/* * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * See cxx source for full Copyright notice * $Id$ */ /********************************** * flow analysis with Q-cumulants * * * * author: Ante Bilandzic * * (abilandzic@gmail.com) * *********************************/ #ifndef ALIFLOWANALYSISWITHQCUMULANTS_H #define ALIFLOWANALYSISWITHQCUMULANTS_H #include "AliFlowCommonConstants.h" // needed as include #include "TMatrixD.h" #include "TH2D.h" #include "TBits.h" class TObjArray; class TList; class TFile; class TGraph; class TH1; class TProfile; class TProfile2D; class TDirectoryFile; class AliFlowEventSimple; class AliFlowVector; class AliFlowCommonHist; class AliFlowCommonHistResults; //================================================================================================================ class AliFlowAnalysisWithQCumulants{ public: AliFlowAnalysisWithQCumulants(); virtual ~AliFlowAnalysisWithQCumulants(); // 0.) methods called in the constructor: virtual void InitializeArraysForIntFlow(); virtual void InitializeArraysForDiffFlow(); virtual void InitializeArraysForDistributions(); virtual void InitializeArraysForVarious(); virtual void InitializeArraysForNestedLoops(); // 1.) method Init() and methods called within Init(): virtual void Init(); virtual void CrossCheckSettings(); virtual void CommonConstants(TString method); virtual void BookAndNestAllLists(); virtual void BookAndNestListsForDifferentialFlow(); virtual void BookCommonHistograms(); virtual void BookAndFillWeightsHistograms(); virtual void BookEverythingForIntegratedFlow(); virtual void BookEverythingForDifferentialFlow(); virtual void BookEverythingFor2DDifferentialFlow(); virtual void BookEverythingForDistributions(); virtual void BookEverythingForVarious(); virtual void BookEverythingForNestedLoops(); virtual void StoreIntFlowFlags(); virtual void StoreDiffFlowFlags(); virtual void StoreFlagsForDistributions(); virtual void StoreHarmonic(); // 2.) method Make() and methods called within Make(): virtual void Make(AliFlowEventSimple *anEvent); // 2a.) Common: virtual void CheckPointersUsedInMake(); virtual void FillAverageMultiplicities(Int_t nRP); virtual void FillCommonControlHistograms(AliFlowEventSimple *anEvent); virtual void ResetEventByEventQuantities(); // 2b.) Reference flow: virtual void CalculateIntFlowCorrelations(); virtual void CalculateIntFlowCorrelationsUsingParticleWeights(); virtual void CalculateIntFlowProductOfCorrelations(); virtual void CalculateIntFlowSumOfEventWeights(); virtual void CalculateIntFlowSumOfProductOfEventWeights(); virtual void CalculateIntFlowCorrectionsForNUACosTerms(); virtual void CalculateIntFlowCorrectionsForNUACosTermsUsingParticleWeights(); virtual void CalculateIntFlowCorrectionsForNUASinTerms(); virtual void CalculateIntFlowCorrectionsForNUASinTermsUsingParticleWeights(); virtual void CalculateIntFlowProductOfCorrectionTermsForNUA(); virtual void CalculateIntFlowSumOfEventWeightsNUA(); virtual void CalculateIntFlowSumOfProductOfEventWeightsNUA(); // 2c.) Cros-checking reference flow correlations with nested loops: virtual void EvaluateIntFlowNestedLoops(AliFlowEventSimple* const anEvent); virtual void EvaluateIntFlowCorrelationsWithNestedLoops(AliFlowEventSimple* const anEvent); virtual void EvaluateIntFlowCorrelationsWithNestedLoopsUsingParticleWeights(AliFlowEventSimple* const anEvent); virtual void EvaluateIntFlowCorrectionsForNUAWithNestedLoops(AliFlowEventSimple* const anEvent); virtual void EvaluateIntFlowCorrectionsForNUAWithNestedLoopsUsingParticleWeights(AliFlowEventSimple* const anEvent); // 2d.) Differential flow: virtual void CalculateDiffFlowCorrelations(TString type, TString ptOrEta); // type = RP or POI virtual void CalculateDiffFlowCorrelationsUsingParticleWeights(TString type, TString ptOrEta); // type = RP or POI virtual void CalculateDiffFlowProductOfCorrelations(TString type, TString ptOrEta); // type = RP or POI virtual void CalculateDiffFlowSumOfEventWeights(TString type, TString ptOrEta); // type = RP or POI virtual void CalculateDiffFlowSumOfProductOfEventWeights(TString type, TString ptOrEta); // type = RP or POI virtual void CalculateDiffFlowCorrectionsForNUACosTerms(TString type, TString ptOrEta); virtual void CalculateDiffFlowCorrectionsForNUACosTermsUsingParticleWeights(TString type, TString ptOrEta); virtual void CalculateDiffFlowCorrectionsForNUASinTerms(TString type, TString ptOrEta); virtual void CalculateDiffFlowCorrectionsForNUASinTermsUsingParticleWeights(TString type, TString ptOrEta); // 2e.) 2D differential flow: virtual void Calculate2DDiffFlowCorrelations(TString type); // type = RP or POI // 2f.) Other differential correlators (i.e. Teaney-Yan correlator): virtual void CalculateOtherDiffCorrelators(TString type, TString ptOrEta); // type = RP or POI // 2g.) Distributions of reference flow correlations: virtual void StoreDistributionsOfCorrelations(); // 2h.) Store phi distibution for one event to vizualize flow: virtual void StorePhiDistributionForOneEvent(AliFlowEventSimple* const anEvent); // 2i.) Cross-checking differential flow correlations with nested loops: virtual void EvaluateDiffFlowNestedLoops(AliFlowEventSimple* const anEvent); virtual void EvaluateDiffFlowCorrelationsWithNestedLoops(AliFlowEventSimple* const anEvent, TString type, TString ptOrEta); virtual void EvaluateDiffFlowCorrelationsWithNestedLoopsUsingParticleWeights(AliFlowEventSimple* const anEvent, TString type, TString ptOrEta); virtual void EvaluateDiffFlowCorrectionTermsForNUAWithNestedLoops(AliFlowEventSimple* const anEvent, TString type, TString ptOrEta); virtual void EvaluateDiffFlowCorrectionTermsForNUAWithNestedLoopsUsingParticleWeights(AliFlowEventSimple* const anEvent, TString type, TString ptOrEta); virtual void EvaluateOtherDiffCorrelatorsWithNestedLoops(AliFlowEventSimple* const anEvent, TString type, TString ptOrEta); // 3.) method Finish() and methods called within Finish(): virtual void Finish(); virtual void CheckPointersUsedInFinish(); // 3a.) integrated flow: virtual void FinalizeCorrelationsIntFlow(); virtual void FinalizeCorrectionTermsForNUAIntFlow(); virtual void CalculateCovariancesIntFlow(); virtual void CalculateCovariancesNUAIntFlow(); virtual void CalculateCumulantsIntFlow(); virtual void CalculateReferenceFlow(); virtual void FillCommonHistResultsIntFlow(); // nua: virtual void CalculateQcumulantsCorrectedForNUAIntFlow(); virtual void PrintFinalResultsForIntegratedFlow(TString type); virtual void CrossCheckIntFlowCorrelations(); virtual void CrossCheckIntFlowExtraCorrelations(); // extra correlations which appear only when particle weights are used virtual void CrossCheckIntFlowCorrectionTermsForNUA(); // 3b.) differential flow: virtual void FinalizeReducedCorrelations(TString type, TString ptOrEta); virtual void CalculateDiffFlowCovariances(TString type, TString ptOrEta); virtual void CalculateDiffFlowCumulants(TString type, TString ptOrEta); virtual void CalculateDiffFlow(TString type, TString ptOrEta); virtual void FinalizeCorrectionTermsForNUADiffFlow(TString type, TString ptOrEta); virtual void CalculateDiffFlowCumulantsCorrectedForNUA(TString type, TString ptOrEta); virtual void CalculateDiffFlowCorrectedForNUA(TString type, TString ptOrEta); virtual void CalculateFinalResultsForRPandPOIIntegratedFlow(TString type); // to be improved (add also possibility to integrate over eta yield) virtual void FillCommonHistResultsDiffFlow(TString type); virtual void CrossCheckDiffFlowCorrelations(TString type, TString ptOrEta); virtual void PrintNumberOfParticlesInSelectedBin(); virtual void CrossCheckDiffFlowCorrectionTermsForNUA(TString type, TString ptOrEta); // 3c.) 2D: virtual void Calculate2DDiffFlowCumulants(TString type); virtual void Calculate2DDiffFlow(TString type); // 3d.) Other differential correlators: virtual void CrossCheckOtherDiffCorrelators(TString type, TString ptOrEta); // 4.) method GetOutputHistograms() and methods called within GetOutputHistograms(): virtual void GetOutputHistograms(TList *outputListHistos); virtual void GetPointersForCommonHistograms(); virtual void GetPointersForParticleWeightsHistograms(); virtual void GetPointersForIntFlowHistograms(); virtual void GetPointersForDiffFlowHistograms(); virtual void GetPointersFor2DDiffFlowHistograms(); virtual void GetPointersForOtherDiffCorrelators(); virtual void GetPointersForNestedLoopsHistograms(); // 5.) other methods: TProfile* MakePtProjection(TProfile2D *profilePtEta) const; TProfile* MakeEtaProjection(TProfile2D *profilePtEta) const; virtual void WriteHistograms(TString outputFileName); virtual void WriteHistograms(TDirectoryFile *outputFileName); // **** SETTERS and GETTERS **** // 0.) base: void SetHistList(TList* const hlist) {this->fHistList = hlist;} TList* GetHistList() const {return this->fHistList;} // 1.) common: void SetCommonHists(AliFlowCommonHist* const ch) {this->fCommonHists = ch;}; AliFlowCommonHist* GetCommonHists() const {return this->fCommonHists;}; void SetCommonHists2nd(AliFlowCommonHist* const ch2nd) {this->fCommonHists2nd = ch2nd;}; AliFlowCommonHist* GetCommonHists2nd() const {return this->fCommonHists2nd;}; void SetCommonHists4th(AliFlowCommonHist* const ch4th) {this->fCommonHists4th = ch4th;}; AliFlowCommonHist* GetCommonHists4th() const {return this->fCommonHists4th;}; void SetCommonHists6th(AliFlowCommonHist* const ch6th) {this->fCommonHists6th = ch6th;}; AliFlowCommonHist* GetCommonHists6th() const {return this->fCommonHists6th;}; void SetCommonHists8th(AliFlowCommonHist* const ch8th) {this->fCommonHists8th = ch8th;}; AliFlowCommonHist* GetCommonHists8th() const {return this->fCommonHists8th;}; void SetCommonHistsResults2nd(AliFlowCommonHistResults* const chr2nd) {this->fCommonHistsResults2nd = chr2nd;}; AliFlowCommonHistResults* GetCommonHistsResults2nd() const {return this->fCommonHistsResults2nd;}; void SetCommonHistsResults4th(AliFlowCommonHistResults* const chr4th) {this->fCommonHistsResults4th = chr4th;}; AliFlowCommonHistResults* GetCommonHistsResults4th() const {return this->fCommonHistsResults4th;}; void SetCommonHistsResults6th(AliFlowCommonHistResults* const chr6th) {this->fCommonHistsResults6th = chr6th;}; AliFlowCommonHistResults* GetCommonHistsResults6th() const {return this->fCommonHistsResults6th;}; void SetCommonHistsResults8th(AliFlowCommonHistResults* const chr8th) {this->fCommonHistsResults8th = chr8th;}; AliFlowCommonHistResults* GetCommonHistsResults8th() const {return this->fCommonHistsResults8th;}; void SetCommonConstants(TProfile* const cc) {this->fCommonConstants = cc;}; TProfile* GetCommonConstants() const {return this->fCommonConstants;}; void SetFillMultipleControlHistograms(Bool_t const fmch) {this->fFillMultipleControlHistograms = fmch;}; Bool_t GetFillMultipleControlHistograms() const {return this->fFillMultipleControlHistograms;}; void SetHarmonic(Int_t const harmonic) {this->fHarmonic = harmonic;}; Int_t GetHarmonic() const {return this->fHarmonic;}; void SetAnalysisLabel(const char *aLabel) {this->fAnalysisLabel->Append(*aLabel);}; // to be improved (Append(*aLabel) changed into Append(aLabel)) TString *GetAnalysisLabel() const {return this->fAnalysisLabel;}; void SetPrintFinalResults(Bool_t const printOrNot, Int_t const i) {this->fPrintFinalResults[i] = printOrNot;}; Bool_t GetPrintFinalResults(Int_t i) const {return this->fPrintFinalResults[i];}; // 2a.) particle weights: void SetWeightsList(TList* const wlist) {this->fWeightsList = (TList*)wlist->Clone();} TList* GetWeightsList() const {return this->fWeightsList;} void SetUsePhiWeights(Bool_t const uPhiW) {this->fUsePhiWeights = uPhiW;}; Bool_t GetUsePhiWeights() const {return this->fUsePhiWeights;}; void SetUsePtWeights(Bool_t const uPtW) {this->fUsePtWeights = uPtW;}; Bool_t GetUsePtWeights() const {return this->fUsePtWeights;}; void SetUseEtaWeights(Bool_t const uEtaW) {this->fUseEtaWeights = uEtaW;}; Bool_t GetUseEtaWeights() const {return this->fUseEtaWeights;}; void SetUseParticleWeights(TProfile* const uPW) {this->fUseParticleWeights = uPW;}; TProfile* GetUseParticleWeights() const {return this->fUseParticleWeights;}; void SetPhiWeights(TH1F* const histPhiWeights) {this->fPhiWeights = histPhiWeights;}; TH1F* GetPhiWeights() const {return this->fPhiWeights;}; void SetPtWeights(TH1D* const histPtWeights) {this->fPtWeights = histPtWeights;}; TH1D* GetPtWeights() const {return this->fPtWeights;}; void SetEtaWeights(TH1D* const histEtaWeights) {this->fEtaWeights = histEtaWeights;}; TH1D* GetEtaWeights() const {return this->fEtaWeights;}; // 2b.) event weights: void SetMultiplicityWeight(const char *multiplicityWeight) {*this->fMultiplicityWeight = multiplicityWeight;}; // 3.) Reference flow: // Flags: void SetIntFlowFlags(TProfile* const intFlowFlags) {this->fIntFlowFlags = intFlowFlags;}; TProfile* GetIntFlowFlags() const {return this->fIntFlowFlags;}; void SetApplyCorrectionForNUA(Bool_t const applyCorrectionForNUA) {this->fApplyCorrectionForNUA = applyCorrectionForNUA;}; Bool_t GetApplyCorrectionForNUA() const {return this->fApplyCorrectionForNUA;}; void SetApplyCorrectionForNUAVsM(Bool_t const applyCorrectionForNUAVsM) {this->fApplyCorrectionForNUAVsM = applyCorrectionForNUAVsM;}; Bool_t GetApplyCorrectionForNUAVsM() const {return this->fApplyCorrectionForNUAVsM;}; void SetnBinsMult(Int_t const nbm) {this->fnBinsMult = nbm;}; Int_t GetnBinsMult() const {return this->fnBinsMult;}; void SetMinMult(Double_t const minm) {this->fMinMult = minm;}; Double_t GetMinMult() const {return this->fMinMult;}; void SetMaxMult(Double_t const maxm) {this->fMaxMult = maxm;}; Double_t GetMaxMult() const {return this->fMaxMult;}; void SetPropagateErrorAlsoFromNIT(Bool_t const peafNIT) {this->fPropagateErrorAlsoFromNIT = peafNIT;}; Bool_t GetPropagateErrorAlsoFromNIT() const {return this->fPropagateErrorAlsoFromNIT;}; void SetCalculateCumulantsVsM(Bool_t const ccvm) {this->fCalculateCumulantsVsM = ccvm;}; Bool_t GetCalculateCumulantsVsM() const {return this->fCalculateCumulantsVsM;}; void SetMinimumBiasReferenceFlow(Bool_t const mmrf) {this->fMinimumBiasReferenceFlow = mmrf;}; Bool_t GetMinimumBiasReferenceFlow() const {return this->fMinimumBiasReferenceFlow;}; void SetForgetAboutCovariances(Bool_t const fac) {this->fForgetAboutCovariances = fac;}; Bool_t GetForgetAboutCovariances() const {return this->fForgetAboutCovariances;}; void SetStorePhiDistributionForOneEvent(Bool_t const spdfoe) {this->fStorePhiDistributionForOneEvent = spdfoe;}; Bool_t GetStorePhiDistributionForOneEvent() const {return this->fStorePhiDistributionForOneEvent;}; void SetPhiDistributionForOneEventSettings(Double_t const pdfoes, Int_t const i) {this->fPhiDistributionForOneEventSettings[i] = pdfoes;}; Double_t GetPhiDistributionForOneEventSettings(Int_t const i) const {return this->fPhiDistributionForOneEventSettings[i];}; // Reference flow profiles: void SetAvMultiplicity(TProfile* const avMultiplicity) {this->fAvMultiplicity = avMultiplicity;}; TProfile* GetAvMultiplicity() const {return this->fAvMultiplicity;}; void SetIntFlowCorrelationsPro(TProfile* const intFlowCorrelationsPro) {this->fIntFlowCorrelationsPro = intFlowCorrelationsPro;}; TProfile* GetIntFlowCorrelationsPro() const {return this->fIntFlowCorrelationsPro;}; void SetIntFlowSquaredCorrelationsPro(TProfile* const ifscp) {this->fIntFlowSquaredCorrelationsPro = ifscp;}; TProfile* GetIntFlowSquaredCorrelationsPro() const {return this->fIntFlowSquaredCorrelationsPro;}; void SetIntFlowCorrelationsVsMPro(TProfile* const ifcvp, Int_t const ci) {this->fIntFlowCorrelationsVsMPro[ci] = ifcvp;}; TProfile* GetIntFlowCorrelationsVsMPro(Int_t const ci) const {return this->fIntFlowCorrelationsVsMPro[ci];}; void SetIntFlowSquaredCorrelationsVsMPro(TProfile* const ifscvp, Int_t const ci) {this->fIntFlowSquaredCorrelationsVsMPro[ci] = ifscvp;}; TProfile* GetIntFlowSquaredCorrelationsVsMPro(Int_t const ci) const {return this->fIntFlowSquaredCorrelationsVsMPro[ci];}; void SetIntFlowCorrelationsAllPro(TProfile* const intFlowCorrelationsAllPro) {this->fIntFlowCorrelationsAllPro = intFlowCorrelationsAllPro;}; TProfile* GetIntFlowCorrelationsAllPro() const {return this->fIntFlowCorrelationsAllPro;}; void SetIntFlowExtraCorrelationsPro(TProfile* const intFlowExtraCorrelationsPro) {this->fIntFlowExtraCorrelationsPro = intFlowExtraCorrelationsPro;}; TProfile* GetIntFlowExtraCorrelationsPro() const {return this->fIntFlowExtraCorrelationsPro;}; void SetIntFlowProductOfCorrelationsPro(TProfile* const intFlowProductOfCorrelationsPro) {this->fIntFlowProductOfCorrelationsPro = intFlowProductOfCorrelationsPro;}; TProfile* GetIntFlowProductOfCorrelationsPro() const {return this->fIntFlowProductOfCorrelationsPro;}; void SetIntFlowProductOfCorrelationsVsMPro(TProfile* const ifpocvm, Int_t const pi) {this->fIntFlowProductOfCorrelationsVsMPro[pi] = ifpocvm;}; TProfile* GetIntFlowProductOfCorrelationsVsMPro(Int_t const pi) const {return this->fIntFlowProductOfCorrelationsVsMPro[pi];}; void SetIntFlowProductOfCorrectionTermsForNUAPro(TProfile* const ifpoctfNUA) {this->fIntFlowProductOfCorrectionTermsForNUAPro = ifpoctfNUA;}; TProfile* GetIntFlowProductOfCorrectionTermsForNUAPro() const {return this->fIntFlowProductOfCorrectionTermsForNUAPro;}; void SetIntFlowCorrectionTermsForNUAPro(TProfile* const ifctfnp, Int_t const sc) {this->fIntFlowCorrectionTermsForNUAPro[sc] = ifctfnp;}; TProfile* GetIntFlowCorrectionTermsForNUAPro(Int_t sc) const {return this->fIntFlowCorrectionTermsForNUAPro[sc];}; void SetIntFlowCorrectionTermsForNUAVsMPro(TProfile* const ifctfnpvm, Int_t const sc, Int_t const ci) {this->fIntFlowCorrectionTermsForNUAVsMPro[sc][ci] = ifctfnpvm;}; TProfile* GetIntFlowCorrectionTermsForNUAVsMPro(Int_t sc, Int_t ci) const {return this->fIntFlowCorrectionTermsForNUAVsMPro[sc][ci];}; // integrated flow histograms holding all results: void SetIntFlowCorrelationsHist(TH1D* const intFlowCorrelationsHist) {this->fIntFlowCorrelationsHist = intFlowCorrelationsHist;}; TH1D* GetIntFlowCorrelationsHist() const {return this->fIntFlowCorrelationsHist;}; void SetIntFlowCorrelationsVsMHist(TH1D* const ifcvmh, Int_t const ci) {this->fIntFlowCorrelationsVsMHist[ci] = ifcvmh;}; TH1D* GetIntFlowCorrelationsVsMHist(Int_t const ci) const {return this->fIntFlowCorrelationsVsMHist[ci];}; void SetIntFlowCorrelationsAllHist(TH1D* const intFlowCorrelationsAllHist) {this->fIntFlowCorrelationsAllHist = intFlowCorrelationsAllHist;}; TH1D* GetIntFlowCorrelationsAllHist() const {return this->fIntFlowCorrelationsAllHist;}; void SetIntFlowCorrectionTermsForNUAHist(TH1D* const ifctfnh, Int_t const sc) {this->fIntFlowCorrectionTermsForNUAHist[sc] = ifctfnh;}; TH1D* GetIntFlowCorrectionTermsForNUAHist(Int_t sc) const {return this->fIntFlowCorrectionTermsForNUAHist[sc];}; void SetIntFlowCovariances(TH1D* const intFlowCovariances) {this->fIntFlowCovariances = intFlowCovariances;}; TH1D* GetIntFlowCovariances() const {return this->fIntFlowCovariances;}; void SetIntFlowSumOfEventWeights(TH1D* const intFlowSumOfEventWeights, Int_t const power) {this->fIntFlowSumOfEventWeights[power] = intFlowSumOfEventWeights;}; TH1D* GetIntFlowSumOfEventWeights(Int_t power) const {return this->fIntFlowSumOfEventWeights[power];}; void SetIntFlowSumOfProductOfEventWeights(TH1D* const intFlowSumOfProductOfEventWeights) {this->fIntFlowSumOfProductOfEventWeights = intFlowSumOfProductOfEventWeights;}; TH1D* GetIntFlowSumOfProductOfEventWeights() const {return this->fIntFlowSumOfProductOfEventWeights;}; void SetIntFlowCovariancesVsM(TH1D* const ifcvm, Int_t ci) {this->fIntFlowCovariancesVsM[ci] = ifcvm;}; TH1D* GetIntFlowCovariancesVsM(Int_t ci) const {return this->fIntFlowCovariancesVsM[ci];}; void SetIntFlowSumOfEventWeightsVsM(TH1D* const ifsoewvm, Int_t si, Int_t lc) {this->fIntFlowSumOfEventWeightsVsM[si][lc] = ifsoewvm;}; TH1D* GetIntFlowSumOfEventWeightsVsM(Int_t si, Int_t lc) const {return this->fIntFlowSumOfEventWeightsVsM[si][lc];}; void SetIntFlowSumOfProductOfEventWeightsVsM(TH1D* const ifsopoevm, Int_t si) {this->fIntFlowSumOfProductOfEventWeightsVsM[si] = ifsopoevm;}; TH1D* GetIntFlowSumOfProductOfEventWeightsVsM(Int_t si) const {return this->fIntFlowSumOfProductOfEventWeightsVsM[si];}; void SetIntFlowCovariancesNUA(TH1D* const intFlowCovariancesNUA) {this->fIntFlowCovariancesNUA = intFlowCovariancesNUA;}; TH1D* GetIntFlowCovariancesNUA() const {return this->fIntFlowCovariancesNUA;}; void SetIntFlowSumOfEventWeightsNUA(TH1D* const ifsoewNUA, Int_t const sc, Int_t const power) {this->fIntFlowSumOfEventWeightsNUA[sc][power] = ifsoewNUA;}; TH1D* GetIntFlowSumOfEventWeightsNUA(Int_t sc, Int_t power) const {return this->fIntFlowSumOfEventWeightsNUA[sc][power];}; void SetIntFlowSumOfProductOfEventWeightsNUA(TH1D* const ifsopoewNUA) {this->fIntFlowSumOfProductOfEventWeightsNUA = ifsopoewNUA;}; TH1D* GetIntFlowSumOfProductOfEventWeightsNUA() const {return this->fIntFlowSumOfProductOfEventWeightsNUA;}; void SetIntFlowQcumulants(TH1D* const intFlowQcumulants) {this->fIntFlowQcumulants = intFlowQcumulants;}; TH1D* GetIntFlowQcumulants() const {return this->fIntFlowQcumulants;}; void SetIntFlowQcumulantsVsM(TH1D* const intFlowQcumulantsVsM, Int_t co) {this->fIntFlowQcumulantsVsM[co] = intFlowQcumulantsVsM;}; TH1D* GetIntFlowQcumulantsVsM(Int_t co) const {return this->fIntFlowQcumulantsVsM[co];}; void SetIntFlowQcumulantsRebinnedInM(TH1D* const ifqcrim) {this->fIntFlowQcumulantsRebinnedInM = ifqcrim;}; TH1D* GetIntFlowQcumulantsRebinnedInM() const {return this->fIntFlowQcumulantsRebinnedInM;}; void SetIntFlowQcumulantsErrorSquaredRatio(TH1D* const ifqcesr) {this->fIntFlowQcumulantsErrorSquaredRatio = ifqcesr;}; TH1D* GetIntFlowQcumulantsErrorSquaredRatio() const {return this->fIntFlowQcumulantsErrorSquaredRatio;}; void SetIntFlow(TH1D* const intFlow) {this->fIntFlow = intFlow;}; TH1D* GetIntFlow() const {return this->fIntFlow;}; void SetIntFlowVsM(TH1D* const intFlowVsM, Int_t co) {this->fIntFlowVsM[co] = intFlowVsM;}; TH1D* GetIntFlowVsM(Int_t co) const {return this->fIntFlowVsM[co];}; void SetIntFlowRebinnedInM(TH1D* const ifrim) {this->fIntFlowRebinnedInM = ifrim;}; TH1D* GetIntFlowRebinnedInM() const {return this->fIntFlowRebinnedInM;}; void SetIntFlowDetectorBias(TH1D* const ifdb) {this->fIntFlowDetectorBias = ifdb;}; TH1D* GetIntFlowDetectorBias() const {return this->fIntFlowDetectorBias;}; void SetIntFlowDetectorBiasVsM(TH1D* const ifdbvm, Int_t ci) {this->fIntFlowDetectorBiasVsM[ci] = ifdbvm;}; TH1D* GetIntFlowDetectorBiasVsM(Int_t ci) const {return this->fIntFlowDetectorBiasVsM[ci];}; // 4.) Differential flow: // Flags: void SetDiffFlowFlags(TProfile* const diffFlowFlags) {this->fDiffFlowFlags = diffFlowFlags;}; TProfile* GetDiffFlowFlags() const {return this->fDiffFlowFlags;}; void SetCalculateDiffFlow(Bool_t const cdf) {this->fCalculateDiffFlow = cdf;}; Bool_t GetCalculateDiffFlow() const {return this->fCalculateDiffFlow;}; void SetCalculate2DDiffFlow(Bool_t const c2ddf) {this->fCalculate2DDiffFlow = c2ddf;}; Bool_t GetCalculate2DDiffFlow() const {return this->fCalculate2DDiffFlow;}; // Profiles: // 1D: void SetDiffFlowCorrelationsPro(TProfile* const diffFlowCorrelationsPro, Int_t const i, Int_t const j, Int_t const k) {this->fDiffFlowCorrelationsPro[i][j][k] = diffFlowCorrelationsPro;}; TProfile* GetDiffFlowCorrelationsPro(Int_t i, Int_t j, Int_t k) const {return this->fDiffFlowCorrelationsPro[i][j][k];}; void SetDiffFlowSquaredCorrelationsPro(TProfile* const diffFlowSquaredCorrelationsPro, Int_t const i, Int_t const j, Int_t const k) {this->fDiffFlowSquaredCorrelationsPro[i][j][k] = diffFlowSquaredCorrelationsPro;}; TProfile* GetDiffFlowSquaredCorrelationsPro(Int_t i, Int_t j, Int_t k) const {return this->fDiffFlowSquaredCorrelationsPro[i][j][k];}; void SetDiffFlowProductOfCorrelationsPro(TProfile* const dfpocp, Int_t const i, Int_t const j, Int_t const k, Int_t const l) {this->fDiffFlowProductOfCorrelationsPro[i][j][k][l] = dfpocp;}; TProfile* GetDiffFlowProductOfCorrelationsPro(Int_t i, Int_t j, Int_t k, Int_t l) const {return this->fDiffFlowProductOfCorrelationsPro[i][j][k][l];}; void SetDiffFlowCorrectionTermsForNUAPro(TProfile* const dfctfnp, Int_t const i, Int_t const j, Int_t const k, Int_t const l) {this->fDiffFlowCorrectionTermsForNUAPro[i][j][k][l] = dfctfnp;}; TProfile* GetDiffFlowCorrectionTermsForNUAPro(Int_t i, Int_t j, Int_t k, Int_t l) const {return this->fDiffFlowCorrectionTermsForNUAPro[i][j][k][l];}; // 2D: void Set2DDiffFlowCorrelationsPro(TProfile2D* const p2ddfcp, Int_t const i, Int_t const k) {this->f2DDiffFlowCorrelationsPro[i][k] = p2ddfcp;}; TProfile2D* Get2DDiffFlowCorrelationsPro(Int_t i, Int_t k) const {return this->f2DDiffFlowCorrelationsPro[i][k];}; // Other differential correlators: void SetOtherDiffCorrelators(TProfile* const odc,Int_t const i,Int_t const j,Int_t const k,Int_t const l) {this->fOtherDiffCorrelators[i][j][k][l] = odc;}; TProfile* GetOtherDiffCorrelators(Int_t i,Int_t j,Int_t k,Int_t l) const {return this->fOtherDiffCorrelators[i][j][k][l];}; // histograms: void SetDiffFlowCorrelationsHist(TH1D* const diffFlowCorrelationsHist, Int_t const i, Int_t const j, Int_t const k) {this->fDiffFlowCorrelationsHist[i][j][k] = diffFlowCorrelationsHist;}; TH1D* GetDiffFlowCorrelationsHist(Int_t i, Int_t j, Int_t k) const {return this->fDiffFlowCorrelationsHist[i][j][k];}; void SetDiffFlowCovariances(TH1D* const diffFlowCovariances, Int_t const i, Int_t const j, Int_t const k) {this->fDiffFlowCovariances[i][j][k] = diffFlowCovariances;}; TH1D* GetDiffFlowCovariances(Int_t i, Int_t j, Int_t k) const {return this->fDiffFlowCovariances[i][j][k];}; void SetDiffFlowCumulants(TH1D* const diffFlowCumulants, Int_t const i, Int_t const j, Int_t const k) {this->fDiffFlowCumulants[i][j][k] = diffFlowCumulants;}; TH1D* GetDiffFlowCumulants(Int_t i, Int_t j, Int_t k) const {return this->fDiffFlowCumulants[i][j][k];}; void SetDiffFlowDetectorBias(TH1D* const dfdb, Int_t const i, Int_t const j, Int_t const k) {this->fDiffFlowDetectorBias[i][j][k] = dfdb;}; TH1D* GetDiffFlowDetectorBias(Int_t i, Int_t j, Int_t k) const {return this->fDiffFlowDetectorBias[i][j][k];}; void SetDiffFlow(TH1D* const diffFlow, Int_t const i, Int_t const j, Int_t const k) {this->fDiffFlow[i][j][k] = diffFlow;}; TH1D* GetDiffFlow(Int_t i, Int_t j, Int_t k) const {return this->fDiffFlow[i][j][k];}; void SetDiffFlowSumOfEventWeights(TH1D* const dfsoew, Int_t const i, Int_t const j, Int_t const k, Int_t const l) {this->fDiffFlowSumOfEventWeights[i][j][k][l] = dfsoew;}; TH1D* GetDiffFlowSumOfEventWeights(Int_t i, Int_t j, Int_t k, Int_t l) const {return this->fDiffFlowSumOfEventWeights[i][j][k][l];}; void SetDiffFlowSumOfProductOfEventWeights(TH1D* const dfsopoew, Int_t const i, Int_t const j, Int_t const k, Int_t const l) {this->fDiffFlowSumOfProductOfEventWeights[i][j][k][l] = dfsopoew;}; TH1D* GetDiffFlowSumOfProductOfEventWeights(Int_t i, Int_t j, Int_t k, Int_t l) const {return this->fDiffFlowSumOfProductOfEventWeights[i][j][k][l];}; void SetDiffFlowCorrectionTermsForNUAHist(TH1D* const dfctfnh, Int_t const i, Int_t const j, Int_t const k, Int_t const l) {this->fDiffFlowCorrectionTermsForNUAHist[i][j][k][l] = dfctfnh;}; TH1D* GetDiffFlowCorrectionTermsForNUAHist(Int_t i, Int_t j, Int_t k, Int_t l) const {return this->fDiffFlowCorrectionTermsForNUAHist[i][j][k][l];}; // 2D: void Set2DDiffFlowCumulants(TH2D* const h2ddfc, Int_t const i, Int_t const j) {this->f2DDiffFlowCumulants[i][j] = h2ddfc;}; TH2D* Get2DDiffFlowCumulants(Int_t i, Int_t j) const {return this->f2DDiffFlowCumulants[i][j];}; void Set2DDiffFlow(TH2D* const h2ddf, Int_t const i, Int_t const j) {this->f2DDiffFlow[i][j] = h2ddf;}; TH2D* Get2DDiffFlow(Int_t i, Int_t j) const {return this->f2DDiffFlow[i][j];}; // 5.) distributions of correlations: // flags: void SetStoreDistributions(Bool_t const storeDistributions) {this->fStoreDistributions = storeDistributions;}; Bool_t GetStoreDistributions() const {return this->fStoreDistributions;}; // profile: void SetDistributionsFlags(TProfile* const distributionsFlags) {this->fDistributionsFlags = distributionsFlags;}; TProfile* GetDistributionsFlags() const {return this->fDistributionsFlags;}; // histograms: void SetDistributions(TH1D* const distributions, Int_t const i) {this->fDistributions[i] = distributions;}; TH1D* GetDistributions(Int_t i) const {return this->fDistributions[i];}; // min and max values of correlations (ci is correlations index [0=<2>,1=<4>,2=<6>,3=<8>]): void SetMinValueOfCorrelation(Int_t const ci, Double_t const minValue) {this->fMinValueOfCorrelation[ci] = minValue;}; Double_t GetMinValueOfCorrelation(Int_t ci) const {return this->fMinValueOfCorrelation[ci];}; void SetMaxValueOfCorrelation(Int_t const ci, Double_t const maxValue) {this->fMaxValueOfCorrelation[ci] = maxValue;}; Double_t GetMaxValueOfCorrelation(Int_t ci) const {return this->fMaxValueOfCorrelation[ci];}; // x.) debugging and cross-checking: void SetNestedLoopsList(TList* const nllist) {this->fNestedLoopsList = nllist;}; TList* GetNestedLoopsList() const {return this->fNestedLoopsList;}; void SetEvaluateIntFlowNestedLoops(Bool_t const eifnl) {this->fEvaluateIntFlowNestedLoops = eifnl;}; Bool_t GetEvaluateIntFlowNestedLoops() const {return this->fEvaluateIntFlowNestedLoops;}; void SetEvaluateDiffFlowNestedLoops(Bool_t const edfnl) {this->fEvaluateDiffFlowNestedLoops = edfnl;}; Bool_t GetEvaluateDiffFlowNestedLoops() const {return this->fEvaluateDiffFlowNestedLoops;}; void SetMaxAllowedMultiplicity(Int_t const maxAllowedMultiplicity) {this->fMaxAllowedMultiplicity = maxAllowedMultiplicity;}; Int_t GetMaxAllowedMultiplicity() const {return this->fMaxAllowedMultiplicity;}; void SetEvaluateNestedLoops(TProfile* const enl) {this->fEvaluateNestedLoops = enl;}; TProfile* GetEvaluateNestedLoops() const {return this->fEvaluateNestedLoops;}; void SetIntFlowDirectCorrelations(TProfile* const ifdc) {this->fIntFlowDirectCorrelations = ifdc;}; TProfile* GetIntFlowDirectCorrelations() const {return this->fIntFlowDirectCorrelations;}; void SetIntFlowExtraDirectCorrelations(TProfile* const ifedc) {this->fIntFlowExtraDirectCorrelations = ifedc;}; TProfile* GetIntFlowExtraDirectCorrelations() const {return this->fIntFlowExtraDirectCorrelations;}; void SetIntFlowDirectCorrectionTermsForNUA(TProfile* const ifdctfn, Int_t const sc) {this->fIntFlowDirectCorrectionTermsForNUA[sc] = ifdctfn;}; TProfile* GetIntFlowDirectCorrectionTermsForNUA(Int_t sc) const {return this->fIntFlowDirectCorrectionTermsForNUA[sc];}; void SetCrossCheckInPtBinNo(Int_t const crossCheckInPtBinNo) {this->fCrossCheckInPtBinNo = crossCheckInPtBinNo;}; Int_t GetCrossCheckInPtBinNo() const {return this->fCrossCheckInPtBinNo;}; void SetCrossCheckInEtaBinNo(Int_t const crossCheckInEtaBinNo) {this->fCrossCheckInEtaBinNo = crossCheckInEtaBinNo;}; Int_t GetCrossCheckInEtaBinNo() const {return this->fCrossCheckInEtaBinNo;}; void SetNoOfParticlesInBin(TH1D* const noOfParticlesInBin) {this->fNoOfParticlesInBin = noOfParticlesInBin;}; TH1D* GetNoOfParticlesInBin() const {return this->fNoOfParticlesInBin;}; void SetDiffFlowDirectCorrelations(TProfile* const diffFlowDirectCorrelations,Int_t const i,Int_t const j,Int_t const k){this->fDiffFlowDirectCorrelations[i][j][k]=diffFlowDirectCorrelations;}; TProfile* GetDiffFlowDirectCorrelations(Int_t i, Int_t j, Int_t k) const {return this->fDiffFlowDirectCorrelations[i][j][k];}; void SetDiffFlowDirectCorrectionTermsForNUA(TProfile* const dfdctfn, Int_t const i, Int_t const j, Int_t const k, Int_t const l) {this->fDiffFlowDirectCorrectionTermsForNUA[i][j][k][l] = dfdctfn;}; TProfile* GetDiffFlowDirectCorrectionTermsForNUA(Int_t i, Int_t j, Int_t k, Int_t l) const {return this->fDiffFlowDirectCorrectionTermsForNUA[i][j][k][l];}; void SetOtherDirectDiffCorrelators(TProfile* const oddc, Int_t const i, Int_t const j, Int_t const k, Int_t const l) {this->fOtherDirectDiffCorrelators[i][j][k][l] = oddc;}; TProfile* GetOtherDirectDiffCorrelators(Int_t i, Int_t j, Int_t k, Int_t l) const {return this->fOtherDirectDiffCorrelators[i][j][k][l];}; private: AliFlowAnalysisWithQCumulants(const AliFlowAnalysisWithQCumulants& afawQc); AliFlowAnalysisWithQCumulants& operator=(const AliFlowAnalysisWithQCumulants& afawQc); // 0.) base: TList* fHistList; // base list to hold all output object // 1.) common: AliFlowCommonHist *fCommonHists; // common control histograms (taking into account ALL events) AliFlowCommonHist *fCommonHists2nd; // common control histograms (taking into account only the events with 2 and more particles) AliFlowCommonHist *fCommonHists4th; // common control histograms (taking into account only the events with 4 and more particles) AliFlowCommonHist *fCommonHists6th; // common control histograms (taking into account only the events with 6 and more particles) AliFlowCommonHist *fCommonHists8th; // common control histograms (taking into account only the events with 8 and more particles) AliFlowCommonHistResults *fCommonHistsResults2nd; // final results for 2nd order int. and diff. flow for events with 2 and more particles AliFlowCommonHistResults *fCommonHistsResults4th; // final results for 4th order int. and diff. flow for events with 4 and more particles AliFlowCommonHistResults *fCommonHistsResults6th; // final results for 6th order int. and diff. flow for events with 6 and more particles AliFlowCommonHistResults *fCommonHistsResults8th; // final results for 8th order int. and diff. flow for events with 8 and more particles Int_t fnBinsPhi; // number of phi bins Double_t fPhiMin; // minimum phi Double_t fPhiMax; // maximum phi Double_t fPhiBinWidth; // bin width for phi histograms Int_t fnBinsPt; // number of pt bins Double_t fPtMin; // minimum pt Double_t fPtMax; // maximum pt Double_t fPtBinWidth; // bin width for pt histograms Int_t fnBinsEta; // number of eta bins Double_t fEtaMin; // minimum eta Double_t fEtaMax; // maximum eta Double_t fEtaBinWidth; // bin width for eta histograms TProfile *fCommonConstants; // profile to hold common constants Bool_t fFillMultipleControlHistograms; // fill separately control histos for events with >= 2, 4, 6 and 8 particles Int_t fHarmonic; // harmonic TString *fAnalysisLabel; // analysis label (all histograms and output file will have this label) Bool_t fPrintFinalResults[4]; // print on the screen the final results (0=RF, 1=RP, 2=POI, 3=RF rebinned in M) // 2a.) particle weights: TList *fWeightsList; // list to hold all histograms with particle weights: fUseParticleWeights, fPhiWeights, fPtWeights and fEtaWeights Bool_t fUsePhiWeights; // use phi weights Bool_t fUsePtWeights; // use pt weights Bool_t fUseEtaWeights; // use eta weights TProfile *fUseParticleWeights; // profile with three bins to hold values of fUsePhiWeights, fUsePtWeights and fUseEtaWeights TH1F *fPhiWeights; // histogram holding phi weights TH1D *fPtWeights; // histogram holding phi weights TH1D *fEtaWeights; // histogram holding phi weights // 2b.) event weights: TString *fMultiplicityWeight; // event-by-event weights for multiparticle correlations // 3.) integrated flow // 3a.) lists: TList *fIntFlowList; // list to hold all histograms and profiles relevant for integrated flow TList *fIntFlowProfiles; // list to hold all profiles relevant for integrated flow TList *fIntFlowResults; // list to hold all histograms with final results relevant for integrated flow // 3b.) flags: TProfile *fIntFlowFlags; // profile to hold all flags for integrated flow Bool_t fApplyCorrectionForNUA; // apply correction for non-uniform acceptance Bool_t fApplyCorrectionForNUAVsM; // apply correction for non-uniform acceptance versus M Int_t fnBinsMult; // number of multiplicity bins for flow analysis versus multiplicity Double_t fMinMult; // minimal multiplicity for flow analysis versus multiplicity Double_t fMaxMult; // maximal multiplicity for flow analysis versus multiplicity Bool_t fPropagateErrorAlsoFromNIT; // propagate error by taking into account also non-isotropic terms (not sure if resulting error then is correct - to be improved) Bool_t fCalculateCumulantsVsM; // calculate cumulants versus multiplicity Bool_t fMinimumBiasReferenceFlow; // store as reference flow in AliFlowCommonHistResults the minimum bias result (kFALSE by default) Bool_t fForgetAboutCovariances; // when propagating error forget about the covariances Bool_t fStorePhiDistributionForOneEvent; // store phi distribution for one event to illustrate flow Double_t fPhiDistributionForOneEventSettings[4]; // [v_min,v_max,refMult_min,refMult_max] // 3c.) event-by-event quantities: TMatrixD *fReQ; // fReQ[m][k] = sum_{i=1}^{M} w_{i}^{k} cos(m*phi_{i}) TMatrixD *fImQ; // fImQ[m][k] = sum_{i=1}^{M} w_{i}^{k} sin(m*phi_{i}) TMatrixD *fSpk; // fSM[p][k] = (sum_{i=1}^{M} w_{i}^{k})^{p+1} TH1D *fIntFlowCorrelationsEBE; // 1st bin: <2>, 2nd bin: <4>, 3rd bin: <6>, 4th bin: <8> TH1D *fIntFlowEventWeightsForCorrelationsEBE; // 1st bin: eW_<2>, 2nd bin: eW_<4>, 3rd bin: eW_<6>, 4th bin: eW_<8> TH1D *fIntFlowCorrelationsAllEBE; // to be improved (add comment) TH1D *fIntFlowCorrectionTermsForNUAEBE[2]; // [0=sin terms,1=cos terms], NUA = non-uniform acceptance TH1D *fIntFlowEventWeightForCorrectionTermsForNUAEBE[2]; // [0=sin terms,1=cos terms], NUA = non-uniform acceptance Double_t fReferenceMultiplicityEBE; // reference multiplicity // 3d.) profiles: TProfile *fAvMultiplicity; // profile to hold average multiplicities and number of events for events with nRP>=0, nRP>=1, ... , and nRP>=8 TProfile *fIntFlowCorrelationsPro; // average correlations <<2>>, <<4>>, <<6>> and <<8>> (with wrong errors!) TProfile *fIntFlowSquaredCorrelationsPro; // average correlations squared <<2>^2>, <<4>^2>, <<6>^2> and <<8>^2> TProfile *fIntFlowCorrelationsVsMPro[4]; // average correlations <<2>>, <<4>>, <<6>> and <<8>> versus multiplicity (error is wrong here!) TProfile *fIntFlowSquaredCorrelationsVsMPro[4]; // average correlations <<2>^2>, <<4>^2>, <<6>^2> and <<8>^2> versus multiplicity TProfile *fIntFlowCorrelationsAllPro; // average all correlations for integrated flow (with wrong errors!) TProfile *fIntFlowExtraCorrelationsPro; // when particle weights are used some extra correlations appear TProfile *fIntFlowProductOfCorrelationsPro; // average product of correlations <2>, <4>, <6> and <8> TProfile *fIntFlowProductOfCorrelationsVsMPro[6]; // average product of correlations <2>, <4>, <6> and <8> // [0=<<2><4>>,1=<<2><6>>,2=<<2><8>>,3=<<4><6>>,4=<<4><8>>,5=<<6><8>>] TProfile *fIntFlowProductOfCorrectionTermsForNUAPro; // average product of correction terms for NUA TProfile *fIntFlowCorrectionTermsForNUAPro[2]; // average correction terms for non-uniform acceptance (with wrong errors!) [0=sin terms,1=cos terms] TProfile *fIntFlowCorrectionTermsForNUAVsMPro[2][4]; // average correction terms for non-uniform acceptance (with wrong errors!) [0=sin terms,1=cos terms][correction term index] vs multiplicity // 3e.) histograms with final results: TH1D *fIntFlowCorrelationsHist; // final results for average correlations <<2>>, <<4>>, <<6>> and <<8>> (with correct errors!) TH1D *fIntFlowCorrelationsVsMHist[4]; // average correlations <<2>>, <<4>>, <<6>> and <<8>> versus multiplicity (error is correct here!) TH1D *fIntFlowCorrelationsAllHist; // final results for all average correlations (with correct errors!) TH1D *fIntFlowCorrectionTermsForNUAHist[2];// final results for correction terms for non-uniform acceptance (with correct errors!) [0=sin terms,1=cos terms] TH1D *fIntFlowCovariances; // final result for covariances of correlations (multiplied with weight dependent prefactor) TH1D *fIntFlowSumOfEventWeights[2]; // sum of linear and quadratic event weights for <2>, <4>, <6> and <8>: [0=linear 1,1=quadratic] TH1D *fIntFlowSumOfProductOfEventWeights; // sum of products of event weights for correlations <2>, <4>, <6> and <8> TH1D *fIntFlowCovariancesVsM[6]; // final result for covariances of correlations (multiplied with weight dependent prefactor) versus M // [0=Cov(2,4),1=Cov(2,6),2=Cov(2,8),3=Cov(4,6),4=Cov(4,8),5=Cov(6,8)] TH1D *fIntFlowSumOfEventWeightsVsM[4][2]; // sum of linear and quadratic event weights for <2>, <4>, <6> and <8> versum multiplicity // [0=sum{w_{<2>}},1=sum{w_{<4>}},2=sum{w_{<6>}},3=sum{w_{<8>}}][0=linear 1,1=quadratic] TH1D *fIntFlowSumOfProductOfEventWeightsVsM[6]; // sum of products of event weights for correlations <2>, <4>, <6> and <8> vs M // [0=sum{w_{<2>}w_{<4>}},1=sum{w_{<2>}w_{<6>}},2=sum{w_{<2>}w_{<8>}}, // 3=sum{w_{<4>}w_{<6>}},4=sum{w_{<4>}w_{<8>}},5=sum{w_{<6>}w_{<8>}}] TH1D *fIntFlowCovariancesNUA; // final result for covariances of all terms needed for NUA (multiplied with weight dependent prefactor) TH1D *fIntFlowSumOfEventWeightsNUA[2][2]; // sum of linear and quadratic event weights for NUA terms: [0=sin,1=cos][0=linear 1,1=quadratic] TH1D *fIntFlowSumOfProductOfEventWeightsNUA; // sum of products of event weights for NUA terms TH1D *fIntFlowQcumulants; // final results for integrated Q-cumulants QC{2}, QC{4}, QC{6} and QC{8} TH1D *fIntFlowQcumulantsVsM[4]; // final results for integrated Q-cumulants QC{2}, QC{4}, QC{6} and QC{8} versus multiplicity TH1D *fIntFlowQcumulantsRebinnedInM; // final results for reference Q-cumulants QC{2}, QC{4}, QC{6} and QC{8} rebinned in M TH1D *fIntFlowQcumulantsErrorSquaredRatio; // ratio between error squared: with/without non-isotropic terms TH1D *fIntFlow; // final results for integrated flow estimates v_n{2,QC}, v_n{4,QC}, v_n{6,QC} and v_n{8,QC} TH1D *fIntFlowVsM[4]; // final results for integrated flow estimates v_n{2,QC}, v_n{4,QC}, v_n{6,QC} and v_n{8,QC} versus multiplicity TH1D *fIntFlowRebinnedInM; // final results for ref. flow estimates v_n{2,QC}, v_n{4,QC}, v_n{6,QC} and v_n{8,QC} rebinned in M TH1D *fIntFlowDetectorBias; // bias coming from detector inefficiencies to <<2>>, <<4>>, <<6>> and <<8>> (corrected/measured) TH1D *fIntFlowDetectorBiasVsM[4]; // bias coming from detector inefficiencies to <<2>>, <<4>>, <<6>> and <<8>> vs M (corrected/measured) // 4.) differential flow // 4a.) lists: TList *fDiffFlowList; // list to hold list with all histograms (fDiffFlowResults) and list with profiles (fDiffFlowProfiles) relevant for differential flow TList *fDiffFlowProfiles; // list to hold all profiles relevant for differential flow TList *fDiffFlowResults; // list to hold all histograms with final results relevant for differential flow TList *fDiffFlow2D; // list to hold all objects relevant for 2D differential flow // 4aa.) nested list in list fDiffFlowProfiles: TList *fDiffFlowCorrelationsProList[2][2]; // list to hold profiles with all correlations for differential flow [0=RP,1=POI][0=pt,1=eta] TList *fDiffFlowProductOfCorrelationsProList[2][2]; // list to hold profiles with products of all correlations for differential flow [0=RP,1=POI][0=pt,1=eta] TList *fDiffFlowCorrectionsProList[2][2]; // list to hold profiles with correction term for NUA for differential flow [0=RP,1=POI][0=pt,1=eta] TList *f2DDiffFlowCorrelationsProList[2]; // list to hold profiles with all correlations for 2D differential flow [0=RP,1=POI] // 4ab.) nested list in list fDiffFlowResults: TList *fDiffFlowCorrelationsHistList[2][2]; // list to hold histograms with all correlations for differential flow [0=RP,1=POI][0=pt,1=eta] TList *fDiffFlowSumOfEventWeightsHistList[2][2][2]; // list to hold histograms with sum of linear/quadratic event weights [0=RP,1=POI][0=pt,1=eta][0=linear 1,1=quadratic] TList *fDiffFlowSumOfProductOfEventWeightsHistList[2][2]; // list to hold histograms with sum of products of event weights [0=RP,1=POI][0=pt,1=eta] TList *fDiffFlowCorrectionsHistList[2][2]; // list to hold histograms with correction term for NUA for differential flow [0=RP,1=POI][0=pt,1=eta] TList *fDiffFlowCovariancesHistList[2][2]; // list to hold histograms with all covariances for differential flow [0=RP,1=POI][0=pt,1=eta] TList *fDiffFlowCumulantsHistList[2][2]; // list to hold histograms with all cumulants for differential flow [0=RP,1=POI][0=pt,1=eta] TList *fDiffFlowDetectorBiasHistList[2][2]; // list to hold histograms which quantify detector bias to differential cumulants [0=RP,1=POI][0=pt,1=eta] TList *fDiffFlowHistList[2][2]; // list to hold histograms with final results for differential flow [0=RP,1=POI][0=pt,1=eta] // 4b.) flags: TProfile *fDiffFlowFlags; // profile to hold all flags for differential flow Bool_t fCalculateDiffFlow; // if you set kFALSE only reference flow will be calculated Bool_t fCalculate2DDiffFlow; // calculate 2D differential flow vs (pt,eta) (Remark: this is expensive in terms of CPU time) // 4c.) event-by-event quantities: // 1D: TProfile *fReRPQ1dEBE[3][2][4][9]; // real part [0=r,1=p,2=q][0=pt,1=eta][m][k] TProfile *fImRPQ1dEBE[3][2][4][9]; // imaginary part [0=r,1=p,2=q][0=pt,1=eta][m][k] TProfile *fs1dEBE[3][2][9]; // [0=r,1=p,2=q][0=pt,1=eta][k] // to be improved TH1D *fDiffFlowCorrelationsEBE[2][2][4]; // [0=RP,1=POI][0=pt,1=eta][reduced correlation index] TH1D *fDiffFlowEventWeightsForCorrelationsEBE[2][2][4]; // [0=RP,1=POI][0=pt,1=eta][event weights for reduced correlation index] TH1D *fDiffFlowCorrectionTermsForNUAEBE[2][2][2][10]; // [0=RP,1=POI][0=pt,1=eta][0=sin terms,1=cos terms][correction term index] // 2D: TProfile2D *fReRPQ2dEBE[3][4][9]; // real part of r_{m*n,k}(pt,eta), p_{m*n,k}(pt,eta) and q_{m*n,k}(pt,eta) TProfile2D *fImRPQ2dEBE[3][4][9]; // imaginary part of r_{m*n,k}(pt,eta), p_{m*n,k}(pt,eta) and q_{m*n,k}(pt,eta) TProfile2D *fs2dEBE[3][9]; // [t][k] // to be improved // 4d.) profiles: // 1D: TProfile *fDiffFlowCorrelationsPro[2][2][4]; // [0=RP,1=POI][0=pt,1=eta][correlation index] TProfile *fDiffFlowSquaredCorrelationsPro[2][2][4]; // [0=RP,1=POI][0=pt,1=eta][correlation index] TProfile *fDiffFlowProductOfCorrelationsPro[2][2][8][8]; // [0=RP,1=POI][0=pt,1=eta] [0=<2>,1=<2'>,2=<4>,3=<4'>,4=<6>,5=<6'>,6=<8>,7=<8'>] x // [0=<2>,1=<2'>,2=<4>,3=<4'>,4=<6>,5=<6'>,6=<8>,7=<8'>] TProfile *fDiffFlowCorrectionTermsForNUAPro[2][2][2][10]; // [0=RP,1=POI][0=pt,1=eta][0=sin terms,1=cos terms][correction term index] // 2D: TProfile2D *f2DDiffFlowCorrelationsPro[2][4]; // [0=RP,1=POI][correlation index] // Other differential correlators: TList *fOtherDiffCorrelatorsList; // list to hold profiles with other differential correlators TProfile *fOtherDiffCorrelators[2][2][2][1]; // // [0=RP,1=POI][0=pt,1=eta][0=sin terms,1=cos terms][correlator index] // 4e.) histograms holding final results: // 1D: TH1D *fDiffFlowCorrelationsHist[2][2][4]; // [0=RP,1=POI][0=pt,1=eta][correlation index] TH1D *fDiffFlowCovariances[2][2][5]; // [0=RP,1=POI][0=pW not used,1=pW used][0=exact eW,1=non-exact eW][0=pt,1=eta][index of covariances] TH1D *fDiffFlowCumulants[2][2][4]; // [0=RP,1=POI][0=pt,1=eta][0=QC{2'},1=QC{4'},2=QC{6'},3=QC{8'}] TH1D *fDiffFlowDetectorBias[2][2][4]; // [0=RP,1=POI][0=pt,1=eta][0=gQC{2'}/QC{2'},1=gQC{4'}/QC{4'},2=gQC{6'}/QC{6'},3=gQC{8'}/QC{8'}] TH1D *fDiffFlow[2][2][4]; // [0=RP,1=POI][0=pt,1=eta][0=v'{2},1=v'{4},2=v'{6},3=v'{8}] TH1D *fDiffFlowSumOfEventWeights[2][2][2][4]; // [0=RP,1=POI][0=pt,1=eta][0=linear 1,1=quadratic][0=<2'>,1=<4'>,2=<6'>,3=<8'>] TH1D *fDiffFlowSumOfProductOfEventWeights[2][2][8][8]; // [0=RP,1=POI][0=pt,1=eta] [0=<2>,1=<2'>,2=<4>,3=<4'>,4=<6>,5=<6'>,6=<8>,7=<8'>] x // [0=<2>,1=<2'>,2=<4>,3=<4'>,4=<6>,5=<6'>,6=<8>,7=<8'>] TH1D *fDiffFlowCorrectionTermsForNUAHist[2][2][2][10]; // [0=RP,1=POI][0=pt,1=eta][0=sin terms,1=cos terms][correction term index] // 2D: TH2D *f2DDiffFlowCumulants[2][4]; // 2D differential cumulants [0=RP,1=POI][cumulant order] TH2D *f2DDiffFlow[2][4]; // 2D differential flow [0=RP,1=POI][cumulants order] // 5.) distributions: TList *fDistributionsList; // list to hold all distributions of correlations TProfile *fDistributionsFlags; // profile to hold all flags for distributions of correlations Bool_t fStoreDistributions; // store or not distributions of correlations TH1D *fDistributions[4]; // [0=distribution of <2>,1=distribution of <4>,2=distribution of <6>,3=distribution of <8>] Double_t fMinValueOfCorrelation[4]; // min values of <2>, <4>, <6> and <8> Double_t fMaxValueOfCorrelation[4]; // max values of <2>, <4>, <6> and <8> // 6.) various: TList *fVariousList; // list to hold various unclassified objects TH1D *fPhiDistributionForOneEvent; // store phi distribution for one event to illustrate flow // x.) debugging and cross-checking: TList *fNestedLoopsList; // list to hold all profiles filled with nested loops Bool_t fEvaluateIntFlowNestedLoops; // evaluate nested loops relevant for integrated flow Bool_t fEvaluateDiffFlowNestedLoops; // evaluate nested loops relevant for differential flow Int_t fMaxAllowedMultiplicity; // nested loops will be evaluated only for events with multiplicity <= fMaxAllowedMultiplicity TProfile *fEvaluateNestedLoops; // profile with four bins: fEvaluateIntFlowNestedLoops, fEvaluateDiffFlowNestedLoops, fCrossCheckInPtBinNo and fCrossCheckInEtaBinNo // integrated flow: TProfile *fIntFlowDirectCorrelations; // multiparticle correlations relevant for int. flow calculated with nested loops TProfile *fIntFlowExtraDirectCorrelations; // when particle weights are used some extra correlations appear TProfile *fIntFlowDirectCorrectionTermsForNUA[2]; // average correction terms for non-uniform acceptance evaluated with nested loops [0=sin terms,1=cos terms] // differential flow: Int_t fCrossCheckInPtBinNo; // cross-check results for reduced correlations and corrections in this pt bin Int_t fCrossCheckInEtaBinNo; // cross-check results for reduced correlations and corrections in this eta bin TH1D *fNoOfParticlesInBin; // bin: 1 = # of RPs in pt bin, 2 = # of RPs in eta bin, 3 = # of POIs in pt bin, 4 = # of POIs in eta bin TProfile *fDiffFlowDirectCorrelations[2][2][4]; // [0=RP,1=POI][0=pt,1=eta][correlation index] TProfile *fDiffFlowDirectCorrectionTermsForNUA[2][2][2][10]; // [0=RP,1=POI][0=pt,1=eta][0=sin terms,1=cos terms][correction term index] // other differential correlators: TProfile *fOtherDirectDiffCorrelators[2][2][2][1]; // [0=RP,1=POI][0=pt,1=eta][0=sin terms,1=cos terms][correlator index] ClassDef(AliFlowAnalysisWithQCumulants, 0); }; //================================================================================================================ #endif