#ifndef ALIDIELECTRONSIGNALMC_H #define ALIDIELECTRONSIGNALMC_H #include /* Ionut Cristian Arsene, iarsene@cern.ch */ /* Monte Carlo signal definition: Leg #1 <-- Mother #1 <-- Grandmother #1 | Leg #2 <-- Mother #2 <-- Grandmother #2 For every leg, mother or grand-mother, a PDG code and a source can be specified. 1.) For the PDG codes, the PYTHIA standard is used. A few non-existent PYTHIA codes are used to select more than one PYTHIA code. All these are described below and implemented in AliDielectronMC::ComparePDG() function: 0 - default, accepts all PYTHIA codes 100 - light unflavoured mesons in the code range 100-199 200 - --"-- 200-299 300 - strange mesons in the code range 300-399 400 - charmed mesons in the code range 400-499 401 - open charm mesons (all D and D* mesons) 400-439 402 - open charm mesons and baryons together 400-439, 4000-4399 403 - all charm hadrons (mesons and baryons) 400-499, 4000-4999 500 - beauty mesons in the code range 500-599 501 - open beauty mesons 500-549 502 - open beauty mesons and baryons 500-549, 5000-5499 503 - all beauty hadrons 500-599, 5000-5999 1000 - light unflavoured baryons in the code range 1000-1999 2000 - --"-- 2000-2999 3000 - strange baryons in the code range 3000-3999 4000 - charmed baryons in the code range 4000-4999 4001 - open charm baryons 4000-4399 5000 - beauty baryons in the code range 5000-5999 5001 - open beauty baryons 5000-5499 2.) If the exclusion flags are turned ON then the PDG codes required and the conventional codes described above are used to exclude the selected particles. 3.) If the selection of both charges is switched ON then the PDG codes act on both particles and anti-particles. 4.) Particles sources implemented: 1. Primary - particle originating in the physics event 2. FinalState- stable(final state) particles which reach the detector -> according to AliStack::IsPhysicalPrimary() 3. Direct - primary particle which has no mother (e.g. J/psi's added to pythia MC events via generator cocktails, particles generated in a sudden freeze-out in thermal models, initial state particles) 4. Secondary - particle created during the GEANT propagation due to interaction of final state primaries with the material 5.) The 2 legs can originate from the same or different mother particles. This can be specified via the SetMotherRelation() method call. 6.) The filling of the pure MC step can be switched on using SetFillPureMCStep() method call. This should be used with care since at the pure MC information level there is no cut applied and for abundant particles the combinatorics can be very high. */ //__________________________________________________________________ class AliDielectronSignalMC : public TNamed { public: enum EBranchRelation {kUndefined=0, kSame, kDifferent}; enum ESource {kDontCare=0, kPrimary, kFinalState, kDirect, kSecondary, kNoCocktail}; enum EJpsiRadiativ {kAll=0, kIsRadiative, kIsNotRadiative}; AliDielectronSignalMC(); AliDielectronSignalMC(const Char_t* name, const Char_t* title); virtual ~AliDielectronSignalMC(); void SetLegPDGs(Int_t pdg1, Int_t pdg2, Bool_t exclude1=kFALSE, Bool_t exclude2=kFALSE) {fLeg1 = pdg1; fLeg2 = pdg2; fLeg1Exclude=exclude1; fLeg2Exclude=exclude2;} void SetMotherPDGs(Int_t pdg1, Int_t pdg2, Bool_t exclude1=kFALSE, Bool_t exclude2=kFALSE) {fMother1 = pdg1; fMother2 = pdg2; fMother1Exclude=exclude1; fMother2Exclude=exclude2;} void SetGrandMotherPDGs(Int_t pdg1, Int_t pdg2, Bool_t exclude1=kFALSE, Bool_t exclude2=kFALSE) {fGrandMother1 = pdg1; fGrandMother2 = pdg2; fGrandMother1Exclude=exclude1; fGrandMother2Exclude=exclude2;} void SetLegSources(ESource s1, ESource s2) {fLeg1Source = s1; fLeg2Source = s2;} void SetMotherSources(ESource s1, ESource s2) {fMother1Source = s1; fMother2Source = s2;} void SetGrandMotherSources(ESource s1, ESource s2) {fGrandMother1Source = s1; fGrandMother2Source = s2;} void SetCheckBothChargesLegs(Bool_t flag1, Bool_t flag2) {fCheckBothChargesLeg1 = flag1; fCheckBothChargesLeg2 = flag2;} void SetCheckBothChargesMothers(Bool_t flag1, Bool_t flag2) {fCheckBothChargesMother1 = flag1; fCheckBothChargesMother2 = flag2;} void SetCheckBothChargesGrandMothers(Bool_t flag1, Bool_t flag2) {fCheckBothChargesGrandMother1 = flag1; fCheckBothChargesGrandMother2 = flag2;} void SetMothersRelation(EBranchRelation relation) {fMothersRelation = relation;} void SetFillPureMCStep(Bool_t fill=kTRUE) {fFillPureMCStep = fill;} Int_t GetLegPDG(Int_t branch) const {return (branch==1 ? fLeg1 : fLeg2);} Int_t GetMotherPDG(Int_t branch) const {return (branch==1 ? fMother1 : fMother2);} Int_t GetGrandMotherPDG(Int_t branch) const {return (branch==1 ? fGrandMother1 : fGrandMother2);} Bool_t GetLegPDGexclude(Int_t branch) const {return (branch==1 ? fLeg1Exclude : fLeg2Exclude);} Bool_t GetMotherPDGexclude(Int_t branch) const {return (branch==1 ? fMother1Exclude : fMother2Exclude);} Bool_t GetGrandMotherPDGexclude(Int_t branch) const {return (branch==1 ? fGrandMother1Exclude : fGrandMother2Exclude);} ESource GetLegSource(Int_t branch) const {return (branch==1 ? fLeg1Source : fLeg2Source);} ESource GetMotherSource(Int_t branch) const {return (branch==1 ? fMother1Source : fMother2Source);} ESource GetGrandMotherSource(Int_t branch) const {return (branch==1 ? fGrandMother1Source : fGrandMother2Source);} Bool_t GetCheckBothChargesLegs(Int_t branch) const {return (branch==1 ? fCheckBothChargesLeg1 : fCheckBothChargesLeg2);} Bool_t GetCheckBothChargesMothers(Int_t branch) const {return (branch==1 ? fCheckBothChargesMother1 : fCheckBothChargesMother2);} Bool_t GetCheckBothChargesGrandMothers(Int_t branch) const {return (branch==1 ? fCheckBothChargesGrandMother1 : fCheckBothChargesGrandMother2);} EBranchRelation GetMothersRelation() const {return fMothersRelation;} Bool_t GetFillPureMCStep() const {return fFillPureMCStep;} void SetJpsiRadiative(EJpsiRadiativ rad) { fJpsiRadiative=rad; } EJpsiRadiativ GetJpsiRadiative() const { return fJpsiRadiative; } private: // PDG codes for legs, mothers and grand-mothers Int_t fLeg1; // leg 1 PDG Int_t fLeg2; // leg 2 PDG Int_t fMother1; // mother 1 PDG Int_t fMother2; // mother 2 PDG Int_t fGrandMother1; // grandmother 1 PDG Int_t fGrandMother2; // grandmother 2 PDG // Toggle on/off the use of the PDG codes as inclusion or exclusion // Example: if fLeg1=211 and fLeg1Exclude=kTRUE than all codes will be accepted for leg 1 with // the exception of 211 (pions) Bool_t fLeg1Exclude; // leg 1 Bool_t fLeg2Exclude; // leg 2 Bool_t fMother1Exclude; // mother 1 Bool_t fMother2Exclude; // mother 2 Bool_t fGrandMother1Exclude; // grandmother 1 Bool_t fGrandMother2Exclude; // grandmother 2 // Particle sources ESource fLeg1Source; // leg 1 source ESource fLeg2Source; // leg 2 source ESource fMother1Source; // mother 1 source ESource fMother2Source; // mother 2 source ESource fGrandMother1Source; // grandmother 1 source ESource fGrandMother2Source; // grandmother 2 source // Flaggs whether to check both charges of a given PDG code Bool_t fCheckBothChargesLeg1; // check both charges of the legs pdg Bool_t fCheckBothChargesLeg2; // leg2 Bool_t fCheckBothChargesMother1; // mother 1 Bool_t fCheckBothChargesMother2; // mother 2 Bool_t fCheckBothChargesGrandMother1; // grand mother 1 Bool_t fCheckBothChargesGrandMother2; // grand mother 2 EBranchRelation fMothersRelation; // mother 1&2 relation (same, different or whatever) EJpsiRadiativ fJpsiRadiative; // check for J/psi radiative decay Bool_t fFillPureMCStep; // check and fill the pure MC step ClassDef(AliDielectronSignalMC,2); }; #endif