/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id: $ */ //_________________________________________________________________________ // Class containing methods for the isolation cut. // An AOD candidate (AliAODPWG4ParticleCorrelation type) // is passed. Look in a cone around the candidate and study // the hadronic activity inside to decide if the candidate is isolated // // //*-- Author: Gustavo Conesa (LNF-INFN) //-Yaxian Mao (add the possibility for different IC method with different pt range, 01/10/2010) //-Yaxian Mao (check the candidate particle is the leading particle or not at the same hemishere) ////////////////////////////////////////////////////////////////////////////// // --- ROOT system --- #include #include // --- AliRoot system --- #include "AliIsolationCut.h" #include "AliAODPWG4ParticleCorrelation.h" #include "AliAODTrack.h" #include "AliVCluster.h" #include "AliCaloTrackReader.h" #include "AliMixedEvent.h" #include "AliCaloPID.h" ClassImp(AliIsolationCut) //____________________________________ AliIsolationCut::AliIsolationCut() : TObject(), fConeSize(0.), fPtThreshold(0.), fSumPtThreshold(0.), fPtFraction(0.), fICMethod(0), fPartInCone(0) { //default ctor //Initialize parameters InitParameters(); } //____________________________________________ TString AliIsolationCut::GetICParametersList() { //Put data member values in string to keep in output container TString parList ; //this will be list of parameters used for this analysis. const Int_t buffersize = 255; char onePar[buffersize] ; snprintf(onePar,buffersize,"--- AliIsolationCut ---\n") ; parList+=onePar ; snprintf(onePar,buffersize,"fConeSize: (isolation cone size) %1.2f\n",fConeSize) ; parList+=onePar ; snprintf(onePar,buffersize,"fPtThreshold =%1.2f (isolation pt threshold) \n",fPtThreshold) ; parList+=onePar ; snprintf(onePar,buffersize,"fPtFraction=%1.2f (isolation pt threshold fraction ) \n",fPtFraction) ; parList+=onePar ; snprintf(onePar,buffersize,"fICMethod=%d (isolation cut case) \n",fICMethod) ; parList+=onePar ; snprintf(onePar,buffersize,"fPartInCone=%d \n",fPartInCone) ; parList+=onePar ; return parList; } //____________________________________ void AliIsolationCut::InitParameters() { //Initialize the parameters of the analysis. fConeSize = 0.4 ; fPtThreshold = 1. ; fSumPtThreshold = 0.5 ; fPtFraction = 0.1 ; fPartInCone = kOnlyCharged; fICMethod = kSumPtFracIC; // 0 pt threshol method, 1 cone pt sum method } //________________________________________________________________________________ void AliIsolationCut::MakeIsolationCut(const TObjArray * plCTS, const TObjArray * plNe, const AliCaloTrackReader * reader, const AliCaloPID * pid, const Bool_t bFillAOD, AliAODPWG4ParticleCorrelation *pCandidate, const TString & aodArrayRefName, Int_t & n, Int_t & nfrac, Float_t &coneptsum, Bool_t &isolated) const { //Search in cone around a candidate particle if it is isolated Float_t phiC = pCandidate->Phi() ; if(phiC<0) phiC+=TMath::TwoPi(); Float_t etaC = pCandidate->Eta() ; Float_t ptC = pCandidate->Pt() ; Float_t pt = -100. ; Float_t eta = -100. ; Float_t phi = -100. ; Float_t rad = -100. ; n = 0 ; nfrac = 0 ; coneptsum = 0.; isolated = kFALSE; //Initialize the array with refrences TObjArray * refclusters = 0x0; TObjArray * reftracks = 0x0; Int_t ntrackrefs = 0; Int_t nclusterrefs = 0; //Check charged particles in cone. if(plCTS && (fPartInCone==kOnlyCharged || fPartInCone==kNeutralAndCharged)){ TVector3 p3; for(Int_t ipr = 0;ipr < plCTS->GetEntries() ; ipr ++ ){ AliAODTrack* track = (AliAODTrack *)(plCTS->At(ipr)) ; //Do not count the candidate (pion, conversion photon) or the daughters of the candidate if(track->GetID() == pCandidate->GetTrackLabel(0) || track->GetID() == pCandidate->GetTrackLabel(1) || track->GetID() == pCandidate->GetTrackLabel(2) || track->GetID() == pCandidate->GetTrackLabel(3) ) continue ; p3.SetXYZ(track->Px(),track->Py(),track->Pz()); pt = p3.Pt(); eta = p3.Eta(); phi = p3.Phi() ; if(phi<0) phi+=TMath::TwoPi(); //only loop the particle at the same side of candidate if(TMath::Abs(phi-phiC)>TMath::PiOver2()) continue ; //if at the same side has particle larger than candidate, then candidate can not be the leading, skip such events if(pt > ptC){ n = -1; nfrac = -1; coneptsum = -1; isolated = kFALSE; if(bFillAOD && reftracks) { reftracks->Clear(); delete reftracks; } return ; } //Check if there is any particle inside cone with pt larger than fPtThreshold rad = Radius(etaC, phiC, eta, phi); if(rad < fConeSize){ if(bFillAOD) { ntrackrefs++; if(ntrackrefs == 1){ reftracks = new TObjArray(0); //reftracks->SetName(Form("Tracks%s",aodArrayRefName.Data())); TString tempo(aodArrayRefName) ; tempo += "Tracks" ; reftracks->SetName(tempo); reftracks->SetOwner(kFALSE); } reftracks->Add(track); } //printf("charged in isolation cone pt %f, phi %f, eta %f, R %f \n",pt,phi,eta,rad); coneptsum+=pt; if(pt > fPtThreshold ) n++; if(pt > fPtFraction*ptC ) nfrac++; } // Inside cone }// charged particle loop }//Tracks //Check neutral particles in cone. if(plNe && (fPartInCone==kOnlyNeutral || fPartInCone==kNeutralAndCharged)){ TLorentzVector mom ; for(Int_t ipr = 0;ipr < plNe->GetEntries() ; ipr ++ ){ AliVCluster * calo = (AliVCluster *)(plNe->At(ipr)) ; //Get the index where the cluster comes, to retrieve the corresponding vertex Int_t evtIndex = 0 ; if (reader->GetMixedEvent()) { evtIndex=reader->GetMixedEvent()->EventIndexForCaloCluster(calo->GetID()) ; } //Do not count the candidate (photon or pi0) or the daughters of the candidate if(calo->GetID() == pCandidate->GetCaloLabel(0) || calo->GetID() == pCandidate->GetCaloLabel(1)) continue ; //Skip matched clusters with tracks if( pid->IsTrackMatched(calo,reader->GetCaloUtils(),reader->GetInputEvent()) ) continue ; //Assume that come from vertex in straight line calo->GetMomentum(mom,reader->GetVertex(evtIndex)) ; pt = mom.Pt(); eta = mom.Eta(); phi = mom.Phi() ; if(phi<0) phi+=TMath::TwoPi(); //only loop the particle at the same side of candidate //if at the same side has particle larger than candidate, then candidate can not be the leading, skip such events if(TMath::Abs(phi-phiC)>TMath::PiOver2()) continue ; if(pt > ptC){ n = -1; nfrac = -1; coneptsum = -1; isolated = kFALSE; if(bFillAOD){ if(reftracks){ reftracks ->Clear(); delete reftracks; } if(refclusters){ refclusters->Clear(); delete refclusters; } } return ; } //Check if there is any particle inside cone with pt larger than fPtThreshold rad = Radius(etaC, phiC, eta, phi); if(rad < fConeSize){ if(bFillAOD) { nclusterrefs++; if(nclusterrefs==1){ refclusters = new TObjArray(0); //refclusters->SetName(Form("Clusters%s",aodArrayRefName.Data())); TString tempo(aodArrayRefName) ; tempo += "Clusters" ; refclusters->SetName(tempo); refclusters->SetOwner(kFALSE); } refclusters->Add(calo); } //printf("neutral in isolation cone pt %f, phi %f, eta %f, R %f \n",pt,phi,eta,rad); coneptsum+=pt; if(pt > fPtThreshold ) n++; //if fPtFraction*ptCfPtThreshold) nfrac++ ; } else { if(pt>fPtFraction*ptC) nfrac++; } }//in cone }// neutral particle loop }//neutrals //printf("Isolation Cut: in cone with: pT>pTthres %d, pT > pTfrac*pTcandidate %d \n",n,nfrac); //Add reference arrays to AOD when filling AODs only if(bFillAOD) { if(refclusters) pCandidate->AddObjArray(refclusters); if(reftracks) pCandidate->AddObjArray(reftracks); } //Check isolation, depending on method. if( fICMethod == kPtThresIC){ if(n==0) isolated = kTRUE ; } else if( fICMethod == kSumPtIC){ if(coneptsum < fSumPtThreshold) isolated = kTRUE ; } else if( fICMethod == kPtFracIC){ if(nfrac==0) isolated = kTRUE ; } else if( fICMethod == kSumPtFracIC){ //when the fPtFraction*ptC < fSumPtThreshold then consider the later case if(fPtFraction*ptC < fSumPtThreshold && coneptsum < fSumPtThreshold) isolated = kTRUE ; if(fPtFraction*ptC > fSumPtThreshold && coneptsum < fPtFraction*ptC) isolated = kTRUE ; } } //_____________________________________________________ void AliIsolationCut::Print(const Option_t * opt) const { //Print some relevant parameters set for the analysis if(! opt) return; printf("**** Print %s %s **** \n", GetName(), GetTitle() ) ; printf("IC method = %d\n", fICMethod ) ; printf("Cone Size = %1.2f\n", fConeSize ) ; printf("pT threshold = %2.1f\n", fPtThreshold) ; printf("pT fraction = %3.1f\n", fPtFraction ) ; printf("particle type in cone = %d\n", fPartInCone ) ; printf(" \n") ; } //___________________________________________________________________________ Float_t AliIsolationCut::Radius(const Float_t etaC, const Float_t phiC, const Float_t eta , const Float_t phi) const { // Calculate the distance to trigger from any particle Float_t dEta = etaC-eta; Float_t dPhi = phiC-phi; if(TMath::Abs(dPhi) >= TMath::Pi()) dPhi = TMath::TwoPi()-TMath::Abs(dPhi); return TMath::Sqrt( dEta*dEta + dPhi*dPhi ); }