/*************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id: AliPMDv1.cxx 18594 2007-05-15 13:28:06Z hristov $ */ // /////////////////////////////////////////////////////////////////////////////// // // // Photon Multiplicity Detector Version 1 // // Bedanga Mohanty : February 14th 2006 // // //Begin_Html /* */ //End_Html // // /////////////////////////////////////////////////////////////////////////////// //// #include #include #include #include #include "AliConst.h" #include "AliLog.h" #include "AliMC.h" #include "AliMagF.h" #include "AliPMDv2008.h" #include "AliRun.h" const Int_t AliPMDv2008::fgkNcolUM1 = 48; // Number of cols in UM, type 1 const Int_t AliPMDv2008::fgkNcolUM2 = 96; // Number of cols in UM, type 2 const Int_t AliPMDv2008::fgkNrowUM1 = 96; // Number of rows in UM, type 1 const Int_t AliPMDv2008::fgkNrowUM2 = 48; // Number of rows in UM, type 2 const Float_t AliPMDv2008::fgkCellRadius = 0.25; // Radius of a hexagonal cell const Float_t AliPMDv2008::fgkCellWall = 0.02; // Thickness of cell Wall const Float_t AliPMDv2008::fgkCellDepth = 0.50; // Gas thickness const Float_t AliPMDv2008::fgkThBase = 0.2; // Thickness of Base plate const Float_t AliPMDv2008::fgkThBKP = 0.1; // Thickness of Back plane const Float_t AliPMDv2008::fgkThAir = 1.03; // Thickness of Air const Float_t AliPMDv2008::fgkThPCB = 0.16; // Thickness of PCB const Float_t AliPMDv2008::fgkThLead = 1.5; // Thickness of Pb const Float_t AliPMDv2008::fgkThSteel = 0.5; // Thickness of Steel const Float_t AliPMDv2008::fgkGap = 0.025; // Air Gap const Float_t AliPMDv2008::fgkZdist = 361.5; // z-position of the detector const Float_t AliPMDv2008::fgkSqroot3 = 1.7320508;// Square Root of 3 const Float_t AliPMDv2008::fgkSqroot3by2 = 0.8660254;// Square Root of 3 by 2 const Float_t AliPMDv2008::fgkSSBoundary = 0.3; const Float_t AliPMDv2008::fgkThSS = 1.03; const Float_t AliPMDv2008::fgkThG10 = 1.03; ClassImp(AliPMDv2008) //_____________________________________________________________________________ AliPMDv2008::AliPMDv2008(): fSMthick(0.), fDthick(0.), fSMLengthax(0.), fSMLengthay(0.), fSMLengthbx(0.), fSMLengthby(0.), fMedSens(0) { // // Default constructor // for (Int_t i = 0; i < 3; i++) { fDboxmm1[i] = 0.; fDboxmm12[i] = 0.; fDboxmm2[i] = 0.; fDboxmm22[i] = 0.; } } //_____________________________________________________________________________ AliPMDv2008::AliPMDv2008(const char *name, const char *title): AliPMD(name,title), fSMthick(0.), fDthick(0.), fSMLengthax(0.), fSMLengthay(0.), fSMLengthbx(0.), fSMLengthby(0.), fMedSens(0) { // // Standard constructor // for (Int_t i = 0; i < 3; i++) { fDboxmm1[i] = 0.; fDboxmm12[i] = 0.; fDboxmm2[i] = 0.; fDboxmm22[i] = 0.; } } //_____________________________________________________________________________ void AliPMDv2008::CreateGeometry() { // Create geometry for Photon Multiplicity Detector GetParameters(); CreateSupermodule(); CreatePMD(); } //_____________________________________________________________________________ void AliPMDv2008::CreateSupermodule() { // // Creates the geometry of the cells of PMD, places them in supermodule // which is a rectangular object. // Basic unit is ECAR, a hexagonal cell made of Ar+CO2, which is // placed inside another hexagonal cell made of Cu (ECCU) with larger // radius, compared to ECAR. The difference in radius gives the dimension // of half width of each cell wall. // These cells are placed in a rectangular strip which are of 2 types // EST1 and EST2 // 2 types of unit modules are made EUM1 and EUM2 which contains these strips // placed repeatedly // Each supermodule (ESMA, ESMB), made of G10 is filled with following //components. They have 6 unit moudles inside them // ESMA, ESMB are placed in EPMD along with EMPB (Pb converter) // and EMFE (iron support) Int_t i,j; Int_t number; Int_t ihrotm,irotdm; Float_t xb, yb, zb; Int_t *idtmed = fIdtmed->GetArray()-599; AliMatrix(ihrotm, 90., 30., 90., 120., 0., 0.); AliMatrix(irotdm, 90., 180., 90., 270., 180., 0.); // STEP - I //******************************************************// // First create the sensitive medium of a hexagon cell (ECAR) // Inner hexagon filled with gas (Ar+CO2) Float_t hexd2[10] = {0.,360.,6,2,-0.25,0.,0.23,0.25,0.,0.23}; hexd2[4] = -fgkCellDepth/2.; hexd2[7] = fgkCellDepth/2.; hexd2[6] = fgkCellRadius - fgkCellWall; hexd2[9] = fgkCellRadius - fgkCellWall; gMC->Gsvolu("ECAR", "PGON", idtmed[604], hexd2,10); //******************************************************// // STEP - II //******************************************************// // Place the sensitive medium inside a hexagon copper cell (ECCU) // Outer hexagon made of Copper Float_t hexd1[10] = {0.,360.,6,2,-0.25,0.,0.25,0.25,0.,0.25}; hexd1[4] = -fgkCellDepth/2.; hexd1[7] = fgkCellDepth/2.; hexd1[6] = fgkCellRadius; hexd1[9] = fgkCellRadius; gMC->Gsvolu("ECCU", "PGON", idtmed[614], hexd1,10); // Place inner hex (sensitive volume) inside outer hex (copper) gMC->Gspos("ECAR", 1, "ECCU", 0., 0., 0., 0, "ONLY"); //******************************************************// // STEP - III //******************************************************// // Now create Rectangular TWO strips (EST1, EST2) // of 1 column and 48 or 96 cells length // volume for first strip EST1 made of AIR Float_t dbox1[3]; dbox1[0] = fgkCellRadius/fgkSqroot3by2; dbox1[1] = fgkNrowUM1*fgkCellRadius; dbox1[2] = fgkCellDepth/2.; gMC->Gsvolu("EST1","BOX", idtmed[698], dbox1, 3); // volume for second strip EST2 Float_t dbox2[3]; dbox2[1] = fgkNrowUM2*fgkCellRadius; dbox2[0] = dbox1[0]; dbox2[2] = dbox1[2]; gMC->Gsvolu("EST2","BOX", idtmed[698], dbox2, 3); // Place hexagonal cells ECCU placed inside EST1 xb = 0.; zb = 0.; yb = (dbox1[1]) - fgkCellRadius; for (i = 1; i <= fgkNrowUM1; ++i) { number = i; gMC->Gspos("ECCU", number, "EST1", xb,yb,zb, 0, "ONLY"); yb -= (fgkCellRadius*2.); } // Place hexagonal cells ECCU placed inside EST2 xb = 0.; zb = 0.; yb = (dbox2[1]) - fgkCellRadius; for (i = 1; i <= fgkNrowUM2; ++i) { number = i; gMC->Gspos("ECCU", number, "EST2", xb,yb,zb, 0, "ONLY"); //PH cout << "ECCU in EST2 ==> " << number << "\t"<Gsvolu("EHC1","BOX", idtmed[698], dbox3, 3); // Place rectangular strips EST1 inside EHC1 unit module xb = dbox3[0]-dbox1[0]; for (j = 1; j <= fgkNcolUM1; ++j) { if(j%2 == 0) { yb = -fgkCellRadius/2.0; } else { yb = fgkCellRadius/2.0; } number = j; gMC->Gspos("EST1",number, "EHC1", xb, yb , 0. , 0, "MANY"); //The strips are being placed from top towards bottom of the module //This is because the first cell in a module in hardware is the top //left corner cell xb = (dbox3[0]-dbox1[0])-j*fgkCellRadius*fgkSqroot3; } //--------------------EHC1 done----------------------------------// //---------------------------------EHC2 Start----------------------// // Create EHC2 : The honey combs for a unit module type 2 // First step is to create a honey comb unit module. // This is named as EHC2, we will lay the EST2 strips of // honey comb cells inside it. //Dimensions of EHC2 //X-dimension = Number of columns + cell radius //Y-dimension = Number of rows * cell radius/sqrt3by2 - (some factor) //Z-dimension = cell depth/2 dbox3[0] = (dbox1[0]*fgkNcolUM1)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.); dbox3[1] = dbox1[1]+fgkCellRadius/2.; dbox3[2] = fgkCellDepth/2.; Float_t dbox4[3]; dbox4[0] =(dbox2[0]*fgkNcolUM2)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.); dbox4[1] = dbox2[1] + fgkCellRadius/2.; dbox4[2] = dbox3[2]; //Create a BOX of AIR gMC->Gsvolu("EHC2","BOX", idtmed[698], dbox4, 3); // Place rectangular strips EST2 inside EHC2 unit module xb = dbox4[0]-dbox2[0]; for (j = 1; j <= fgkNcolUM2; ++j) { if(j%2 == 0) { yb = -fgkCellRadius/2.0; } else { yb = +fgkCellRadius/2.0; } number = j; gMC->Gspos("EST2",number, "EHC2", xb, yb , 0. ,0, "MANY"); xb = (dbox4[0]-dbox2[0])-j*fgkCellRadius*fgkSqroot3; } //--------------------EHC2 done----------------------------------// // Now the job is to assmeble an Unit module // It will have the following components // (a) Base plate of G10 of 0.2 cm // (b) Air gap of 0.05 cm // (c) Bottom PCB of 0.16 cm G10 // (d) Honey comb 0f 0.5 cm // (e) Top PCB of 0.16 cm G10 // (f) Air gap of 0.16 cm // (g) Back Plane of 0.1 cm G10 // (h) Then all around then we have an air gap of 0.5mm // (i) Then all around 0.5mm thick G10 insulation // (h) Then all around Stainless Steel boundary channel 0.3 cm thick //Let us first create them one by one //---------------------------------------------------// // ---------------- Lets do it first for UM Type A -----// //--------------------------------------------------// //Bottom and Top PCB : EPCA //=========================== // Make a 1.6mm thick G10 Bottom and Top PCB for Unit module A // X-dimension same as EHC1 - dbox3[0] // Y-dimension same as EHC1 - dbox3[1] // Z-dimension 0.16/2 = 0.08 cm //-------------------------------------------------// Float_t dboxPcbA[3]; dboxPcbA[0] = dbox3[0]; dboxPcbA[1] = dbox3[1]; dboxPcbA[2] = fgkThPCB/2.; //Top and Bottom PCB is a BOX of Material G10 gMC->Gsvolu("EPCA","BOX", idtmed[607], dboxPcbA, 3); //--------------------------------------------------------// //Back Plane : EBKA //================== // Make a 1.0mm thick Back Plane PCB for Unit module A // X-dimension same as EHC1 - dbox3[0] // Y-dimension same as EHC1 - dbox3[1] // Z-dimension 0.1/2 = 0.05 cm //------------------------------------------------------// Float_t dboxBPlaneA[3]; dboxBPlaneA[0] = dbox3[0]; dboxBPlaneA[1] = dbox3[1]; dboxBPlaneA[2] = fgkThBKP/2.; //Back PLane PCB of MAterial G10 gMC->Gsvolu("EBKA","BOX", idtmed[607], dboxBPlaneA, 3); //-------------------------------------------------------------// //---------- That was all in the Z -direction of Unit Module A----// // Now lets us construct the boundary arround the Unit Module --// // This boundary has // (a) 0.5 mm X and Y and 10.3 mm Z dimension AIR gap // (b) 0.5 mm X and Y and 10.3 mm Z dimension G10 // (c) 3.0 mm X and Y and 12.3 mm Z dimension Stainless Steel //-------------------------------------------------// //AIR GAP between UM and Boundary : ECGA FOR PRESHOWER PLANE //========================================================== // Make a 10.3mm thick Air gap for Unit module A // X-dimension same as EHC1+0.05 // Y-dimension same as EHC1+0.05 // Z-dimension 1.03/2 = 0.515 cm Float_t dboxAir3A[3]; dboxAir3A[0] = dbox3[0]+(2.0*fgkGap); dboxAir3A[1] = dbox3[1]+(2.0*fgkGap); dboxAir3A[2] = fgkThAir/2.; //FOR PRESHOWER //Air gap is a BOX of Material Air gMC->Gsvolu("ECGA","BOX", idtmed[698], dboxAir3A, 3); //FOR VETO //Air gap is a BOX of Material Air gMC->Gsvolu("ECVA","BOX", idtmed[698], dboxAir3A, 3); //-------------------------------------------------// //-------------------------------------------------// //G10 boundary between honeycomb and SS : EDGA //================================================ // Make a 10.3mm thick G10 Boundary for Unit module A // X-dimension same as EHC1+Airgap+0.05 // Y-dimension same as EHC1+Airgap+0.05 // Z-dimension 1.03/2 = 0.515 cm Float_t dboxGGA[3]; dboxGGA[0] = dboxAir3A[0]+(2.0*fgkGap); dboxGGA[1] = dboxAir3A[1]+(2.0*fgkGap); dboxGGA[2] = fgkThG10/2.; //FOR PRESHOWER //G10 BOX gMC->Gsvolu("EDGA","BOX", idtmed[607], dboxGGA, 3); //FOR VETO //G10 BOX gMC->Gsvolu("EDVA","BOX", idtmed[607], dboxGGA, 3); //-------------------------------------------------// //----------------------------------------------------------// //Stainless Steel Bounadry : ESSA //================================== // Make a 10.3mm thick Stainless Steel boundary for Unit module A // X-dimension same as EHC1 + Airgap + G10 + 0.3 // Y-dimension same as EHC1 + Airgap + G10 + 0.3 // Z-dimension 1.03/2 = 0.515 cm //------------------------------------------------------// // A Stainless Steel Boundary Channel to house the unit module Float_t dboxSS1[3]; dboxSS1[0] = dboxGGA[0]+fgkSSBoundary; dboxSS1[1] = dboxGGA[1]+fgkSSBoundary; dboxSS1[2] = fgkThSS/2.; //FOR PRESHOWER //Stainless Steel boundary - Material Stainless Steel gMC->Gsvolu("ESSA","BOX", idtmed[618], dboxSS1, 3); //FOR VETO //Stainless Steel boundary - Material Stainless Steel gMC->Gsvolu("ESVA","BOX", idtmed[618], dboxSS1, 3); //----------------------------------------------------------------// //----------------------------------------------------------------// // Here we need to place the volume in order ESSA -> EDGA -> ECGA // this makes the SS boundary and the 0.5mm thick FR4 insulation in place, // and the air volume ECGA acts as mother for the rest of components. // The above placeemnt is done at (0.,0.,0.) relative coordiante // Now we place bottom PCB, honeycomb, top PCB in this volume. We donot place // unnecessary air volumes now. Just leave the gap as we are placing them // in air only. This also reduces the number of volumes for geant to track. // Tree structure for different volumes // // EUM1 // | // -------------------- // | | | // EBPA ESSA EBKA // | // EDGA // | // ECGA // | // -------------------- // | | | // EPCA(1) EHC1 EPCA(2) // (bottom) | (top PCB) // | // Sensitive volume // (gas) // //FOR VETO //Creating the side channels // SS boundary channel, followed by G10 and Air Gap gMC->Gspos("EDVA", 1, "ESVA", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ECVA", 1, "EDVA", 0., 0., 0., 0, "ONLY"); //FOR PRESHOWER gMC->Gspos("EDGA", 1, "ESSA", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ECGA", 1, "EDGA", 0., 0., 0., 0, "ONLY"); // now other components, using Bedanga's code, but changing the values. //Positioning Bottom PCB, Honey Comb abd Top PCB in AIR //For veto plane //Positioning the Bottom 0.16 cm PCB Float_t zbpcb = -dboxAir3A[2] + (2.0*fgkGap) + fgkThPCB/2.; gMC->Gspos("EPCA", 1, "ECVA", 0., 0., zbpcb, 0, "ONLY"); //Positioning the Honey Comb 0.5 cm Float_t zhc = zbpcb + fgkThPCB/2. + fgkCellDepth/2.; gMC->Gspos("EHC1", 1, "ECVA", 0., 0., zhc, 0, "ONLY"); //Positioning the Top PCB 0.16 cm Float_t ztpcb = zhc + fgkCellDepth/2 + fgkThPCB/2.; gMC->Gspos("EPCA", 2, "ECVA", 0., 0., ztpcb, 0, "ONLY"); //For Preshower plane the ordering is reversed //Positioning the Bottom 0.16 cm PCB zbpcb = -dboxAir3A[2] + fgkThPCB + fgkThPCB/2.; gMC->Gspos("EPCA", 1, "ECGA", 0., 0., zbpcb, 0, "ONLY"); //Positioning the Honey Comb 0.5 cm zhc = zbpcb + fgkThPCB/2. + fgkCellDepth/2.; gMC->Gspos("EHC1", 1, "ECGA", 0., 0., zhc, 0, "ONLY"); //Positioning the Top PCB 0.16 cm ztpcb = zhc + fgkCellDepth/2 + fgkThPCB/2.; gMC->Gspos("EPCA", 2, "ECGA", 0., 0., ztpcb, 0, "ONLY"); //--------------Now let us construct final UM ---------------// // We will do it as follows : // (i) First make a UM of air. which will have dimensions // of the SS boundary Channel (in x,y) and of height 13.3mm //(ii) Then we will place all the components //----------------------------------------------------------// // A unit module type A of Air // Dimensions of Unit Module same as SS boundary channel Float_t dboxUM1[3]; dboxUM1[0] = dboxSS1[0]; dboxUM1[1] = dboxSS1[1]; dboxUM1[2] = fgkThSS/2. +0.15; // 0.15 added to accomodate Base Plate at // the bottom and the backplane PCB at the top. //FOR PRESHOWER //Create a Unit module of above dimensions Material : AIR gMC->Gsvolu("EUM1","BOX", idtmed[698], dboxUM1, 3); //FOR VETO gMC->Gsvolu("EUV1","BOX", idtmed[698], dboxUM1, 3); //----------------------------------------------------------------// //BASE PLATE : EBPA //================== // Make a 2mm thick G10 Base plate for Unit module A // Base plate is as big as the final UM dimensions that is as // SS boundary channel Float_t dboxBaseA[3]; dboxBaseA[0] = dboxSS1[0]; dboxBaseA[1] = dboxSS1[1]; dboxBaseA[2] = fgkThBase/2.; //Base Blate is a G10 BOX gMC->Gsvolu("EBPA","BOX", idtmed[607], dboxBaseA, 3); //----------------------------------------------------// //FOR VETO //- Placing of all components of UM in AIR BOX EUM1--// //(1) FIRST PUT THE BASE PLATE Float_t zbaseplate = -dboxUM1[2] + fgkThBase/2.; gMC->Gspos("EBPA", 1, "EUV1", 0., 0., zbaseplate, 0, "ONLY"); //(2) NEXT PLACING the SS BOX Float_t zss = zbaseplate + fgkThBase/2. + fgkThSS/2.; gMC->Gspos("ESVA", 1, "EUV1", 0., 0., zss, 0, "ONLY"); // (3) Positioning the Backplane PCB 0.1 cm Float_t zbkp = zss + fgkThSS/2. + fgkThBKP/2.; gMC->Gspos("EBKA", 1, "EUV1", 0., 0., zbkp, 0, "ONLY"); //FOR PRESHOWER // (3) Positioning the Backplane PCB 0.1 cm zbkp = -dboxUM1[2] + fgkThBKP/2.; gMC->Gspos("EBKA", 1, "EUM1", 0., 0., zbkp, 0, "ONLY"); //(2) NEXT PLACING the SS BOX zss = zbkp + fgkThBKP/2. + fgkThSS/2.; gMC->Gspos("ESSA", 1, "EUM1", 0., 0., zss, 0, "ONLY"); //(1) FIRST PUT THE BASE PLATE zbaseplate = zss + fgkThSS/2 + fgkThBase/2.; gMC->Gspos("EBPA", 1, "EUM1", 0., 0., zbaseplate, 0, "ONLY"); //-------------------- UM Type A completed ------------------------// //-------------------- Lets do the same thing for UM type B -------// //--------------------------------------------------// //Bottom and Top PCB : EPCB //=========================== // Make a 1.6mm thick G10 Bottom and Top PCB for Unit module B // X-dimension same as EHC2 - dbox4[0] // Y-dimension same as EHC2 - dbox4[1] // Z-dimension 0.16/2 = 0.08 cm //-------------------------------------------------// Float_t dboxPcbB[3]; dboxPcbB[0] = dbox4[0]; dboxPcbB[1] = dbox4[1]; dboxPcbB[2] = fgkThPCB/2.; //Top and Bottom PCB is a BOX of Material G10 gMC->Gsvolu("EPCB","BOX", idtmed[607], dboxPcbB, 3); //--------------------------------------------------------// //Back Plane : EBKB //================== // Make a 1.0mm thick Back Plane PCB for Unit module B // X-dimension same as EHC2 - dbox4[0] // Y-dimension same as EHC2 - dbox4[1] // Z-dimension 0.1/2 = 0.05 cm //------------------------------------------------------// Float_t dboxBPlaneB[3]; dboxBPlaneB[0] = dbox4[0]; dboxBPlaneB[1] = dbox4[1]; dboxBPlaneB[2] = fgkThBKP/2.; //Back PLane PCB of MAterial G10 gMC->Gsvolu("EBKB","BOX", idtmed[607], dboxBPlaneB, 3); //-------------------------------------------------------------// //---------- That was all in the Z -direction of Unit Module B----// // Now lets us construct the boundary arround the Unit Module --// // This boundary has // (a) 0.5 mm X and Y and 10.3 mm Z dimension AIR gap // (b) 0.5 mm X and Y and 10.3 mm Z dimension G10 // (c) 3.0 mm X and Y and 12.3 mm Z dimension Stainless Steel //-------------------------------------------------// //AIR GAP between UM and Boundary : ECGB //================================================ // Make a 10.3mm thick Air gap for Unit module B // X-dimension same as EHC2+0.05 // Y-dimension same as EHC2+0.05 // Z-dimension 1.03/2 = 0.515 cm Float_t dboxAir3B[3]; dboxAir3B[0] = dbox4[0]+(2.0*fgkGap); dboxAir3B[1] = dbox4[1]+(2.0*fgkGap); dboxAir3B[2] = fgkThAir/2.; //PRESHOWER //Air gap is a BOX of Material Air gMC->Gsvolu("ECGB","BOX", idtmed[698], dboxAir3B, 3); //VETO gMC->Gsvolu("ECVB","BOX", idtmed[698], dboxAir3B, 3); //-------------------------------------------------// //-------------------------------------------------// //G10 boundary between honeycomb and SS : EDGB //================================================ // Make a 10.3mm thick G10 Boundary for Unit module B // X-dimension same as EHC2+Airgap+0.05 // Y-dimension same as EHC2+Airgap+0.05 // Z-dimension 1.03/2 = 0.515 cm Float_t dboxGGB[3]; dboxGGB[0] = dboxAir3B[0]+(2.0*fgkGap); dboxGGB[1] = dboxAir3B[1]+(2.0*fgkGap); dboxGGB[2] = fgkThG10/2.; //PRESHOWER //G10 BOX gMC->Gsvolu("EDGB","BOX", idtmed[607], dboxGGB, 3); //VETO gMC->Gsvolu("EDVB","BOX", idtmed[607], dboxGGB, 3); //-------------------------------------------------// //----------------------------------------------------------// //Stainless Steel Bounadry : ESSB //================================== // Make a 10.3mm thick Stainless Steel boundary for Unit module B // X-dimension same as EHC2 + Airgap + G10 + 0.3 // Y-dimension same as EHC2 + Airgap + G10 + 0.3 // Z-dimension 1.03/2 = 0.515 cm //------------------------------------------------------// // A Stainless Steel Boundary Channel to house the unit module Float_t dboxSS2[3]; dboxSS2[0] = dboxGGB[0] + fgkSSBoundary; dboxSS2[1] = dboxGGB[1] + fgkSSBoundary; dboxSS2[2] = fgkThSS/2.; //PRESHOWER //Stainless Steel boundary - Material Stainless Steel gMC->Gsvolu("ESSB","BOX", idtmed[618], dboxSS2, 3); //VETO gMC->Gsvolu("ESVB","BOX", idtmed[618], dboxSS2, 3); //----------------------------------------------------------------// //----------------------------------------------------------------// // Here we need to place the volume in order ESSB -> EDGB -> ECGB // this makes the SS boiundary and the 0.5mm thick FR4 insulation in place, // and the air volume ECGB acts as mother for the rest of components. // The above placeemnt is done at (0.,0.,0.) relative coordiante // Now we place bottom PCB, honeycomb, top PCB in this volume. We donot place // unnecessary air volumes now. Just leave the gap as we are placing them // in air only. This also reduces the number of volumes for geant to track. // Tree structure for different volumes // // EUM2 // | // -------------------- // | | | // EBPB ESSB EBKB // | // EDGB // | // ECGB // | // -------------------- // | | | // EPCB(1) EHC2 EPCB(2) // (bottom) | (top PCB) // | // Sensitive volume // (gas) // //PRESHOWER //Creating the side channels // SS boundary channel, followed by G10 and Air Gap gMC->Gspos("EDGB", 1, "ESSB", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ECGB", 1, "EDGB", 0., 0., 0., 0, "ONLY"); //VETO gMC->Gspos("EDVB", 1, "ESVB", 0., 0., 0., 0, "ONLY"); gMC->Gspos("ECVB", 1, "EDVB", 0., 0., 0., 0, "ONLY"); // now other components, using Bedang's code, but changing the values. //Positioning Bottom PCB, Honey Comb abd Top PCB in AIR //VETO //Positioning the Bottom 0.16 cm PCB Float_t zbpcb2 = -dboxAir3B[2] + (2.0*fgkGap) + fgkThPCB/2.; gMC->Gspos("EPCB", 1, "ECVB", 0., 0., zbpcb2, 0, "ONLY"); //Positioning the Honey Comb 0.5 cm Float_t zhc2 = zbpcb2 + fgkThPCB/2. + fgkCellDepth/2.; gMC->Gspos("EHC2", 1, "ECVB", 0., 0., zhc2, 0, "ONLY"); //Positioning the Top PCB 0.16 cm Float_t ztpcb2 = zhc2 + fgkCellDepth/2 + fgkThPCB/2.; gMC->Gspos("EPCB", 2, "ECVB", 0., 0., ztpcb2, 0, "ONLY"); //PRESHOWER //For preshower plane the ordering is reversed //Positioning the Bottom 0.16 cm PCB zbpcb2 = -dboxAir3B[2] + fgkThPCB + fgkThPCB/2.; gMC->Gspos("EPCB", 1, "ECGB", 0., 0., zbpcb2, 0, "ONLY"); //Positioning the Honey Comb 0.5 cm zhc2 = zbpcb2 + fgkThPCB/2. + fgkCellDepth/2.; gMC->Gspos("EHC2", 1, "ECGB", 0., 0., zhc2, 0, "ONLY"); //Positioning the Top PCB 0.16 cm ztpcb2 = zhc2 + fgkCellDepth/2 + fgkThPCB/2.; gMC->Gspos("EPCB", 2, "ECGB", 0., 0., ztpcb2, 0, "ONLY"); //--------------Now let us construct final UM ---------------// // We will do it as follows : // (i) First make a UM of air. which will have dimensions // of the SS boundary Channel (in x,y) and of height 13.3mm //(ii) Then we will place all the components //----------------------------------------------------------// // A unit module type B of Air // Dimensions of Unit Module same as SS boundary channel Float_t dboxUM2[3]; dboxUM2[0] = dboxSS2[0]; dboxUM2[1] = dboxSS2[1]; dboxUM2[2] = fgkThSS/2. +0.15; // 0.15 added to accomodate Base Plate at // the bottom and the backplane PCB at the top. //PRESHOWER //Create a Unit module of above dimensions Material : AIR gMC->Gsvolu("EUM2","BOX", idtmed[698], dboxUM2, 3); //VETO gMC->Gsvolu("EUV2","BOX", idtmed[698], dboxUM2, 3); //----------------------------------------------------------------// //BASE PLATE : EBPB //================== // Make a 2mm thick G10 Base plate for Unit module B // Base plate is as big as the final UM dimensions that is as // SS boundary channel Float_t dboxBaseB[3]; dboxBaseB[0] = dboxSS2[0]; dboxBaseB[1] = dboxSS2[1]; dboxBaseB[2] = fgkThBase/2.; //Base Blate is a G10 BOX gMC->Gsvolu("EBPB","BOX", idtmed[607], dboxBaseB, 3); //----------------------------------------------------// //VETO //- Placing of all components of UM in AIR BOX EUM2--// //(1) FIRST PUT THE BASE PLATE Float_t zbaseplate2 = -dboxUM2[2] + fgkThBase/2.; gMC->Gspos("EBPB", 1, "EUV2", 0., 0., zbaseplate2, 0, "ONLY"); //(2) NEXT PLACING the SS BOX Float_t zss2 = zbaseplate2 + fgkThBase/2. + fgkThSS/2.; gMC->Gspos("ESVB", 1, "EUV2", 0., 0., zss2, 0, "ONLY"); // (3) Positioning the Backplane PCB 0.1 cm Float_t zbkp2 = zss2 + fgkThSS/2. + fgkThBKP/2.; gMC->Gspos("EBKB", 1, "EUV2", 0., 0., zbkp2, 0, "ONLY"); //FOR PRESHOWER // (3) Positioning the Backplane PCB 0.1 cm zbkp2 = -dboxUM2[2] + fgkThBKP/2.; gMC->Gspos("EBKB", 1, "EUM2", 0., 0., zbkp2, 0, "ONLY"); //(2) NEXT PLACING the SS BOX zss2 = zbkp2 + fgkThBKP/2. + fgkThSS/2.; gMC->Gspos("ESSB", 1, "EUM2", 0., 0., zss2, 0, "ONLY"); //(1) FIRST PUT THE BASE PLATE zbaseplate2 = zss2 + fgkThSS/2 + fgkThBase/2.; gMC->Gspos("EBPB", 1, "EUM2", 0., 0., zbaseplate2, 0, "ONLY"); //-------------------- UM Type B completed ------------------------// //--- Now we need to make Lead plates of UM dimension -----// /**************************/ //----------------------------------------------------------// // The lead convertor is of unit module size // Dimensions of Unit Module same as SS boundary channel Float_t dboxPba[3]; dboxPba[0] = dboxUM1[0]; dboxPba[1] = dboxUM1[1]; dboxPba[2] = fgkThLead/2.; // Lead of UM dimension gMC->Gsvolu("EPB1","BOX", idtmed[600], dboxPba, 3); Float_t dboxPbb[3]; dboxPbb[0] = dboxUM2[0]; dboxPbb[1] = dboxUM2[1]; dboxPbb[2] = fgkThLead/2.; // Lead of UM dimension gMC->Gsvolu("EPB2","BOX", idtmed[600], dboxPbb, 3); //----------------------------------------------------------------// // 2 types of Rectangular shaped supermodules (BOX) //each with 6 unit modules // volume for SUPERMODULE ESMA //Space added to provide a gapping for HV between UM's //There is a gap of 0.15 cm between two Modules (UMs) // in x-direction and 0.1cm along y-direction Float_t dboxSM1[3]; dboxSM1[0] = 3.0*dboxUM1[0] + (2.0*0.075); dboxSM1[1] = 2.0*dboxUM1[1] + 0.05; dboxSM1[2] = dboxUM1[2]; //FOR PRESHOWER gMC->Gsvolu("ESMA","BOX", idtmed[698], dboxSM1, 3); //FOR VETO gMC->Gsvolu("EMVA","BOX", idtmed[698], dboxSM1, 3); //Position the 6 unit modules in EMSA Float_t xa1,xa2,xa3,ya1,ya2; xa1 = dboxSM1[0] - dboxUM1[0]; xa2 = xa1 - dboxUM1[0] - 0.15 - dboxUM1[0]; xa3 = xa2 - dboxUM1[0] - 0.15 - dboxUM1[0]; ya1 = dboxSM1[1] - dboxUM1[1]; ya2 = ya1 - dboxUM1[1] - 0.1 - dboxUM1[1]; //PRESHOWER // gMC->Gspos("EUM1", 1, "ESMA", xa1, ya1, 0., 0, "ONLY"); // BKN gMC->Gspos("EUM1", 2, "ESMA", xa2, ya1, 0., 0, "ONLY"); gMC->Gspos("EUM1", 3, "ESMA", xa3, ya1, 0., 0, "ONLY"); gMC->Gspos("EUM1", 4, "ESMA", xa1, ya2, 0., 0, "ONLY"); gMC->Gspos("EUM1", 5, "ESMA", xa2, ya2, 0., 0, "ONLY"); gMC->Gspos("EUM1", 6, "ESMA", xa3, ya2, 0., 0, "ONLY"); //VETO gMC->Gspos("EUV1", 1, "EMVA", xa1, ya1, 0., 0, "ONLY"); gMC->Gspos("EUV1", 2, "EMVA", xa2, ya1, 0., 0, "ONLY"); gMC->Gspos("EUV1", 3, "EMVA", xa3, ya1, 0., 0, "ONLY"); gMC->Gspos("EUV1", 4, "EMVA", xa1, ya2, 0., 0, "ONLY"); gMC->Gspos("EUV1", 5, "EMVA", xa2, ya2, 0., 0, "ONLY"); gMC->Gspos("EUV1", 6, "EMVA", xa3, ya2, 0., 0, "ONLY"); // volume for SUPERMODULE ESMB //Space is added to provide a gapping for HV between UM's Float_t dboxSM2[3]; dboxSM2[0] = 2.0*dboxUM2[0] + 0.075; dboxSM2[1] = 3.0*dboxUM2[1] + (2.0*0.05); dboxSM2[2] = dboxUM2[2]; //PRESHOWER gMC->Gsvolu("ESMB","BOX", idtmed[698], dboxSM2, 3); //VETO gMC->Gsvolu("EMVB","BOX", idtmed[698], dboxSM2, 3); //Position the 6 unit modules in EMSB Float_t xb1,xb2,yb1,yb2,yb3; xb1 = dboxSM2[0] - dboxUM2[0]; xb2 = xb1 - dboxUM2[0] - 0.15 - dboxUM2[0]; yb1 = dboxSM2[1] - dboxUM2[1]; yb2 = yb1 - dboxUM2[1] - 0.1 - dboxUM2[1]; yb3 = yb2 - dboxUM2[1] - 0.1 - dboxUM2[1]; //PRESHOWER // gMC->Gspos("EUM2", 1, "ESMB", xb1, yb1, 0., 0, "ONLY"); // BKN // gMC->Gspos("EUM2", 2, "ESMB", xb2, yb1, 0., 0, "ONLY"); gMC->Gspos("EUM2", 3, "ESMB", xb1, yb2, 0., 0, "ONLY"); gMC->Gspos("EUM2", 4, "ESMB", xb2, yb2, 0., 0, "ONLY"); gMC->Gspos("EUM2", 5, "ESMB", xb1, yb3, 0., 0, "ONLY"); gMC->Gspos("EUM2", 6, "ESMB", xb2, yb3, 0., 0, "ONLY"); //VETO gMC->Gspos("EUV2", 1, "EMVB", xb1, yb1, 0., 0, "ONLY"); gMC->Gspos("EUV2", 2, "EMVB", xb2, yb1, 0., 0, "ONLY"); gMC->Gspos("EUV2", 3, "EMVB", xb1, yb2, 0., 0, "ONLY"); gMC->Gspos("EUV2", 4, "EMVB", xb2, yb2, 0., 0, "ONLY"); gMC->Gspos("EUV2", 5, "EMVB", xb1, yb3, 0., 0, "ONLY"); gMC->Gspos("EUV2", 6, "EMVB", xb2, yb3, 0., 0, "ONLY"); // Make smiliar stucture for lead as for PMD plane //================================================ // 2 types of Rectangular shaped supermodules (BOX) //each with 6 unit modules // volume for SUPERMODULE ESMPbA //Space added to provide a gapping for HV between UM's Float_t dboxSMPb1[3]; dboxSMPb1[0] = 3.0*dboxUM1[0] + (2.0*0.075); dboxSMPb1[1] = 2.0*dboxUM1[1] + 0.05; dboxSMPb1[2] = fgkThLead/2.; gMC->Gsvolu("ESPA","BOX", idtmed[698], dboxSMPb1, 3); //Position the 6 unit modules in ESMPbA Float_t xpa1,xpa2,xpa3,ypa1,ypa2; xpa1 = -dboxSMPb1[0] + dboxUM1[0]; xpa2 = xpa1 + dboxUM1[0] + 0.15 + dboxUM1[0]; xpa3 = xpa2 + dboxUM1[0] + 0.15 + dboxUM1[0]; ypa1 = dboxSMPb1[1] - dboxUM1[1]; ypa2 = ypa1 - dboxUM1[1] - 0.1 - dboxUM1[1]; gMC->Gspos("EPB1", 1, "ESPA", xpa1, ypa1, 0., 0, "ONLY"); gMC->Gspos("EPB1", 2, "ESPA", xpa2, ypa1, 0., 0, "ONLY"); gMC->Gspos("EPB1", 3, "ESPA", xpa3, ypa1, 0., 0, "ONLY"); gMC->Gspos("EPB1", 4, "ESPA", xpa1, ypa2, 0., 0, "ONLY"); gMC->Gspos("EPB1", 5, "ESPA", xpa2, ypa2, 0., 0, "ONLY"); gMC->Gspos("EPB1", 6, "ESPA", xpa3, ypa2, 0., 0, "ONLY"); // volume for SUPERMODULE ESMPbB //Space is added to provide a gapping for HV between UM's Float_t dboxSMPb2[3]; dboxSMPb2[0] = 2.0*dboxUM2[0] + 0.075; dboxSMPb2[1] = 3.0*dboxUM2[1] + (2.0*0.05); dboxSMPb2[2] = fgkThLead/2.; gMC->Gsvolu("ESPB","BOX", idtmed[698], dboxSMPb2, 3); //Position the 6 unit modules in ESMPbB Float_t xpb1,xpb2,ypb1,ypb2,ypb3; xpb1 = -dboxSMPb2[0] + dboxUM2[0]; xpb2 = xpb1 + dboxUM2[0] + 0.15 + dboxUM2[0]; ypb1 = dboxSMPb2[1] - dboxUM2[1]; ypb2 = ypb1 - dboxUM2[1] - 0.1 - dboxUM2[1]; ypb3 = ypb2 - dboxUM2[1] - 0.1 - dboxUM2[1]; gMC->Gspos("EPB2", 1, "ESPB", xpb1, ypb1, 0., 0, "ONLY"); gMC->Gspos("EPB2", 2, "ESPB", xpb2, ypb1, 0., 0, "ONLY"); gMC->Gspos("EPB2", 3, "ESPB", xpb1, ypb2, 0., 0, "ONLY"); gMC->Gspos("EPB2", 4, "ESPB", xpb2, ypb2, 0., 0, "ONLY"); gMC->Gspos("EPB2", 5, "ESPB", xpb1, ypb3, 0., 0, "ONLY"); gMC->Gspos("EPB2", 6, "ESPB", xpb2, ypb3, 0., 0, "ONLY"); //--------------------------------------------------- /// ALICE PMD FEE BOARDS IMPLEMENTATION // Dt: 25th February 2006 // - M.M. Mondal, S.K. Prasad and P.K. Netrakanti //--------------------------------------------------- //FEE boards // It is FR4 board of length 7cm // breadth of 2.4 cm and thickness 0.1cm Float_t dboxFEE[3]; dboxFEE[0] = 0.05; dboxFEE[1] = 3.50; dboxFEE[2] = 1.20; gMC->Gsvolu("EFEE","BOX", idtmed[607], dboxFEE, 3); //Mother volume to accomodate FEE boards // It should have the dimension // as the back plane or the //corresponding UM //TYPE A //------------------------------------------------------// Float_t dboxFEEBPlaneA[3]; dboxFEEBPlaneA[0] = dboxBPlaneA[0]; //dbox3[0]; dboxFEEBPlaneA[1] = dboxBPlaneA[1];//dbox3[1]; dboxFEEBPlaneA[2] = 1.2; //Volume of same dimension as Back PLane of Material AIR gMC->Gsvolu("EFBA","BOX", idtmed[698], dboxFEEBPlaneA, 3); //TYPE B Float_t dboxFEEBPlaneB[3]; dboxFEEBPlaneB[0] = dboxBPlaneB[0]; //dbox4[0]; dboxFEEBPlaneB[1] = dboxBPlaneB[1];//dbox4[1]; dboxFEEBPlaneB[2] = 1.2; //Back PLane PCB of MAterial G10 gMC->Gsvolu("EFBB","BOX", idtmed[698], dboxFEEBPlaneB, 3); //Placing the FEE boards in the Mother volume of AIR //Type A Float_t xFee; // X-position of FEE board Float_t yFee; // Y-position of FEE board Float_t zFee = 0.0; // Z-position of FEE board Float_t xA = 0.25; //distance from the border to 1st FEE board Float_t yA = 4.00; //distance from the border to 1st FEE board Float_t xSepa = 1.70; //Distance between two FEE boards Float_t ySepa = 8.00; //Distance between two FEE boards // FEE Boards EFEE placed inside EFBA number = 1; yFee = dboxFEEBPlaneA[1] - yA; for (i = 1; i <= 6; ++i) { xFee = -dboxFEEBPlaneA[0] + xA; for (j = 1; j <= 12; ++j) { gMC->Gspos("EFEE", number, "EFBA", xFee,yFee,zFee, 0, "ONLY"); xFee += xSepa; number += 1; } yFee -= ySepa; } // FEE Boards EFEE placed inside EFBB number = 1; yFee = dboxFEEBPlaneB[1] - yA; for (i = 1; i <= 3; ++i) { xFee = -dboxFEEBPlaneB[0] + xA; for (j = 1; j <= 24; ++j) { gMC->Gspos("EFEE", number, "EFBB", xFee,yFee,zFee, 0, "ONLY"); xFee += xSepa; number += 1; } yFee -= ySepa; } //Distance between the two backplanes of two UMs //in x-direction is 0.92 and ydirection is 0.95 Float_t dboxEFSA[3]; dboxEFSA[0] = 3.0*dboxFEEBPlaneA[0] + 0.92; dboxEFSA[1] = 2.0*dboxFEEBPlaneA[1] + (0.95/2.0); dboxEFSA[2] = dboxFEEBPlaneA[2]; //Type A gMC->Gsvolu("EFSA","BOX", idtmed[698],dboxEFSA, 3); //Distance between the two backplanes of two UMs //in x-direction is 0.92 and ydirection is 0.95 Float_t dboxEFSB[3]; dboxEFSB[0] = 2.0*dboxFEEBPlaneB[0] + (0.938/2.0); dboxEFSB[1] = 3.0*dboxFEEBPlaneB[1] + 1.05; dboxEFSB[2] = dboxFEEBPlaneB[2]; //Type A gMC->Gsvolu("EFSB","BOX", idtmed[698],dboxEFSB, 3); Float_t xfs1,xfs2,xfs3,yfs1,yfs2,yfs3; xfs1 = -dboxEFSA[0] + dboxFEEBPlaneA[0]; xfs2 = xfs1 + dboxFEEBPlaneA[0] + 0.92 + dboxFEEBPlaneA[0]; xfs3 = xfs2 + dboxFEEBPlaneA[0] + 0.92 + dboxFEEBPlaneA[0]; yfs1 = dboxEFSA[1] - dboxFEEBPlaneA[1]; yfs2 = yfs1 - dboxFEEBPlaneA[1] - 0.95 - dboxFEEBPlaneA[1]; // gMC->Gspos("EFBA", 1, "EFSA", xfs1, yfs1, 0., 0, "ONLY"); // BKN gMC->Gspos("EFBA", 2, "EFSA", xfs2, yfs1, 0., 0, "ONLY"); gMC->Gspos("EFBA", 3, "EFSA", xfs3, yfs1, 0., 0, "ONLY"); gMC->Gspos("EFBA", 4, "EFSA", xfs1, yfs2, 0., 0, "ONLY"); gMC->Gspos("EFBA", 5, "EFSA", xfs2, yfs2, 0., 0, "ONLY"); gMC->Gspos("EFBA", 6, "EFSA", xfs3, yfs2, 0., 0, "ONLY"); //Type B positioning xfs1 = -dboxEFSB[0] + dboxFEEBPlaneB[0]; xfs2 = xfs1 + dboxFEEBPlaneB[0] + 0.938 + dboxFEEBPlaneB[0]; yfs1 = dboxEFSB[1] - dboxFEEBPlaneB[1]; yfs2 = yfs1 - dboxFEEBPlaneB[1] - 1.05 - dboxFEEBPlaneB[1]; yfs3 = yfs2 - dboxFEEBPlaneB[1] - 1.05 - dboxFEEBPlaneB[1]; // gMC->Gspos("EFBB", 1, "EFSB", xfs1, yfs1, 0., 0, "ONLY"); // BKN // gMC->Gspos("EFBB", 2, "EFSB", xfs2, yfs1, 0., 0, "ONLY"); // BKN gMC->Gspos("EFBB", 3, "EFSB", xfs1, yfs2, 0., 0, "ONLY"); gMC->Gspos("EFBB", 4, "EFSB", xfs2, yfs2, 0., 0, "ONLY"); gMC->Gspos("EFBB", 5, "EFSB", xfs1, yfs3, 0., 0, "ONLY"); gMC->Gspos("EFBB", 6, "EFSB", xfs2, yfs3, 0., 0, "ONLY"); } //_____________________________________________________________________________ void AliPMDv2008::CreatePMD() { // // Create final detector from supermodules // -- Author : Bedanga and Viyogi June 2003 Float_t zp; Int_t jhrot12,jhrot13, irotdm; Int_t *idtmed = fIdtmed->GetArray()-599; //VOLUMES Names : begining with "E" for all PMD volumes, // --- DEFINE Iron volumes for SM A // Fe Support Float_t dboxFea[3]; dboxFea[0] = fSMLengthax; dboxFea[1] = fSMLengthay; dboxFea[2] = fgkThSteel/2.; gMC->Gsvolu("EFEA","BOX", idtmed[618], dboxFea, 3); // --- DEFINE Iron volumes for SM B // Fe Support Float_t dboxFeb[3]; dboxFeb[0] = fSMLengthbx; dboxFeb[1] = fSMLengthby; dboxFeb[2] = fgkThSteel/2.; gMC->Gsvolu("EFEB","BOX", idtmed[618], dboxFeb, 3); AliMatrix(irotdm, 90., 0., 90., 90., 180., 0.); AliMatrix(jhrot12, 90., 180., 90., 270., 0., 0.); AliMatrix(jhrot13, 90., 240., 90., 330., 0., 0.); // Gaspmd, the dimension of RECTANGULAR mother volume of PMD, // Four mother volumes EPM1,EPM2 for A-type and // volumes EPM3 and EPM4 for B-type. Four to create a hole // and avoid overlap with beam pipe Float_t gaspmd[3]; gaspmd[0] = fSMLengthax; gaspmd[1] = fSMLengthay; gaspmd[2] = fSMthick; gMC->Gsvolu("EPM1", "BOX", idtmed[698], gaspmd, 3); gMC->Gsvolu("EPM2", "BOX", idtmed[698], gaspmd, 3); //Complete detector for Type A //Position Super modules type A for both CPV and PMD in EPMD Float_t zpsa,zpba,zfea,zcva,zfee; // zpsa = - gaspmd[2] + fSMthick/2.; // -2.5 is given to place PMD at -361.5 // BM : In future after putting proper electronics // -2.5 will be replaced by -gaspmd[2] //TYPE A //Fee board // This part is commented for the time being by BKN zfee=-gaspmd[2] + 1.2; /* gMC->Gspos("EFSA", 1, "EPM1", 0., 0., zfee, 0, "ONLY"); gMC->Gspos("EFSA", 2, "EPM2", 0., 0., zfee, jhrot12, "ONLY"); */ //VETO zcva = zfee + 1.2 + fDthick; /* gMC->Gspos("EMVA", 1, "EPM1", 0., 0., zcva, 0, "ONLY"); gMC->Gspos("EMVA", 2, "EPM2", 0., 0., zcva, jhrot12, "ONLY"); */ //Iron support zfea = zcva + fDthick + fgkThSteel/2.; gMC->Gspos("EFEA", 1, "EPM1", 0., 0., zfea, 0, "ONLY"); //gMC->Gspos("EFEA", 2, "EPM2", 0., 0., zfea, 0, "ONLY"); //Lead zpba=zfea+fgkThSteel/2.+ fgkThLead/2.; gMC->Gspos("ESPA", 1, "EPM1", 0., 0., zpba, 0, "ONLY"); //gMC->Gspos("ESPA", 2, "EPM2", 0., 0., zpba, 0, "ONLY"); //Preshower zpsa = zpba + fgkThLead/2. + fDthick; gMC->Gspos("ESMA", 1, "EPM1", 0., 0., zpsa, 0, "ONLY"); //gMC->Gspos("ESMA", 2, "EPM2", 0., 0., zpsa, jhrot12, "ONLY"); //FEE boards zfee=zpsa + fDthick + 1.2; gMC->Gspos("EFSA", 3, "EPM1", 0., 0., zfee, 0, "ONLY"); //gMC->Gspos("EFSA", 4, "EPM2", 0., 0., zfee, jhrot12, "ONLY"); //TYPE - B gaspmd[0] = fSMLengthbx; gaspmd[1] = fSMLengthby; gaspmd[2] = fSMthick; gMC->Gsvolu("EPM3", "BOX", idtmed[698], gaspmd, 3); gMC->Gsvolu("EPM4", "BOX", idtmed[698], gaspmd, 3); //Complete detector for Type B //Position Super modules type B for both CPV and PMD in EPMD Float_t zpsb,zpbb,zfeb,zcvb; // zpsb = - gaspmd[2] + fSMthick/2.; // -2.5 is given to place PMD at -361.5 // BM: In future after putting proper electronics // -2.5 will be replaced by -gaspmd[2] //Fee board zfee=-gaspmd[2] + 1.2; /* gMC->Gspos("EFSB", 5, "EPM3", 0., 0., zfee, 0, "ONLY"); gMC->Gspos("EFSB", 6, "EPM4", 0., 0., zfee, jhrot12, "ONLY"); */ zcvb= zfee + 1.2 + fDthick; //VETO /* gMC->Gspos("EMVB", 3, "EPM3", 0., 0., zcvb, 0, "ONLY"); gMC->Gspos("EMVB", 4, "EPM4", 0., 0., zcvb, jhrot12, "ONLY"); */ //IRON SUPPORT zfeb= zcvb + fDthick + fgkThSteel/2.; //gMC->Gspos("EFEB", 3, "EPM3", 0., 0., zfeb, 0, "ONLY"); gMC->Gspos("EFEB", 4, "EPM4", 0., 0., zfeb, 0, "ONLY"); //LEAD zpbb= zfeb + fgkThSteel/2.+ fgkThLead/2.; //gMC->Gspos("ESPB", 3, "EPM3", 0., 0., zpbb, 0, "ONLY"); gMC->Gspos("ESPB", 4, "EPM4", 0., 0., zpbb, 0, "ONLY"); //PRESHOWER zpsb = zpbb + fgkThLead/2.+ fDthick; //gMC->Gspos("ESMB", 3, "EPM3", 0., 0., zpsb, 0, "ONLY"); gMC->Gspos("ESMB", 4, "EPM4", 0., 0., zpsb, jhrot12, "ONLY"); //FEE boards zfee=zpsb + fDthick + 1.2; //gMC->Gspos("EFSB", 7, "EPM3", 0., 0., zfee, 0, "ONLY"); gMC->Gspos("EFSB", 8, "EPM4", 0., 0., zfee, jhrot12, "ONLY"); // --- Place the EPMD in ALICE //Z-distance of PMD from Interaction Point zp = fgkZdist; //X and Y-positions of the PMD planes Float_t xfinal,yfinal; Float_t xsmb,ysmb; Float_t xsma,ysma; xfinal = fSMLengthax + 0.48/2 + fSMLengthbx; yfinal = fSMLengthay + 0.20/2 + fSMLengthby; xsma = xfinal - fSMLengthax; ysma = yfinal - fSMLengthay; xsmb = -xfinal + fSMLengthbx; ysmb = yfinal - fSMLengthby; //Position Full PMD in ALICE // // EPM1 EPM3 // // EPM4 EPM2 // (rotated (rotated EPM1) // EPM3) // gMC->Gspos("EPM1", 1, "ALIC", xsma,ysma,zp, 0, "ONLY"); gMC->Gspos("EPM2", 1, "ALIC", -xsma,-ysma,zp, 0, "ONLY"); gMC->Gspos("EPM3", 1, "ALIC", xsmb,ysmb,zp, 0, "ONLY"); gMC->Gspos("EPM4", 1, "ALIC", -xsmb,-ysmb,zp, 0, "ONLY"); } //_____________________________________________________________________________ void AliPMDv2008::CreateMaterials() { // Create materials for the PMD // // ORIGIN : Y. P. VIYOGI // // cout << " Inside create materials " << endl; Int_t isxfld = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Integ(); Float_t sxmgmx = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Max(); // --- Define the various materials for GEANT --- AliMaterial(1, "Pb $", 207.19, 82., 11.35, .56, 18.5); // Argon Float_t dAr = 0.001782; // --- Ar density in g/cm3 --- Float_t x0Ar = 19.55 / dAr; AliMaterial(2, "Argon$", 39.95, 18., dAr, x0Ar, 6.5e4); // --- CO2 --- Float_t aCO2[2] = { 12.,16. }; Float_t zCO2[2] = { 6.,8. }; Float_t wCO2[2] = { 1.,2. }; Float_t dCO2 = 0.001977; AliMixture(3, "CO2 $", aCO2, zCO2, dCO2, -2, wCO2); AliMaterial(4, "Al $", 26.98, 13., 2.7, 8.9, 18.5); // ArCO2 Float_t aArCO2[3] = {39.948,12.0107,15.9994}; Float_t zArCO2[3] = {18.,6.,8.}; Float_t wArCO2[3] = {0.7,0.08,0.22}; Float_t dArCO2 = dAr * 0.7 + dCO2 * 0.3; AliMixture(5, "ArCO2$", aArCO2, zArCO2, dArCO2, 3, wArCO2); AliMaterial(6, "Fe $", 55.85, 26., 7.87, 1.76, 18.5); // G10 Float_t aG10[4]={1.,12.011,15.9994,28.086}; Float_t zG10[4]={1.,6.,8.,14.}; Float_t wG10[4]={0.15201,0.10641,0.49444,0.24714}; AliMixture(8,"G10",aG10,zG10,1.7,4,wG10); AliMaterial(15, "Cu $", 63.54, 29., 8.96, 1.43, 15.); // Steel Float_t aSteel[4] = { 55.847,51.9961,58.6934,28.0855 }; Float_t zSteel[4] = { 26.,24.,28.,14. }; Float_t wSteel[4] = { .715,.18,.1,.005 }; Float_t dSteel = 7.88; AliMixture(19, "STAINLESS STEEL$", aSteel, zSteel, dSteel, 4, wSteel); //Air Float_t aAir[4]={12.0107,14.0067,15.9994,39.948}; Float_t zAir[4]={6.,7.,8.,18.}; Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827}; Float_t dAir1 = 1.20479E-10; Float_t dAir = 1.20479E-3; AliMixture(98, "Vacum$", aAir, zAir, dAir1, 4, wAir); AliMixture(99, "Air $", aAir, zAir, dAir , 4, wAir); // Define tracking media AliMedium(1, "Pb conv.$", 1, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(4, "Al $", 4, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(5, "ArCO2 $", 5, 1, 0, isxfld, sxmgmx, .1, .1, .10, .1); AliMedium(6, "Fe $", 6, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(8, "G10plate$", 8, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(15, "Cu $", 15, 0, 0, isxfld, sxmgmx, .1, .1, .01, .1); AliMedium(19, "S steel$", 19, 0, 0, isxfld, sxmgmx, 1., .1, .01, .1); AliMedium(98, "Vacuum $", 98, 0, 0, isxfld, sxmgmx, 1., .1, .10, 10); AliMedium(99, "Air gaps$", 99, 0, 0, isxfld, sxmgmx, 1., .1, .10, .1); AliDebug(1,"Outside create materials"); } //_____________________________________________________________________________ void AliPMDv2008::Init() { // // Initialises PMD detector after it has been built // // AliDebug(2,"Inside Init"); AliDebug(2,"PMD simulation package (v1) initialised"); AliDebug(2,"parameters of pmd"); AliDebug(2,Form("%10.2f %10.2f %10.2f %10.2f\n", fgkCellRadius,fgkCellWall,fgkCellDepth,fgkZdist)); Int_t *idtmed = fIdtmed->GetArray()-599; fMedSens=idtmed[605-1]; // --- Generate explicitly delta rays in the iron, aluminium and lead --- // Gstpar removed from here and all energy cut-offs moved to galice.cuts // Visualization of volumes gGeoManager->SetVolumeAttribute("ECAR", "SEEN", 0); gGeoManager->SetVolumeAttribute("ECCU", "SEEN", 0); gGeoManager->SetVolumeAttribute("ECCU", "COLO", 4); gGeoManager->SetVolumeAttribute("EST1", "SEEN", 0); gGeoManager->SetVolumeAttribute("EST2", "SEEN", 0); gGeoManager->SetVolumeAttribute("EHC1", "SEEN", 0); gGeoManager->SetVolumeAttribute("EHC2", "SEEN", 0); gGeoManager->SetVolumeAttribute("EPCA", "SEEN", 0); gGeoManager->SetVolumeAttribute("EBKA", "SEEN", 0); gGeoManager->SetVolumeAttribute("ECGA", "SEEN", 0); gGeoManager->SetVolumeAttribute("ECVA", "SEEN", 0); gGeoManager->SetVolumeAttribute("EDGA", "SEEN", 0); gGeoManager->SetVolumeAttribute("EDVA", "SEEN", 0); gGeoManager->SetVolumeAttribute("ESSA", "SEEN", 0); gGeoManager->SetVolumeAttribute("ESVA", "SEEN", 0); gGeoManager->SetVolumeAttribute("EUM1", "SEEN", 0); gGeoManager->SetVolumeAttribute("EUV1", "SEEN", 0); gGeoManager->SetVolumeAttribute("EBPA", "SEEN", 0); gGeoManager->SetVolumeAttribute("EPCB", "SEEN", 0); gGeoManager->SetVolumeAttribute("EBKB", "SEEN", 0); gGeoManager->SetVolumeAttribute("ECGB", "SEEN", 0); gGeoManager->SetVolumeAttribute("ECVB", "SEEN", 0); gGeoManager->SetVolumeAttribute("EDGB", "SEEN", 0); gGeoManager->SetVolumeAttribute("EDVB", "SEEN", 0); gGeoManager->SetVolumeAttribute("ESSB", "SEEN", 0); gGeoManager->SetVolumeAttribute("ESVB", "SEEN", 0); gGeoManager->SetVolumeAttribute("EUM2", "SEEN", 0); gGeoManager->SetVolumeAttribute("EUV2", "SEEN", 0); gGeoManager->SetVolumeAttribute("EBPB", "SEEN", 0); gGeoManager->SetVolumeAttribute("EPB1", "SEEN", 0); gGeoManager->SetVolumeAttribute("EPB2", "SEEN", 0); gGeoManager->SetVolumeAttribute("ESMA", "SEEN", 0); gGeoManager->SetVolumeAttribute("EMVA", "SEEN", 0); gGeoManager->SetVolumeAttribute("ESMB", "SEEN", 0); gGeoManager->SetVolumeAttribute("EMVB", "SEEN", 0); gGeoManager->SetVolumeAttribute("ESPA", "SEEN", 0); gGeoManager->SetVolumeAttribute("ESPB", "SEEN", 0); gGeoManager->SetVolumeAttribute("EFEE", "SEEN", 0); gGeoManager->SetVolumeAttribute("EFEE", "COLO", 4); gGeoManager->SetVolumeAttribute("EFBA", "SEEN", 0); gGeoManager->SetVolumeAttribute("EFBB", "SEEN", 0); gGeoManager->SetVolumeAttribute("EFSA", "SEEN", 0); gGeoManager->SetVolumeAttribute("EFSB", "SEEN", 0); gGeoManager->SetVolumeAttribute("EFEA", "SEEN", 0); gGeoManager->SetVolumeAttribute("EFEB", "SEEN", 0); gGeoManager->SetVolumeAttribute("EPM1", "SEEN", 1); gGeoManager->SetVolumeAttribute("EPM2", "SEEN", 1); gGeoManager->SetVolumeAttribute("EPM3", "SEEN", 1); gGeoManager->SetVolumeAttribute("EPM4", "SEEN", 1); } //_____________________________________________________________________________ void AliPMDv2008::StepManager() { // // Called at each step in the PMD // Int_t copy; Float_t hits[5], destep; Float_t center[3] = {0,0,0}; Int_t vol[6]; if(gMC->CurrentMedium() == fMedSens && (destep = gMC->Edep())) { gMC->CurrentVolID(copy); vol[0] = copy; gMC->CurrentVolOffID(1,copy); vol[1] = copy; gMC->CurrentVolOffID(2,copy); vol[2] = copy; gMC->CurrentVolOffID(3,copy); vol[3] = copy; gMC->CurrentVolOffID(4,copy); vol[4] = copy; gMC->CurrentVolOffID(5,copy); vol[5] = copy; gMC->Gdtom(center,hits,1); hits[3] = destep*1e9; //Number in eV // this is for pile-up events hits[4] = gMC->TrackTime(); AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits); } } //------------------------------------------------------------------------ // Get parameters void AliPMDv2008::GetParameters() { // This gives all the parameters of the detector // such as Length of Supermodules, type A, type B, // thickness of the Supermodule // fSMLengthax = 32.7434; //The total length in X is due to the following components // Factor 3 is because of 3 module length in X for this type // fgkNcolUM1*fgkCellRadius (48 x 0.25): Total span of each module in X // fgkCellRadius/2. : There is offset of 1/2 cell // 0.05+0.05 : Insulation gaps etc // fgkSSBoundary (0.3) : Boundary frame // double XA = 3.0*((fgkCellRadius/fgkSqroot3by2*fgkNcolUM1)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM1-1)/6.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + (2.0*0.075); fSMLengthbx = 42.5886; //The total length in X is due to the following components // Factor 2 is because of 2 module length in X for this type // fgkNcolUM2*fgkCellRadius (96 x 0.25): Total span of each module in X // fgkCellRadius/2. : There is offset of 1/2 cell // 0.05+0.05 : Insulation gaps etc // fgkSSBoundary (0.3) : Boundary frame //double XB = 2.0*((fgkCellRadius/fgkSqroot3by2*fgkNcolUM2)-(fgkCellRadius*fgkSqroot3*(fgkNcolUM2-1)/6.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + 0.075; fSMLengthay = 49.1; //The total length in Y is due to the following components // Factor 2 is because of 2 module length in Y for this type // fgkCellRadius/fgkSqroot3by2)*fgkNrowUM1 (0.25/sqrt3/2 * 96): Total span of each module in Y // of strips // 0.05+0.05 : Insulation gaps etc // fgkSSBoundary (0.3) : Boundary frame // double YA = 2.0*(fgkNrowUM1*fgkCellRadius+fgkCellRadius/2.+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + 0.05; fSMLengthby = 37.675; //The total length in Y is due to the following components // Factor 3 is because of 3 module length in Y for this type // fgkCellRadius/fgkSqroot3by2)*fgkNrowUM2 (0.25/sqrt3/2 * 48): Total span of each module in Y // of strips // 0.05+0.05 : Insulation gaps etc // fgkSSBoundary (0.3) : Boundary frame //double YB = 3.0*((fgkNrowUM2*fgkCellRadius + fgkCellRadius/2.)+(2.0*fgkGap)+(2.0*fgkGap)+fgkSSBoundary) + (2.0*0.05); //Thickness of a pre/veto plane fDthick = fgkThSS/2. +0.15; //Thickness of the PMD ; 2.4 added for FEE boards fSMthick = 2.0*(fgkThSS/2. +0.15) +fgkThSteel/2.+fgkThLead/2.0 + 2.4; } // --------------------------------------------------------------- void AliPMDv2008::AddAlignableVolumes() const { // // Create entries for alignable volumes associating the symbolic volume // name with the corresponding volume path. Needs to be syncronized with // eventual changes in the geometry. // SetSectorAlignable(); } // ---------------------------------------------------------------- void AliPMDv2008::SetSectorAlignable() const { // TString vpsector = "ALIC_1/EPM"; TString vpappend = "_1"; TString snsector="PMD/Sector"; TString volpath, symname; for(Int_t cnt=1; cnt<=4; cnt++){ volpath = vpsector; volpath += cnt; volpath += vpappend; symname = snsector; symname += cnt; if(!gGeoManager->SetAlignableEntry(symname.Data(),volpath.Data())) { AliFatal("Unable to set alignable entry!"); } } } // ------------------------------------------------------------------