN", 0); gMC->Gsatt("ECC1", "COLO", 2); gMC->Gsatt("ESC2", "SEEN", 0); gMC->Gsatt("ECC2", "COLO", 2); gMC->Gsatt("ESC3", "SEEN", 0); gMC->Gsatt("ECC3", "COLO", 2); gMC->Gsatt("ESC4", "SEEN", 0); gMC->Gsatt("ECC4", "COLO", 2); gMC->Gsatt("ECC1", "SEEN", 0); gMC->Gsatt("ECC2", "SEEN", 0); gMC->Gsatt("ECC3", "SEEN", 0); gMC->Gsatt("ECC4", "SEEN", 0); gMC->Gsatt("EPM1", "SEEN", 1); gMC->Gsatt("EPM2", "SEEN", 1); gMC->Gsatt("EPM3", "SEEN", 1); gMC->Gsatt("EPM4", "SEEN", 1); gMC->Gsatt("ECB1", "SEEN", 0); gMC->Gsatt("ECB2", "SEEN", 0); gMC->Gsatt("ECB3", "SEEN", 0); gMC->Gsatt("ECB4", "SEEN", 0); gMC->Gsatt("ELMB", "SEEN", 0); gMC->Gsatt("ESV1", "SEEN", 0); gMC->Gsatt("ESV2", "SEEN", 0); gMC->Gsatt("ESV3", "SEEN", 0); gMC->Gsatt("ESV4", "SEEN", 0); gMC->Gsatt("EVV1", "SEEN", 0); gMC->Gsatt("EVV2", "SEEN", 0); gMC->Gsatt("EVV3", "SEEN", 0); gMC->Gsatt("EVV4", "SEEN", 0); gMC->Gsatt("EFGD", "SEEN", 0); } //_____________________________________________________________________________ void AliPMDv1::StepManager() { // // Called at each step in the PMD // Int_t copy; Float_t hits[5], destep; Float_t center[3] = {0,0,0}; Int_t vol[6]; //const char *namep; // printf("Current vol is ******** %s \n",namep); if(gMC->CurrentMedium() == fMedSens && (destep = gMC->Edep())) { gMC->CurrentVolID(copy); //namep=gMC->CurrentVolName(); // printf("Current vol is %s \n",namep); vol[0]=copy; gMC->CurrentVolOffID(1,copy); //namep=gMC->CurrentVolOffName(1); // printf("Current vol 11 is %s \n",namep); vol[1]=copy; gMC->CurrentVolOffID(2,copy); //namep=gMC->CurrentVolOffName(2); // printf("Current vol 22 is %s \n",namep); vol[2]=copy; gMC->CurrentVolOffID(3,copy); //namep=gMC->CurrentVolOffName(3); // printf("Current vol 33 is %s \n",namep); vol[3]=copy; gMC->CurrentVolOffID(4,copy); //namep=gMC->CurrentVolOffName(4); // printf("Current vol 44 is %s \n",namep); vol[4]=copy; gMC->CurrentVolOffID(5,copy); //namep=gMC->CurrentVolOffName(5); //printf("Current vol 55 is %s \n",namep); vol[5]=copy; // printf("volume number %4d %4d %4d %4d %4d %4d %10.3f \n",vol[0],vol[1],vol[2],vol[3],vol[4],vol[5],destep*1000000);// edep in MeV gMC->Gdtom(center,hits,1); hits[3] = destep*1e9; //Number in eV // this is for pile-up events hits[4] = gMC->TrackTime(); AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber(), AliTrackReference::kPMD); } } //------------------------------------------------------------------------ // Get parameters void AliPMDv1::GetParameters() { // This gives all the parameters of the detector // such as Length of Supermodules, type A, type B, // thickness of the Supermodule // fSMLengthax = 32.7434; //The total length in X is due to the following components // Factor 3 is because of 3 module length in X for this type // fgkNcolUM1*fgkCellRadius (48 x 0.25): Total span of each module in X // fgkCellRadius/2. : There is offset of 1/2 cell // 0.05+0.05 : Insulation gaps etc // fgkSSBoundary (0.3) : Boundary frame // double XA = 3.0*((fgkCellRadius/fgkSqroot3by2*fgkNcolUM1)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + (2.0*0.075); fSMLengthbx = 42.6136; //The total length in X is due to the following components // Factor 2 is because of 2 module length in X for this type // fgkNcolUM2*fgkCellRadius (96 x 0.25): Total span of each module in X // fgkCellRadius/2. : There is offset of 1/2 cell // 0.05+0.05 : Insulation gaps etc // fgkSSBoundary (0.3) : Boundary frame //double XB = 2.0*((fgkCellRadius/fgkSqroot3by2*fgkNcolUM2)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + 0.1; fSMLengthay = 49.35; //The total length in Y is due to the following components // Factor 2 is because of 2 module length in Y for this type // fgkCellRadius/fgkSqroot3by2)*fgkNrowUM1 (0.25/sqrt3/2 * 96): Total span of each module in Y // of strips // 0.05+0.05 : Insulation gaps etc // fgkSSBoundary (0.3) : Boundary frame // 0.6cm is the channel width plus tolerance // double YA = 2.0*(fgkNrowUM1*fgkCellRadius+fgkCellRadius/2.+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + 0.6/2.; fSMLengthby = 37.925; //The total length in Y is due to the following components // Factor 3 is because of 3 module length in Y for this type // fgkCellRadius/fgkSqroot3by2)*fgkNrowUM2 (0.25/sqrt3/2 * 48): Total span of each module in Y // of strips // 0.05+0.05 : Insulation gaps etc // fgkSSBoundary (0.3) : Boundary frame // 10mm is the channel width plus tolerance //double YB = 3.0*((fgkNrowUM2*fgkCellRadius + fgkCellRadius/2.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + 1.0/2.; //Thickness of a pre/veto plane fDthick = fgkThSS/2. + 1.2; // 1.2 added as FEE Board are now assembled with pre/veto //Thickness of the PMD ; 2.4 added for FEE boards fSMthickpmd = 2.0*(fgkThSS/2.) +fgkThSteel/2.+fgkThLead/2.0 + 2.4/2.; fSMthick = 17.; //17 cm is the full profile of PMD } // --------------------------------------------------------------- void AliPMDv1::AddAlignableVolumes() const { // // Create entries for alignable volumes associating the symbolic volume // name with the corresponding volume path. Needs to be syncronized with // eventual changes in the geometry. // SetSectorAlignable(); } // ---------------------------------------------------------------- void AliPMDv1::SetSectorAlignable() const { // TString vpsector = "ALIC_1/EPM"; TString vpappend = "_1"; TString snsector="PMD/Sector"; TString volpath, symname; for(Int_t cnt=1; cnt<=4; cnt++){ //for(Int_t cnt=1; cnt<=4; cnt++){ volpath = vpsector; volpath += cnt; volpath += vpappend; symname = snsector; symname += cnt; if(!gGeoManager->SetAlignableEntry(symname.Data(),volpath.Data())) { AliFatal("Unable to set alignable entry!"); } } } // ------------------------------------------------------------------ void AliPMDv1::SetCpvOff() { // Set the entire CPV plane off for (Int_t imodule = 24; imodule < 48; imodule++) fModStatus[imodule] = 0; } // ------------------------------------------------------------------ void AliPMDv1::SetPreOff() { // Set the entire Preshower plane off for (Int_t imodule = 0; imodule < 24; imodule++) fModStatus[imodule] = 0; } // ------------------------------------------------------------------ void AliPMDv1::SetModuleOff(Int_t imodule) { // Set the individual module off fModStatus[imodule] = 0; }