////////////////////////////////////////////////////////////////////// // // $Id$ // // Author: Emanuele Simili // ////////////////////////////////////////////////////////////////////// // // Description: class for selections in flow study, adapted from STAR // it is applied to AliFlowEvent during the analysis loop . // ... I really hate the code checker !!! // Original Authors: Raimond Snellings & Art Poskanzer // ////////////////////////////////////////////////////////////////////// #ifndef AliFlowSelection_h #define AliFlowSelection_h #include "TObject.h" #include "TMath.h" #include "AliFlowConstants.h" class AliFlowTrack ; class AliFlowV0 ; class AliFlowEvent ; class AliFlowConstants ; class AliFlowSelection : public TObject { public: AliFlowSelection(); virtual ~AliFlowSelection(); // Selection Methods for ... Bool_t Select(AliFlowEvent* pFlowEvent) const ; // (dummy) Bool_t Select(AliFlowTrack* pFlowTrack) const ; // selection for R.P.[nSel][nHar] Bool_t Select(AliFlowV0* pFlowV0) const ; // (dummy) Bool_t SelectPart(AliFlowTrack* pFlowTrack) const ; // track selection for Correlation Analysis Bool_t SelectPart(AliFlowV0* pFlowV0) const ; // v0 selection for Correlation Analysis (mass window + sidebands) Bool_t SelectV0Part(AliFlowV0* pFlowV0) const ; // v0 mass window for Correlation Analysis Bool_t SelectV0Side(AliFlowV0* pFlowV0) const ; // v0 sidebands for Correlation Analysis Bool_t SelectV0sxSide(AliFlowV0* pFlowV0) const ; // selects v0s in the left hand sideband Bool_t SelectV0dxSide(AliFlowV0* pFlowV0) const ; // selects v0s in the right hand sideband // Gets (Harmonic, Selection, Sub-event) Int_t Sel() const { return fSelection; } // Returns the Harmonic Int_t Har() const { return fHarmonic; } // Returns the Selection Int_t Sub() const { return fSubevent; } // Returns the Sub-Event // Gets (R.P. cuts) Float_t EtaCutLo(Int_t harN, Int_t selN) const { return fgEtaTpcCuts[0][harN][selN] ; } // Returns lower eta cut for R.P.[harN][selN] calculation (absolute values) Float_t EtaCutHi(Int_t harN, Int_t selN) const { return fgEtaTpcCuts[1][harN][selN] ; } // Returns upper eta cut for R.P.[harN][selN] calculation (absolute values) Float_t PtCutLo(Int_t harN, Int_t selN) const { return fgPtTpcCuts[0][harN][selN] ; } // Returns lower pT cut for R.P.[harN][selN] calculation Float_t PtCutHi(Int_t harN, Int_t selN) const { return fgPtTpcCuts[1][harN][selN] ; } // Returns upper pT cut for R.P.[harN][selN] calculation Float_t DcaGlobalCutLo() const { return fgDcaGlobalCuts[0] ; } // Returns lower DCA cut for R.P. calculation Float_t DcaGlobalCutHi() const { return fgDcaGlobalCuts[1] ; } // Returns upper DCA cut for R.P. calculation Bool_t ConstrainCut() const { return fgConstrainable ; } // Returns kTRUE/kFalse if the cut over un-constrainable tracks is enabled Int_t NhitsCut(Int_t selN) const { return fgTPChits[selN] ; } // Returns the minimum number of TPC hits for R.P.[selN] calculation Char_t* Pid() const { return fgPid; } // Returns particle specie used in R.P. calculation // Gets (Event cuts) Int_t CentralityCut() const { return fCent ; } // Returns Event Centrality class Int_t RunIdCut() const { return fRun ; } // Returns Run number // Gets (Correlation analysis cuts of tracks & V0s) Char_t* PidPart() { return fPidPart; } // Returns selected particle species wrt Reaction Plane Int_t PtBinsPart() const { return fPtBinsPart; } // Returns N. of pT binning Float_t PtMaxPart() const ; // Returns the max pT for evt.plane calc. // Cuts list void PrintList() const ; // Prints the tracks cut-list (for correlation analysis) void PrintSelectionList() const ; // Prints a summary of the selection criteria (for RP determination) void PrintV0List() const ; // Prints the v0s cut-list (for correlation analysis) // Sets (Harmonic, Selection, Sub-event) void SetHarmonic(const Int_t& harN); // Sets the Harmonic void SetSelection(const Int_t& selN); // Sets the Selection void SetSubevent(const Int_t& subN); // Sets the Sub-Event // Sets (R.P. cuts) static void SetEtaCut(Float_t lo, Float_t hi, Int_t harN, Int_t selN) { fgEtaTpcCuts[0][harN][selN] = lo ; fgEtaTpcCuts[1][harN][selN] = hi ; } // Sets |eta| cut for R.P.[harN][selN] calculation static void SetPtCut(Float_t lo, Float_t hi, Int_t harN, Int_t selN) { fgPtTpcCuts[0][harN][selN] = lo ; fgPtTpcCuts[1][harN][selN] = hi ; } // Sets pT cut for R.P.[harN][selN] calculation static void SetDcaGlobalCut(Float_t lo, Float_t hi) { fgDcaGlobalCuts[0] = lo ; fgDcaGlobalCuts[1] = hi ; } // Sets DCA cut for R.P. calculation static void SetPidCut(const Char_t* pid) { strncpy(fgPid, pid, 9) ; fgPid[9] = '\0' ; } // Sets the particle specie used in R.P. calculation static void SetConstrainCut(Bool_t tf = kTRUE) { fgConstrainable = tf ; } // Sets the cut over un-constrainable tracks static void SetNhitsCut(Int_t hits,Int_t selN) { fgTPChits[selN] = hits; } // Sets the minimum number of TPC hits for R.P.[selN] calculation // Sets (Event cuts) void SetCentralityCut(Int_t cent) { fCent = cent ; } // Sets Event Centrality class void SetRunIdCut(Int_t run) { fRun = run ; } // Sets Run number // Sets (Correlation analysis cuts of tracks & V0s) void SetPidPart(const Char_t* pid) { strncpy(fPidPart, pid, 9); fPidPart[9] = '\0'; } // Sets PID for particles wrt Reaction plane void SetPidProbPart(Float_t lo, Float_t hi) { fPidProbPart[0] = lo ; fPidProbPart[1] = hi; } // Sets PID probability for particles wrt Reaction plane void SetPtPart(Float_t lo, Float_t hi) { fPtPart[0] = lo; fPtPart[1] = hi; } // Sets pT for particles wrt Reaction plane void SetPPart(Float_t lo, Float_t hi) { fPPart[0] = lo; fPPart[1] = hi; } // Sets Momentum for particles wrt Reaction plane void SetEtaPart(Float_t lo, Float_t hi) { fEtaPart[0] = lo; fEtaPart[1] = hi; } // Sets Eta for particles wrt Reaction plane void SetEtaAbsPart(Float_t lo, Float_t hi) { fEtaAbsPart[0] = TMath::Abs(lo); fEtaAbsPart[1] = TMath::Abs(hi); } // Sets |Eta| for particles wrt Reaction plane void SetYPart(Float_t lo, Float_t hi) { fYPart[0] = lo; fYPart[1] = hi; } // Sets Rapidity for particles (with sign.) wrt Reaction plane void SetFitPtsPart(Int_t lo, Int_t hi) { fFitPtsPart[0] = lo; fFitPtsPart[1] = hi; } // Sets FitPoints for particles wrt Reaction plane void SetDedxPtsPart(Int_t lo, Int_t hi) { fDedxPtsPart[0] = lo; fDedxPtsPart[1] = hi; } // Sets dE/dx for particles wrt Reaction plane void SetFitOverMaxPtsPart(Float_t lo, Float_t hi) { fFitOverMaxPtsPart[0] = lo; fFitOverMaxPtsPart[1] = hi; } // Sets FitPoints/MaxPoints for particles wrt Reaction plane void SetChiSqPart(Float_t lo, Float_t hi) { fChiSqPart[0] = lo; fChiSqPart[1] = hi; } // Sets Chi^2 for particles wrt Reaction plane void SetDcaGlobalPart(Float_t lo, Float_t hi) { fDcaGlobalPart[0] = lo; fDcaGlobalPart[1] = hi; } // Sets d.c.a. for particles wrt Reaction plane void SetDcaOverSigma(Float_t lo, Float_t hi) { fDcaOverSigma[0] = lo; fDcaOverSigma[1] = hi; } // Sets d.c.a. for particles wrt Reaction plane void SetConstrainablePart(Bool_t constr) { fConstrainablePart = constr ; } // Sets constrainability for particles wrt Reaction plane void SetV0Pid(const Char_t* pid) { strncpy(fV0Pid, pid, 9) ; fV0Pid[9] = '\0' ; } // Sets PID for v0 wrt plane (...) void SetV0Mass(Float_t lo, Float_t hi) { fV0Mass[0] = lo ; fV0Mass[1] = hi; } // Sets invariant mass cut for v0 wrt plane void SetV0Pt(Float_t lo, Float_t hi) { fV0Pt[0] = lo ; fV0Pt[1] = hi; } // Sets pT for v0 wrt plane void SetV0P(Float_t lo, Float_t hi) { fV0P[0] = lo ; fV0P[1] = hi; } // Sets Momentum for v0 wrt plane void SetV0Eta(Float_t lo, Float_t hi) { fV0Eta[0] = lo ; fV0Eta[1] = hi; } // Sets Eta cut for v0 wrt plane void SetV0EtaAbs(Float_t lo, Float_t hi) { fV0EtaAbs[0] = lo ; fV0EtaAbs[1] = hi; } // Sets |Eta| cut (absolute value) for v0 wrt plane void SetV0Y(Float_t lo, Float_t hi) { fV0Y[0] = lo ; fV0Y[1] = hi; } // Sets Rapidity for v0 wrt plane void SetV0ChiSqPart(Float_t lo, Float_t hi) { fV0ChiSq[0] = lo ; fV0ChiSq[1] = hi; } // Sets Chi^2 for v0 wrt plane void SetV0Lenght(Float_t lo, Float_t hi) { fV0Lenght[0] = lo ; fV0Lenght[1] = hi; } // Sets distance to the main vertex for v0 wrt plane void SetV0DcaCross(Float_t lo, Float_t hi) { fV0DcaCross[0] = lo ; fV0DcaCross[1] = hi; } // Sets distance to the main vertex in sigma units for v0 wrt plane void SetV0LenghtOverSigma(Float_t lo, Float_t hi) { fV0LenghtOverSigma[0] = lo ; fV0LenghtOverSigma[1] = hi; } // Sets closest approach (between the 2 daughter tracks) for v0 wrt plane void SetV0SideBands() { SetV0SideBands(TMath::Abs((fV0Mass[1]-fV0Mass[0])/2)) ; } // Includes the v0 sideband analysis wrt plane void SetV0SideBands(Float_t sb) { fV0SideBand = sb ; } // Includes the v0 sideband analysis and a width void SetPtBinsPart(Int_t bins) { fPtBinsPart = bins; } // Sets N. of bins from fPtPart[0] to fPtPart[1] private: // These are just 3 integers - simple way to look at the [nHar][nSel] and [nSub] array Int_t fHarmonic; // harmonic Int_t fSelection; // selection Int_t fSubevent; // sub-event Int_t fPtBinsPart; // N. of bins in pT histograms (pT binning) // Event Cuts (new) Int_t fCent ; // Event Centrality class Int_t fRun ; // Run number // Cuts for V0 correlated to the Raction Plane (new) Char_t fV0Pid[10]; // PID for v0 wrt plane (...) Float_t fV0SideBand ; // width of the sidebands (using the sidebands' candidates) Float_t fV0Mass[2] ; // mass cut for v0 wrt plane Float_t fV0Pt[2]; // pT for v0 wrt plane Float_t fV0P[2]; // Momentum for v0 wrt plane Float_t fV0Eta[2]; // Eta cut for v0 wrt plane Float_t fV0EtaAbs[2]; // |Eta| cut (absolute value) for v0 wrt plane Float_t fV0Y[2]; // Rapidity for v0 wrt plane Float_t fV0ChiSq[2]; // Chi^2 for v0 wrt plane Float_t fV0Lenght[2]; // distance to the main vertex for v0 wrt plane Float_t fV0LenghtOverSigma[2]; // distance to the main vertex in sigma units for v0 wrt plane Float_t fV0DcaCross[2]; // closest approach (between the 2 daughter tracks) for v0 wrt plane // Cuts for Tracks that will be related to the Raction Plane (original strategy from STAR) Char_t fPidPart[10]; // PID for parts. wrt plane (h+, h-, pi-, pi+, pi, k+, k-, k, pr+, pr-, pr, d+, d-, d, e+, e-, e) Float_t fPidProbPart[2] ; // probability of the most likelihood p.id. (you should specify also PidPart()) Float_t fPtPart[2]; // pT for parts. wrt plane Float_t fPPart[2]; // Momentum for parts. wrt plane Float_t fEtaPart[2]; // Eta cut for parts. wrt plane Float_t fEtaAbsPart[2]; // |Eta| cut (absolute value) for parts. wrt plane Float_t fYPart[2]; // Rapidity for parts. wrt plane Int_t fFitPtsPart[2]; // FitPoints for parts. wrt plane Int_t fDedxPtsPart[2]; // dE/dx for parts. wrt plane Float_t fFitOverMaxPtsPart[2]; // FitPoints/MaxPoints for parts. wrt plane Float_t fChiSqPart[2]; // Chi^2 for parts. wrt plane Float_t fDcaGlobalPart[2]; // closest approach (to the main vertex) for parts. wrt plane Float_t fDcaOverSigma[2]; // closest approach (to the main vertex) over its error Bool_t fConstrainablePart; // constrainability for parts. wrt plane // Cuts for Tracks used in determining the Raction Plane (in STAR this selection was done inside the AliFlowEvent class) static Float_t fgEtaTpcCuts[2][AliFlowConstants::kHars][AliFlowConstants::kSels]; // eta range (absolute values) static Float_t fgPtTpcCuts[2][AliFlowConstants::kHars][AliFlowConstants::kSels]; // pT range static Float_t fgDcaGlobalCuts[2]; // DCA cuts static Char_t fgPid[10]; // h+, h-, pi-, pi+, pi, k+, k-, k, pr+, pr-, pr, e+, e-, e, d+, d-, d static Int_t fgTPChits[AliFlowConstants::kSels]; // minimum number of TPC hits static Bool_t fgConstrainable; // cut un-constrainable tracks ClassDef(AliFlowSelection,1) // macro for rootcint }; #endif