#ifndef ALIDIELECTRONVARMANAGER_H #define ALIDIELECTRONVARMANAGER_H /* Copyright(c) 1998-2009, ALICE Experiment at CERN, All rights reserved. * * See cxx source for full Copyright notice */ //############################################################# //# # //# Class AliDielectronVarManager # //# Class for management of available variables # //# # //# Authors: # //# Anton Andronic, GSI / A.Andronic@gsi.de # //# Ionut C. Arsene, GSI / I.C.Arsene@gsi.de # //# Julian Book, Uni Ffm / Julian.Book@cern.ch # //# Markus Köhler, GSI / M.Koehler@gsi.de # //# Frederick Kramer, Uni Ffm / Frederick.Kramer@cern.ch # //# Magnus Mager, CERN / Magnus.Mager@cern.ch # //# WooJin J. Park, GSI / W.J.Park@gsi.de # //# Jens Wiechula, Uni HD / Jens.Wiechula@cern.ch # //# # //############################################################# #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // ? #include #include #include #include #include #include #include #include "AliDielectronPair.h" #include "AliDielectronMC.h" #include "AliDielectronPID.h" #include "AliDielectronHelper.h" #include "AliAnalysisManager.h" #include "AliInputEventHandler.h" #include "AliVZEROEPSelectionTask.h" #include "AliAODMCHeader.h" class AliVEvent; //________________________________________________________________ class AliDielectronVarManager : public TNamed { public: // Particle specific variables enum ValueTypes { kPx = 0, // px kPy, // py kPz, // pz kPt, // transverse momentum kPtSq, // transverse momentum squared kP, // momentum kXv, // vertex position in x kYv, // vertex position in y kZv, // vertex position in z kOneOverPt, // 1/pt kPhi, // phi angle kTheta, // theta angle kEta, // pseudo-rapidity kY, // rapidity kE, // energy kM, // mass kCharge, // charge kNclsITS, // number of clusters assigned in the ITS kITSchi2Cl, // chi2/cl in the ITS kNclsTPC, // number of clusters assigned in the TPC kNclsSTPC, // number of shared clusters assigned in the TPC kNclsSFracTPC, // fraction of shared clusters assigned in the TPC kNclsTPCiter1, // number of clusters assigned in the TPC after first iteration kNFclsTPC, // number of findable clusters in the TPC kNFclsTPCr, // number of findable clusters(crossed rows) in the TPC with more robust definition kNFclsTPCrFrac, // number of found/findable clusters in the TPC with more robust definition kNFclsTPCfCross, // fraction crossed rows/findable clusters in the TPC, as done in AliESDtrackCuts kTPCsignalN, // number of points used for dEdx kTPCsignalNfrac, // fraction of points used for dEdx / cluster used for tracking kTPCchi2Cl, // chi2/cl in TPC kTPCclsDiff, // TPC cluster difference kTPCclsSegments, // TPC cluster segments kTPCclsIRO, // TPC clusters inner read out kTPCclsORO, // TPC clusters outer read out kTrackStatus, // track status bits kFilterBit, // AOD filter bits kNclsTRD, // number of clusters assigned in the TRD kTRDntracklets, // number of TRD tracklets used for tracking/PID TODO: correct getter kTRDpidQuality, // number of TRD tracklets used for PID kTRDchi2, // chi2 in TRD kTRDprobEle, // TRD electron pid probability kTRDprobPio, // TRD electron pid probability kTRDprob2DEle, // TRD electron pid probability 2D LQ kTRDprob2DPio, // TRD electron pid probability 2D LQ kTRDphi, // Phi angle of the track at the entrance of the TRD kTRDpidEffLeg, // TRD pid efficiency from conversion electrons kTRDsignal, // TRD signal kImpactParXY, // Impact parameter in XY plane kImpactParZ, // Impact parameter in Z kTrackLength, // Track length kPdgCode, // PDG code kPdgCodeMother, kPdgCodeGrandMother, // PDG code of the grandmother kHasCocktailMother, // true if particle is added via MC generator cocktail (AliDielectronSignal::kDirect) kHasCocktailGrandMother, // true if particle is added via MC generator cocktail (AliDielectronSignal::kDirect) kNumberOfDaughters, // number of daughters kHaveSameMother, // check that particles have the same mother (MC) kIsJpsiPrimary, // check if the particle is primary (MC) kNumberOfJPsis, // number of generated inclusive jpsis per event (MC) kNumberOfJPsisPrompt, // number of generated prompt jpsis per event (MC) kNumberOfJPsisNPrompt, // number of generated non-prompt jpsis per event (MC) kITSsignal, // ITS dE/dx signal kITSsignalSSD1, // SSD1 dE/dx signal kITSsignalSSD2, // SSD2 dE/dx signal kITSsignalSDD1, // SDD1 dE/dx signal kITSsignalSDD2, // SDD2 dE/dx signal kITSclusterMap, // ITS cluster map kITSLayerFirstCls, // No of innermost ITS layer with a cluster of a track kITSnSigmaEle, // number of sigmas to the dE/dx electron line in the ITS kITSnSigmaPio, // number of sigmas to the dE/dx pion line in the ITS kITSnSigmaMuo, // number of sigmas to the dE/dx muon line in the ITS kITSnSigmaKao, // number of sigmas to the dE/dx kaon line in the ITS kITSnSigmaPro, // number of sigmas to the dE/dx proton line in the ITS kPIn, // momentum at inner wall of TPC (if available), used for PID kPOut, // momentum at outer wall of TPC, used for TRD studies kYsignedIn, // signed local y at inner wall of TPC kTPCsignal, // TPC dE/dx signal kTOFsignal, // TOF signal kTOFbeta, // TOF beta kTOFPIDBit, // TOF PID bit (1:set, 0:TOF not available)a kTOFmismProb, // and mismatchPorbability as explain in TOF-twiki kTPCnSigmaEleRaw, // raw number of sigmas to the dE/dx electron line in the TPC kTPCnSigmaEle, // number of sigmas to the dE/dx electron line in the TPC kTPCnSigmaPio, // number of sigmas to the dE/dx pion line in the TPC kTPCnSigmaMuo, // number of sigmas to the dE/dx muon line in the TPC kTPCnSigmaKao, // number of sigmas to the dE/dx kaon line in the TPC kTPCnSigmaPro, // number of sigmas to the dE/dx proton line in the TPC kTOFnSigmaEle, // number of sigmas to the electron line in the TOF kTOFnSigmaPio, // number of sigmas to the pion line in the TOF kTOFnSigmaMuo, // number of sigmas to the muon line in the TOF kTOFnSigmaKao, // number of sigmas to the kaon line in the TOF kTOFnSigmaPro, // number of sigmas to the proton line in the TOF kEMCALnSigmaEle, // number of sigmas to the proton line in the TOF kEMCALEoverP, // E over P from EMCAL kEMCALE, // E from EMCAL kEMCALNCells, // NCells from EMCAL kEMCALM02, // M02 showershape parameter kEMCALM20, // M20 showershape parameter kEMCALDispersion, // Dispersion paramter kLegEff, // single electron efficiency kOneOverLegEff, // 1 / single electron efficiency (correction factor) kV0Index0, // v0 index 0 kKinkIndex0, // kink index 0 kParticleMax, // // TODO: kRNClusters ?? // AliDielectronPair specific variables kChi2NDF = kParticleMax, // Chi^2/NDF kDecayLength, // decay length kR, // distance to the origin kOpeningAngle, // opening angle kCosPointingAngle, // cosine of the pointing angle kArmAlpha, // Armenteros-Podolanski alpha kArmPt, // Armenteros-Podolanski pt // helicity picture: Z-axis is considered the direction of the mother's 3-momentum vector kThetaHE, // theta in mother's rest frame in the helicity picture kPhiHE, // phi in mother's rest frame in the helicity picture kThetaSqHE, // squared value of kThetaHE kCos2PhiHE, // Cosine of 2*phi in mother's rest frame in the helicity picture kCosTilPhiHE, // Shifted phi depending on kThetaHE // Collins-Soper picture: Z-axis is considered the direction of the vectorial difference between // the 3-mom vectors of target and projectile beams kThetaCS, // theta in mother's rest frame in Collins-Soper picture kPhiCS, // phi in mother's rest frame in Collins-Soper picture kThetaSqCS, // squared value of kThetaCS kPsiPair, // phi in mother's rest frame in Collins-Soper picture kPhivPair, // angle between ee plane and the magnetic field (can be useful for conversion rejection) kPairPlaneAngle1A, // angle between ee decay plane and x'-z reaction plane by using V0-A kPairPlaneAngle2A, // angle between ee decay plane and (p1+p2) rot ez kPairPlaneAngle3A, // angle between ee decay plane and (p1+p2) rot (p1+p2)x'z kPairPlaneAngle4A, // angle between ee decay plane and x'-y' plane kPairPlaneAngle1C, // using v0-C kPairPlaneAngle2C, kPairPlaneAngle3C, kPairPlaneAngle4C, kPairPlaneAngle1AC, // using v0-AC kPairPlaneAngle2AC, kPairPlaneAngle3AC, kPairPlaneAngle4AC, kPairPlaneAngle1Ran, // using random reaction plane kPairPlaneAngle2Ran, kPairPlaneAngle3Ran, kPairPlaneAngle4Ran, kRandomRP, //Random reaction plane kDeltaPhiRandomRP, //delta phi of the pair kPairPlaneMagInPro, // Inner Product of strong magnetic field and ee plane kCos2PhiCS, // Cosine of 2*phi in mother's rest frame in the Collins-Soper picture kCosTilPhiCS, // Shifted phi depending on kThetaCS kCosPhiH2, // cosine of pair phi for 2nd harmonic kSinPhiH2, // sinus of pair phi for 2nd harmonic kDeltaPhiV0ArpH2, // Delta phi of the pair with respect to the 2nd order harmonic reaction plane from V0-A kDeltaPhiV0CrpH2, // Delta phi of the pair with respect to the 2nd order harmonic reaction plane from V0-C kDeltaPhiV0ACrpH2, // Delta phi of the pair with respect to the 2nd order harmonic reaction plane from V0-A + V0-C kV0ArpH2FlowV2, // v2 coefficient with respect to the 2nd order reaction plane from V0-A kV0CrpH2FlowV2, // v2 coefficient with respect to the 2nd order reaction plane from V0-C kV0ACrpH2FlowV2, // v2 coefficient with respect to the 2nd order reaction plane from V0-A + V0-C kDeltaPhiv0ArpH2, // Delta phi of the pair with respect to the 2nd order harmonic reaction plane from V0-A (EPtask) kDeltaPhiv0CrpH2, // Delta phi of the pair with respect to the 2nd order harmonic reaction plane from V0-C kDeltaPhiv0ACrpH2, // Delta phi of the pair with respect to the 2nd order harmonic reaction plane from V0-AC kDeltaPhiTPCrpH2, // Delta phi of the pair with respect to the 2nd order harmonic reaction plane from TPC kv0ArpH2FlowV2, // v2 coefficient with respect to the 2nd order reaction plane from V0-A (EPtask) kv0CrpH2FlowV2, // v2 coefficient with respect to the 2nd order reaction plane from V0-C kv0ACrpH2FlowV2, // v2 coefficient with respect to the 2nd order reaction plane from V0-A + V0-C kTPCrpH2FlowV2, // v2 coefficient with respect to the 2nd order reaction plane from TPC kTPCrpH2FlowV2Sin, // sinus of v2 coefficient with respect to the 2nd order reaction plane from TPC kLegDist, // distance of the legs kLegDistXY, // distance of the legs in XY kDeltaEta, // Absolute value of Delta Eta for the legs kDeltaPhi, // Absolute value of Delta Phi for the legs kMerr, // error of mass calculation kDCA, // distance of closest approach TODO: not implemented yet kPairType, // type of the pair, like like sign ++ unlikesign ... kPseudoProperTime, // pseudo proper time kPseudoProperTimeErr, // pseudo proper time error kPseudoProperTimeResolution, // resolution for pseudo proper decay time (reconstructed - MC truth) kPseudoProperTimePull, // normalizd resolution for pseudo proper time = (reco - MC truth)/dReco kTRDpidEffPair, // TRD pid efficieny from conversion electrons kMomAsymDau1, // momentum fraction of daughter1 kMomAsymDau2, // momentum fraction of daughter2 kPairEff, // pair efficiency kOneOverPairEff, // 1 / pair efficiency (correction factor) kOneOverPairEffSq, // 1 / pair efficiency squared (correction factor) kRndmPair, // radomly created number (used to apply special signal reduction cuts) kPairs, // number of Ev1PM pair candidates after all cuts kPairMax, // // Event specific variables kXvPrim=kPairMax, // prim vertex kYvPrim, // prim vertex kZvPrim, // prim vertex kXRes, // primary vertex x-resolution kYRes, // primary vertex y-resolution kZRes, // primary vertex z-resolution kPhiMaxPt, // phi angle of the track with maximum pt kMaxPt, // track with maximum pt //// v0 reaction plane quantities from AliEPSelectionTaks, angles interval [-pi/2,+pi/2] kv0ArpH2, // VZERO-A reaction plane of the Q vector for 2nd harmonic kv0CrpH2, // reaction plane kv0ACrpH2, // VZERO-AC reaction plane of the Q vector for 2nd harmonic kv0AxH2, // VZERO-A x-component of the Q vector for 2nd harmonic kv0AyH2, // VZERO-A y-component of the Q vector for 2nd harmonic kv0CxH2, // VZERO-C x-component of the Q vector for 2nd harmonic kv0CyH2, // VZERO-C y-component of the Q vector for 2nd harmonic kv0ACxH2, // VZERO-AC x-component of the Q vector for 2nd harmonic kv0ACyH2, // VZERO-AC y-component of the Q vector for 2nd harmonic kv0AmagH2, // VZERO-A the Q vectors magnitude for 2nd harmonic kv0CmagH2, // VZERO-A the Q vectors magnitude for 2nd harmonic kv0ACmagH2, // VZERO-A the Q vectors magnitude for 2nd harmonic kv0A0rpH2, // VZERO-A 1st ring reaction plane of the Q vector for 2nd harmonic kv0A3rpH2, // VZERO-A last ring reaction plane of the Q vector for 2nd harmonic kv0C0rpH2, // VZERO-C 1st ring reaction plane of the Q vector for 2nd harmonic kv0C3rpH2, // VZERO-C last ring reaction plane of the Q vector for 2nd harmonic kv0ATPCDiffH2, // V0A-TPC reaction plane difference for 2nd harmonic kv0CTPCDiffH2, // V0C-TPC reaction plane difference for 2nd harmonic kv0Av0CDiffH2, // V0A-V0C reaction plane difference for 2nd harmonic kv0Av0C0DiffH2, // V0A-ring 0 ofV0C reaction plane difference for 2nd harmonic kv0Av0C3DiffH2, // V0A-ring 3 ofV0C reaction plane difference for 2nd harmonic kv0Cv0A0DiffH2, // V0C-ring 0 ofV0A reaction plane difference for 2nd harmonic kv0Cv0A3DiffH2, // V0C-ring 3 ofV0A reaction plane difference for 2nd harmonic kv0A0v0A3DiffH2, // V0C-ring 0 ofV0A reaction plane difference for 2nd harmonic kv0C0v0C3DiffH2, // V0C-ring 0 ofV0A reaction plane difference for 2nd harmonic kMultV0A, // VZERO multiplicity and ADC amplitudes kMultV0C, kMultV0, kEqMultV0A, // equalized VZERO multiplicity kEqMultV0C, kEqMultV0, kAdcV0A, kAdcV0C, kAdcV0, kVZEROchMult, // VZERO reaction plane quantities kV0AxH2=kVZEROchMult+64, // VZERO-A x-component of the Q vector for 2nd harmonic kV0AyH2, // VZERO-A y-component of the Q vector for 2nd harmonic kV0ArpH2, // VZERO-A reaction plane of the Q vector for 2nd harmonic kV0CxH2, // VZERO-C x-component of the Q vector for 2nd harmonic kV0CyH2, // y-component kV0CrpH2, // reaction plane kV0ACxH2, // VZERO-AC x-component of the Q vector for 2nd harmonic kV0ACyH2, // VZERO-AC y-component of the Q vector for 2nd harmonic kV0ACrpH2, // VZERO-AC reaction plane of the Q vector for 2nd harmonic kV0ArpResH2, // 2nd harmonic reaction plane resolution for V0A kV0CrpResH2, // V0C kV0ACrpResH2, // V0A+V0C kV0XaXcH2, // Correlation quantities to check V0 reaction plane quality kV0XaYaH2, kV0XaYcH2, kV0YaXcH2, kV0YaYcH2, kV0XcYcH2, kV0ATPCDiffH2, // V0A-TPC reaction plane difference for 2nd harmonic kV0CTPCDiffH2, // V0C-TPC reaction plane difference for 2nd harmonic kV0AV0CDiffH2, // V0A-V0C reaction plane difference for 2nd harmonic // TPC reaction plane quantities, angle interval [-pi/2,+pi/2] kTPCxH2, // TPC x-component of the Q vector for 2nd harmonic (corrected) kTPCyH2, // TPC y-component of the Q vector for 2nd harmonic (corrected) kTPCmagH2, // TPC reaction plane the Q vectors magnitude for 2nd harmonic (corrected) kTPCrpH2, // TPC reaction plane angle of the Q vector for 2nd harmonic (corrected) kCosTPCrpH2, // cosine of TPC reaction plane angle of the Q vector for 2nd harmonic (corrected) kSinTPCrpH2, // sinus of TPC reaction plane angle of the Q vector for 2nd harmonic (corrected) kTPCsub1xH2, // TPC x-component of the Q vector for 2nd harmonic (corrected, sub event 1) kTPCsub1yH2, // TPC y-component of the Q vector for 2nd harmonic (corrected, sub event 1) kTPCsub1rpH2, // TPC reaction plane of the Q vector for 2nd harmonic (corrected, sub event 1) kTPCsub2xH2, // TPC x-component of the Q vector for 2nd harmonic (corrected, sub event 2) kTPCsub2yH2, // TPC y-component of the Q vector for 2nd harmonic (corrected, sub event 2) kTPCsub2rpH2, // TPC reaction plane of the Q vector for 2nd harmonic (corrected, sub event 2) kTPCsub12DiffH2, // TPC reaction plane difference of sub event 1,2 for 2nd harmonic kTPCsub12DiffH2Sin, // TPC reaction plane difference of sub event 1,2 for 2nd harmonic, sinus term kTPCxH2uc, // TPC x-component of the Q vector for 2nd harmonic (uncorrected) kTPCyH2uc, // TPC y-component of the Q vector for 2nd harmonic (uncorrected) kTPCmagH2uc, // TPC reaction plane the Q vectors magnitude for 2nd harmonic (uncorrected) kTPCrpH2uc, // TPC reaction plane angle of the Q vector for 2nd harmonic (uncorrected) kTPCsub1xH2uc, // TPC x-component of the Q vector for 2nd harmonic (uncorrected, sub event 1) kTPCsub1yH2uc, // TPC y-component of the Q vector for 2nd harmonic (uncorrected, sub event 1) kTPCsub1rpH2uc, // TPC reaction plane of the Q vector for 2nd harmonic (uncorrected, sub event 1) kTPCsub2xH2uc, // TPC x-component of the Q vector for 2nd harmonic (uncorrected, sub event 2) kTPCsub2yH2uc, // TPC y-component of the Q vector for 2nd harmonic (uncorrected, sub event 2) kTPCsub2rpH2uc, // TPC reaction plane of the Q vector for 2nd harmonic (uncorrected, sub event 2) kTPCsub12DiffH2uc, // TPC reaction plane difference of sub event 1,2 for 2nd harmonic (uncorrected) //ZDC reaction plane(v1 plane) quantities kZDCArpH1, // ZDC-A reaction plane of the Q vector for 1st harmonic kZDCCrpH1, // ZDC-C reaction plane of the Q vector for 1st harmonic kZDCACrpH1, // ZDC-AC reaction plane of the Q vector for 1st harmonic kZDCrpResH1, // 1st harmonic reaction plane resolution for ZDC kv0ZDCrpRes, //ZDC reaction plane for 1st harmonic and VZERO reaction plane for 2nd harmonic correlation kNTrk, // number of tracks (or tracklets) TODO: ambiguous kTracks, // track after all cuts kNVtxContrib, // number of primary vertex contibutors kNVtxContribTPC, // number of TPC vertex contibutors kNacc, // Number of accepted tracks kMatchEffITSTPC, // ruff estimate on the ITS-TPC matching efficiceny kNaccTrcklts, // number of accepted SPD tracklets in |eta|<1.6 kNaccTrcklts0916, // number of accepted SPD tracklets in 0.9<|eta|<1.6 kNaccTrckltsEsd05, // number of accepted SPD tracklets in |eta|<0.5 (AliESDEvent::EstimateMultiplicity()) kNaccTrckltsEsd10, // number of accepted SPD tracklets in |eta|<1.0 (AliESDEvent::EstimateMultiplicity()) kNaccTrckltsEsd16, // number of accepted SPD tracklets in |eta|<1.6 (AliESDEvent::EstimateMultiplicity()) kNaccTrckltsEsd05Corr, // kNaccTrckltsEsd10Corr, // kNaccTrckltsEsd16Corr, // kNaccItsTpcEsd05, // ITS-TPC tracks + ITS SA complementary tracks + tracklets from unassigned tracklets in |eta|<0.5 (AliESDEvent::EstimateMultiplicity()) kNaccItsTpcEsd10, // ITS-TPC tracks + ITS SA complementary tracks + tracklets from unassigned tracklets in |eta|<1.0 (AliESDEvent::EstimateMultiplicity()) kNaccItsTpcEsd16, // ITS-TPC tracks + ITS SA complementary tracks + tracklets from unassigned tracklets in |eta|<1.6 (AliESDEvent::EstimateMultiplicity()) kNaccItsTpcEsd05Corr, // kNaccItsTpcEsd10Corr, // kNaccItsTpcEsd16Corr, // kNaccItsPureEsd05, // ITS SA tracks + tracklets from unassigned tracklets in |eta|<0.5 (AliESDEvent::EstimateMultiplicity()) kNaccItsPureEsd10, // ITS SA tracks + tracklets from unassigned tracklets in |eta|<1.0 (AliESDEvent::EstimateMultiplicity()) kNaccItsPureEsd16, // ITS SA tracks + tracklets from unassigned tracklets in |eta|<1.6 (AliESDEvent::EstimateMultiplicity()) kNaccItsPureEsd05Corr, // kNaccItsPureEsd10Corr, // kNaccItsPureEsd16Corr, // kRefMult, // reference multiplicity (only in AODs) should be Ntrk w/o double counts kRefMultTPConly, // TPC only Reference Multiplicty (AliESDtrackCuts::GetReferenceMultiplicity(&esd, kTRUE)) kNch, // MC true number of charged particles in |eta|<1.6 kNch05, // MC true number of charged particles in |eta|<0.5 kNch10, // MC true number of charged particles in |eta|<1.0 kCentrality, // event centrality fraction kCentralitySPD, // centrality using SPD kTriggerInclONL, // online trigger bits fired (inclusive) kTriggerInclOFF, // offline trigger bits fired (inclusive) kTriggerExclOFF, // offline only this trigger bit fired (exclusive) kNevents, // event counter kRunNumber, // run number kMixingBin, kNMaxValues // // TODO: (for A+A) ZDCEnergy, impact parameter, Iflag?? }; AliDielectronVarManager(); AliDielectronVarManager(const char* name, const char* title); virtual ~AliDielectronVarManager(); static void Fill(const TObject* particle, Double_t * const values); static void FillVarMCParticle2(const AliVParticle *p1, const AliVParticle *p2, Double_t * const values); static void FillVarVParticle(const AliVParticle *particle, Double_t * const values); static void InitESDpid(Int_t type=0); static void InitAODpidUtil(Int_t type=0); static void InitEstimatorAvg(const Char_t* filename); static void InitTRDpidEffHistograms(const Char_t* filename); static void SetLegEffMap( TObject *map) { fgLegEffMap=map; } static void SetPairEffMap(TObject *map) { fgPairEffMap=map; } static void SetFillMap( TBits *map) { fgFillMap=map; } static void SetVZEROCalibrationFile(const Char_t* filename) {fgVZEROCalibrationFile = filename;} static void SetVZERORecenteringFile(const Char_t* filename) {fgVZERORecenteringFile = filename;} static void SetZDCRecenteringFile(const Char_t* filename) {fgZDCRecenteringFile = filename;} static void SetPIDResponse(AliPIDResponse *pidResponse) {fgPIDResponse=pidResponse;} static AliPIDResponse* GetPIDResponse() { return fgPIDResponse; } static void SetEvent(AliVEvent * const ev); static void SetEventData(const Double_t data[AliDielectronVarManager::kNMaxValues]); static Bool_t GetDCA(const AliAODTrack *track, Double_t d0z0[2]); static void SetTPCEventPlane(AliEventplane *const evplane); static void GetVzeroRP(const AliVEvent* event, Double_t* qvec, Int_t sideOption); // 0- V0A; 1- V0C; 2- V0A+V0C static void GetZDCRP(const AliVEvent* event, Double_t qvec[][2]); static AliAODVertex* GetVertex(const AliAODEvent *event, AliAODVertex::AODVtx_t vtype); static TProfile* GetEstimatorHistogram(Int_t period, Int_t type) {return fgMultEstimatorAvg[period][type];} static Double_t GetTRDpidEfficiency(Int_t runNo, Double_t centrality, Double_t eta, Double_t trdPhi, Double_t pout, Double_t& effErr); static Double_t GetSingleLegEff(Double_t * const values); static Double_t GetPairEff(Double_t * const values); static const AliKFVertex* GetKFVertex() {return fgKFVertex;} static const char* GetValueName(Int_t i) { return (i>=0&&i=0&&i=0&&iTestBitNumber(var) : kTRUE); } static void FillVarESDtrack(const AliESDtrack *particle, Double_t * const values); static void FillVarAODTrack(const AliAODTrack *particle, Double_t * const values); static void FillVarMCParticle(const AliMCParticle *particle, Double_t * const values); static void FillVarAODMCParticle(const AliAODMCParticle *particle, Double_t * const values); static void FillVarDielectronPair(const AliDielectronPair *pair, Double_t * const values); static void FillVarKFParticle(const AliKFParticle *pair, Double_t * const values); static void FillVarVEvent(const AliVEvent *event, Double_t * const values); static void FillVarESDEvent(const AliESDEvent *event, Double_t * const values); static void FillVarAODEvent(const AliAODEvent *event, Double_t * const values); static void FillVarMCEvent(const AliMCEvent *event, Double_t * const values); static void FillVarTPCEventPlane(const AliEventplane *evplane, Double_t * const values); static void InitVZEROCalibrationHistograms(Int_t runNo); static void InitVZERORecenteringHistograms(Int_t runNo); static void InitZDCRecenteringHistograms(Int_t runNo); static AliPIDResponse *fgPIDResponse; // PID response object static AliVEvent *fgEvent; // current event pointer static AliEventplane *fgTPCEventPlane; // current event tpc plane pointer static AliKFVertex *fgKFVertex; // kf vertex static TProfile *fgMultEstimatorAvg[4][9]; // multiplicity estimator averages (4 periods x 9 estimators) static Double_t fgTRDpidEffCentRanges[10][4]; // centrality ranges for the TRD pid efficiency histograms static TH3D *fgTRDpidEff[10][4]; // TRD pid efficiencies from conversion electrons static TObject *fgLegEffMap; // single electron efficiencies static TObject *fgPairEffMap; // pair efficiencies static TBits *fgFillMap; // map for requested variable filling static TString fgVZEROCalibrationFile; // file with VZERO channel-by-channel calibrations static TString fgVZERORecenteringFile; // file with VZERO Q-vector averages needed for event plane recentering static TProfile2D *fgVZEROCalib[64]; // 1 histogram per VZERO channel static TProfile2D *fgVZERORecentering[2][2]; // 2 VZERO sides x 2 Q-vector components static Int_t fgCurrentRun; // current run number static TString fgZDCRecenteringFile; // file with ZDC Q-vector averages needed for event plane recentering static TProfile3D *fgZDCRecentering[3][2]; // 2 VZERO sides x 2 Q-vector components static Double_t fgData[kNMaxValues]; //! data AliDielectronVarManager(const AliDielectronVarManager &c); AliDielectronVarManager &operator=(const AliDielectronVarManager &c); ClassDef(AliDielectronVarManager,1); }; //Inline functions inline void AliDielectronVarManager::Fill(const TObject* object, Double_t * const values) { // // Main function to fill all available variables according to the type of particle // if (!object) return; if (object->IsA() == AliESDtrack::Class()) FillVarESDtrack(static_cast(object), values); else if (object->IsA() == AliAODTrack::Class()) FillVarAODTrack(static_cast(object), values); else if (object->IsA() == AliMCParticle::Class()) FillVarMCParticle(static_cast(object), values); else if (object->IsA() == AliAODMCParticle::Class()) FillVarAODMCParticle(static_cast(object), values); else if (object->IsA() == AliDielectronPair::Class()) FillVarDielectronPair(static_cast(object), values); else if (object->IsA() == AliKFParticle::Class()) FillVarKFParticle(static_cast(object),values); // Main function to fill all available variables according to the type of event else if (object->IsA() == AliVEvent::Class()) FillVarVEvent(static_cast(object), values); else if (object->IsA() == AliESDEvent::Class()) FillVarESDEvent(static_cast(object), values); else if (object->IsA() == AliAODEvent::Class()) FillVarAODEvent(static_cast(object), values); else if (object->IsA() == AliMCEvent::Class()) FillVarMCEvent(static_cast(object), values); else if (object->IsA() == AliEventplane::Class()) FillVarTPCEventPlane(static_cast(object), values); // else printf(Form("AliDielectronVarManager::Fill: Type %s is not supported by AliDielectronVarManager!", object->ClassName())); //TODO: implement without object needed } inline void AliDielectronVarManager::FillVarVParticle(const AliVParticle *particle, Double_t * const values) { // // Fill track information available in AliVParticle into an array // values[AliDielectronVarManager::kPx] = particle->Px(); values[AliDielectronVarManager::kPy] = particle->Py(); values[AliDielectronVarManager::kPz] = particle->Pz(); values[AliDielectronVarManager::kPt] = particle->Pt(); values[AliDielectronVarManager::kPtSq] = particle->Pt()*particle->Pt(); values[AliDielectronVarManager::kP] = particle->P(); values[AliDielectronVarManager::kXv] = particle->Xv(); values[AliDielectronVarManager::kYv] = particle->Yv(); values[AliDielectronVarManager::kZv] = particle->Zv(); values[AliDielectronVarManager::kOneOverPt] = (particle->Pt()>1.0e-3 ? particle->OneOverPt() : 0.0); values[AliDielectronVarManager::kPhi] = particle->Phi(); values[AliDielectronVarManager::kTheta] = particle->Theta(); values[AliDielectronVarManager::kEta] = particle->Eta(); values[AliDielectronVarManager::kY] = particle->Y(); values[AliDielectronVarManager::kE] = particle->E(); values[AliDielectronVarManager::kM] = particle->M(); values[AliDielectronVarManager::kCharge] = particle->Charge(); values[AliDielectronVarManager::kPdgCode] = particle->PdgCode(); // if ( fgEvent ) AliDielectronVarManager::Fill(fgEvent, values); for (Int_t i=AliDielectronVarManager::kPairMax; iGetTPCsignal(); // apply ETa correction, remove once this is in the tender esdTrack=const_cast(particle); if (!esdTrack) return; esdTrack->SetTPCsignal(origdEdx/AliDielectronPID::GetEtaCorr(esdTrack)/AliDielectronPID::GetCorrValdEdx(),esdTrack->GetTPCsignalSigma(),esdTrack->GetTPCsignalN()); Double_t pidProbs[AliPID::kSPECIES]; // Fill AliESDtrack interface specific information Double_t tpcNcls=particle->GetTPCNcls(); Double_t tpcNclsS = particle->GetTPCnclsS(); Double_t itsNcls=particle->GetNcls(0); Double_t tpcSignalN=particle->GetTPCsignalN(); Double_t tpcClusFindable=particle->GetTPCNclsF(); values[AliDielectronVarManager::kNclsITS] = itsNcls; // TODO: get rid of the plain numbers values[AliDielectronVarManager::kNclsTPC] = tpcNcls; // TODO: get rid of the plain numbers values[AliDielectronVarManager::kNclsSTPC] = tpcNclsS; values[AliDielectronVarManager::kNclsSFracTPC] = tpcNcls>0?tpcNclsS/tpcNcls:0; values[AliDielectronVarManager::kNclsTPCiter1] = particle->GetTPCNclsIter1(); // TODO: get rid of the plain numbers values[AliDielectronVarManager::kNFclsTPC] = tpcClusFindable; values[AliDielectronVarManager::kNFclsTPCr] = particle->GetTPCClusterInfo(2,1); values[AliDielectronVarManager::kNFclsTPCrFrac] = particle->GetTPCClusterInfo(2); values[AliDielectronVarManager::kNFclsTPCfCross]= (tpcClusFindable>0)?(particle->GetTPCClusterInfo(2,1)/tpcClusFindable):0; values[AliDielectronVarManager::kTPCsignalN] = tpcSignalN; values[AliDielectronVarManager::kTPCsignalNfrac]= tpcNcls>0?tpcSignalN/tpcNcls:0; values[AliDielectronVarManager::kNclsTRD] = particle->GetNcls(2); // TODO: get rid of the plain numbers values[AliDielectronVarManager::kTRDntracklets] = particle->GetTRDntracklets(); // TODO: GetTRDtracklets/GetTRDntracklets? values[AliDielectronVarManager::kTRDpidQuality] = particle->GetTRDntrackletsPID(); values[AliDielectronVarManager::kTRDchi2] = particle->GetTRDchi2(); values[AliDielectronVarManager::kTRDsignal] = particle->GetTRDsignal(); values[AliDielectronVarManager::kTPCclsDiff] = tpcSignalN-tpcNcls; values[AliDielectronVarManager::kTPCclsSegments] = 0.0; UChar_t threshold = 5; TBits tpcClusterMap = particle->GetTPCClusterMap(); UChar_t n=0; UChar_t j=0; for(UChar_t i=0; i<8; ++i) { n=0; for(j=i*20; j<(i+1)*20 && j<159; ++j) n+=tpcClusterMap.TestBitNumber(j); if(n>=threshold) values[AliDielectronVarManager::kTPCclsSegments] += 1.0; } n=0; threshold=0; values[AliDielectronVarManager::kTPCclsIRO]=0.; for(j=0; j<63; ++j) n+=tpcClusterMap.TestBitNumber(j); if(n>=threshold) values[AliDielectronVarManager::kTPCclsIRO] = n; n=0; threshold=0; values[AliDielectronVarManager::kTPCclsORO]=0.; for(j=63; j<159; ++j) n+=tpcClusterMap.TestBitNumber(j); if(n>=threshold) values[AliDielectronVarManager::kTPCclsORO] = n; values[AliDielectronVarManager::kTrackStatus] = (Double_t)particle->GetStatus(); values[AliDielectronVarManager::kFilterBit] = 0; values[AliDielectronVarManager::kTPCchi2Cl] = -1; if (tpcNcls>0) values[AliDielectronVarManager::kTPCchi2Cl] = particle->GetTPCchi2() / tpcNcls; values[AliDielectronVarManager::kITSchi2Cl] = -1; if (itsNcls>0) values[AliDielectronVarManager::kITSchi2Cl] = particle->GetITSchi2() / itsNcls; //TRD pidProbs particle->GetTRDpid(pidProbs); values[AliDielectronVarManager::kTRDprobEle] = pidProbs[AliPID::kElectron]; values[AliDielectronVarManager::kTRDprobPio] = pidProbs[AliPID::kPion]; values[AliDielectronVarManager::kV0Index0] = particle->GetV0Index(0); values[AliDielectronVarManager::kKinkIndex0] = particle->GetKinkIndex(0); Float_t impactParXY, impactParZ; particle->GetImpactParameters(impactParXY, impactParZ); values[AliDielectronVarManager::kImpactParXY] = impactParXY; values[AliDielectronVarManager::kImpactParZ] = impactParZ; values[AliDielectronVarManager::kPdgCode]=-1; values[AliDielectronVarManager::kPdgCodeMother]=-1; values[AliDielectronVarManager::kPdgCodeGrandMother]=-1; values[AliDielectronVarManager::kHasCocktailMother]=0; values[AliDielectronVarManager::kHasCocktailGrandMother]=0; values[AliDielectronVarManager::kNumberOfDaughters]=-999; AliDielectronMC *mc=AliDielectronMC::Instance(); if (mc->HasMC()){ if (mc->GetMCTrack(particle)) { Int_t trkLbl = TMath::Abs(mc->GetMCTrack(particle)->GetLabel()); values[AliDielectronVarManager::kPdgCode] =mc->GetMCTrack(particle)->PdgCode(); values[AliDielectronVarManager::kHasCocktailMother] =mc->CheckParticleSource(trkLbl, AliDielectronSignalMC::kDirect); values[AliDielectronVarManager::kPdgCodeMother] =mc->GetMotherPDG(particle); AliMCParticle *motherMC=mc->GetMCTrackMother(particle); //mother if(motherMC) values[AliDielectronVarManager::kPdgCodeGrandMother]=mc->GetMotherPDG(motherMC); } values[AliDielectronVarManager::kNumberOfDaughters]=mc->NumberOfDaughters(particle); } //if(mc->HasMC()) values[AliDielectronVarManager::kITSsignal] = particle->GetITSsignal(); Double_t itsdEdx[4]; particle->GetITSdEdxSamples(itsdEdx); values[AliDielectronVarManager::kITSsignalSSD1] = itsdEdx[0]; values[AliDielectronVarManager::kITSsignalSSD2] = itsdEdx[1]; values[AliDielectronVarManager::kITSsignalSDD1] = itsdEdx[2]; values[AliDielectronVarManager::kITSsignalSDD2] = itsdEdx[3]; values[AliDielectronVarManager::kITSclusterMap] = particle->GetITSClusterMap(); values[AliDielectronVarManager::kITSLayerFirstCls] = -1.; for (Int_t iC=0; iC<6; iC++) { if (((particle->GetITSClusterMap()) & (1<<(iC))) > 0) { values[AliDielectronVarManager::kITSLayerFirstCls] = iC; break; } } values[AliDielectronVarManager::kTrackLength] = particle->GetIntegratedLength(); //dEdx information Double_t mom = particle->GetP(); const AliExternalTrackParam *in=particle->GetInnerParam(); Double_t ysignedIn=-100; if (in) { mom = in->GetP(); ysignedIn=particle->Charge()*in->GetY(); } values[AliDielectronVarManager::kPIn]=mom; values[AliDielectronVarManager::kYsignedIn]=ysignedIn; const AliExternalTrackParam *out=particle->GetOuterParam(); if(out) values[AliDielectronVarManager::kPOut] = out->GetP(); else values[AliDielectronVarManager::kPOut] = mom; if(out && fgEvent) { Double_t localCoord[3]={0.0}; Bool_t localCoordGood = out->GetXYZAt(298.0, ((AliESDEvent*)fgEvent)->GetMagneticField(), localCoord); values[AliDielectronVarManager::kTRDphi] = (localCoordGood && TMath::Abs(localCoord[0])>1.0e-6 && TMath::Abs(localCoord[1])>1.0e-6 ? TMath::ATan2(localCoord[1], localCoord[0]) : -999.); } if(mc->HasMC() && fgTRDpidEff[0][0]) { Int_t runNo = (fgEvent ? fgEvent->GetRunNumber() : -1); Float_t centrality=-1.0; AliCentrality *esdCentrality = (fgEvent ? fgEvent->GetCentrality() : 0x0); if(esdCentrality) centrality = esdCentrality->GetCentralityPercentile("V0M"); Double_t effErr=0.0; values[kTRDpidEffLeg] = GetTRDpidEfficiency(runNo, centrality, values[AliDielectronVarManager::kEta], values[AliDielectronVarManager::kTRDphi], values[AliDielectronVarManager::kPOut], effErr); } values[AliDielectronVarManager::kTPCsignal]=particle->GetTPCsignal(); values[AliDielectronVarManager::kTOFsignal]=particle->GetTOFsignal(); Double_t l = particle->GetIntegratedLength(); // cm Double_t t = particle->GetTOFsignal(); Double_t t0 = fgPIDResponse->GetTOFResponse().GetTimeZero(); // ps if( (l < 360. || l > 800.) || (t <= 0.) || (t0 >999990.0) ) { values[AliDielectronVarManager::kTOFbeta]=0.0; } else { t -= t0; // subtract the T0 l *= 0.01; // cm ->m t *= 1e-12; //ps -> s Double_t v = l / t; Float_t beta = v / TMath::C(); values[AliDielectronVarManager::kTOFbeta]=beta; } values[AliDielectronVarManager::kTOFPIDBit]=(particle->GetStatus()&AliESDtrack::kTOFpid? 1: 0); values[AliDielectronVarManager::kTOFmismProb] = fgPIDResponse->GetTOFMismatchProbability(particle); // nsigma to Electron band // TODO: for the moment we set the bethe bloch parameters manually // this should be changed in future! values[AliDielectronVarManager::kTPCnSigmaEleRaw]=fgPIDResponse->NumberOfSigmasTPC(particle,AliPID::kElectron); values[AliDielectronVarManager::kTPCnSigmaEle]=(fgPIDResponse->NumberOfSigmasTPC(particle,AliPID::kElectron)-AliDielectronPID::GetCorrVal()-AliDielectronPID::GetCntrdCorr(particle)) / AliDielectronPID::GetWdthCorr(particle); values[AliDielectronVarManager::kTPCnSigmaPio]=fgPIDResponse->NumberOfSigmasTPC(particle,AliPID::kPion); values[AliDielectronVarManager::kTPCnSigmaMuo]=fgPIDResponse->NumberOfSigmasTPC(particle,AliPID::kMuon); values[AliDielectronVarManager::kTPCnSigmaKao]=fgPIDResponse->NumberOfSigmasTPC(particle,AliPID::kKaon); values[AliDielectronVarManager::kTPCnSigmaPro]=fgPIDResponse->NumberOfSigmasTPC(particle,AliPID::kProton); values[AliDielectronVarManager::kITSnSigmaEle]=fgPIDResponse->NumberOfSigmasITS(particle,AliPID::kElectron); values[AliDielectronVarManager::kITSnSigmaPio]=fgPIDResponse->NumberOfSigmasITS(particle,AliPID::kPion); values[AliDielectronVarManager::kITSnSigmaMuo]=fgPIDResponse->NumberOfSigmasITS(particle,AliPID::kMuon); values[AliDielectronVarManager::kITSnSigmaKao]=fgPIDResponse->NumberOfSigmasITS(particle,AliPID::kKaon); values[AliDielectronVarManager::kITSnSigmaPro]=fgPIDResponse->NumberOfSigmasITS(particle,AliPID::kProton); values[AliDielectronVarManager::kTOFnSigmaEle]=fgPIDResponse->NumberOfSigmasTOF(particle,AliPID::kElectron); values[AliDielectronVarManager::kTOFnSigmaPio]=fgPIDResponse->NumberOfSigmasTOF(particle,AliPID::kPion); values[AliDielectronVarManager::kTOFnSigmaMuo]=fgPIDResponse->NumberOfSigmasTOF(particle,AliPID::kMuon); values[AliDielectronVarManager::kTOFnSigmaKao]=fgPIDResponse->NumberOfSigmasTOF(particle,AliPID::kKaon); values[AliDielectronVarManager::kTOFnSigmaPro]=fgPIDResponse->NumberOfSigmasTOF(particle,AliPID::kProton); //EMCAL PID information Double_t eop=0; Double_t showershape[4]={0.,0.,0.,0.}; // values[AliDielectronVarManager::kEMCALnSigmaEle] = fgPIDResponse->NumberOfSigmasEMCAL(particle,AliPID::kElectron); values[AliDielectronVarManager::kEMCALnSigmaEle] = fgPIDResponse->NumberOfSigmasEMCAL(particle,AliPID::kElectron,eop,showershape); values[AliDielectronVarManager::kEMCALEoverP] = eop; values[AliDielectronVarManager::kEMCALE] = eop*values[AliDielectronVarManager::kP]; values[AliDielectronVarManager::kEMCALNCells] = showershape[0]; values[AliDielectronVarManager::kEMCALM02] = showershape[1]; values[AliDielectronVarManager::kEMCALM20] = showershape[2]; values[AliDielectronVarManager::kEMCALDispersion] = showershape[3]; values[AliDielectronVarManager::kLegEff] = GetSingleLegEff(values); values[AliDielectronVarManager::kOneOverLegEff] = (values[AliDielectronVarManager::kLegEff]>0.0 ? 1./values[AliDielectronVarManager::kLegEff] : 0.0); //restore TPC signal if it was changed if (esdTrack) esdTrack->SetTPCsignal(origdEdx,esdTrack->GetTPCsignalSigma(),esdTrack->GetTPCsignalN()); } inline void AliDielectronVarManager::FillVarAODTrack(const AliAODTrack *particle, Double_t * const values) { // // Fill track information available for histogramming into an array // // Fill common AliVParticle interface information FillVarVParticle(particle, values); Double_t tpcNcls=particle->GetTPCNcls(); //GetNclsS not present in AODtrack //Replace with method as soon as available TBits tpcSharedMap = particle->GetTPCSharedMap(); Double_t tpcNclsS= tpcSharedMap.CountBits(0)-tpcSharedMap.CountBits(159); // Reset AliESDtrack interface specific information if(Req(kNclsITS)) values[AliDielectronVarManager::kNclsITS] = particle->GetITSNcls(); if(Req(kITSchi2Cl)) values[AliDielectronVarManager::kITSchi2Cl] = -1; if(Req(kNclsTPC)) values[AliDielectronVarManager::kNclsTPC] = tpcNcls; if(Req(kNclsSTPC)) values[AliDielectronVarManager::kNclsSTPC] = tpcNclsS; if(Req(kNclsSFracTPC)) values[AliDielectronVarManager::kNclsSFracTPC] = tpcNcls>0?tpcNclsS/tpcNcls:0; if(Req(kNclsTPCiter1)) values[AliDielectronVarManager::kNclsTPCiter1] = tpcNcls; // not really available in AOD if(Req(kNFclsTPC) || Req(kNFclsTPCfCross)) values[AliDielectronVarManager::kNFclsTPC] = particle->GetTPCNclsF(); if(Req(kNFclsTPCr) || Req(kNFclsTPCfCross)) values[AliDielectronVarManager::kNFclsTPCr] = particle->GetTPCClusterInfo(2,1); if(Req(kNFclsTPCrFrac)) values[AliDielectronVarManager::kNFclsTPCrFrac] = particle->GetTPCClusterInfo(2); if(Req(kNFclsTPCfCross)) values[AliDielectronVarManager::kNFclsTPCfCross]= (values[kNFclsTPC]>0)?(values[kNFclsTPCr]/values[kNFclsTPC]):0; if(Req(kNclsTRD)) values[AliDielectronVarManager::kNclsTRD] = 0; if(Req(kTRDntracklets)) values[AliDielectronVarManager::kTRDntracklets] = 0; if(Req(kTRDpidQuality)) values[AliDielectronVarManager::kTRDpidQuality] = particle->GetTRDntrackletsPID(); if(Req(kTRDchi2)) values[AliDielectronVarManager::kTRDchi2] = (particle->GetTRDntrackletsPID()!=0.?particle->GetTRDchi2():-1); if(Req(kTRDsignal)) values[AliDielectronVarManager::kTRDsignal] = particle->GetTRDsignal(); TBits tpcClusterMap = particle->GetTPCClusterMap(); UChar_t n=0; UChar_t j=0; UChar_t threshold = 5; values[AliDielectronVarManager::kTPCclsSegments] = 0.0; if(Req(kTPCclsSegments)) { for(UChar_t i=0; i<8; ++i) { n=0; for(j=i*20; j<(i+1)*20 && j<159; ++j) n+=tpcClusterMap.TestBitNumber(j); if(n>=threshold) values[AliDielectronVarManager::kTPCclsSegments] += 1.0; } } values[AliDielectronVarManager::kTPCclsIRO]=0.; if(Req(kTPCclsIRO)) { n=0; threshold=0; for(j=0; j<63; ++j) n+=tpcClusterMap.TestBitNumber(j); if(n>=threshold) values[AliDielectronVarManager::kTPCclsIRO] = n; } values[AliDielectronVarManager::kTPCclsORO]=0.; if(Req(kTPCclsORO)) { n=0; threshold=0; for(j=63; j<159; ++j) n+=tpcClusterMap.TestBitNumber(j); if(n>=threshold) values[AliDielectronVarManager::kTPCclsORO] = n; } // it is stored as normalized to tpcNcls-5 (see AliAnalysisTaskESDfilter) if(Req(kTPCchi2Cl)) values[AliDielectronVarManager::kTPCchi2Cl] = (tpcNcls>0)?particle->Chi2perNDF()*(tpcNcls-5)/tpcNcls:-1.; if(Req(kTrackStatus)) values[AliDielectronVarManager::kTrackStatus] = (Double_t)particle->GetStatus(); if(Req(kFilterBit)) values[AliDielectronVarManager::kFilterBit] = (Double_t)particle->GetFilterMap(); //TRD pidProbs values[AliDielectronVarManager::kTRDprobEle] = 0; values[AliDielectronVarManager::kTRDprobPio] = 0; values[AliDielectronVarManager::kTPCsignalN] = 0; values[AliDielectronVarManager::kTPCsignalNfrac]= 0; // Fill AliAODTrack interface information // Int_t v0Index=-1; Int_t kinkIndex=-1; if( (Req(kV0Index0) || Req(kKinkIndex0)) && particle->GetProdVertex()) { v0Index = particle->GetProdVertex()->GetType()==AliAODVertex::kV0 ? 1 : 0; kinkIndex = particle->GetProdVertex()->GetType()==AliAODVertex::kKink ? 1 : 0; } values[AliDielectronVarManager::kV0Index0] = v0Index; values[AliDielectronVarManager::kKinkIndex0] = kinkIndex; Double_t d0z0[2]={-999.0,-999.0}; if(Req(kImpactParXY) || Req(kImpactParZ)) GetDCA(particle, d0z0); values[AliDielectronVarManager::kImpactParXY] = d0z0[0]; values[AliDielectronVarManager::kImpactParZ] = d0z0[1]; values[AliDielectronVarManager::kPIn] = 0.; values[AliDielectronVarManager::kTPCsignal] = 0.; values[AliDielectronVarManager::kTPCsignalN] = -1.; values[AliDielectronVarManager::kTPCsignalNfrac] = -1.; values[AliDielectronVarManager::kTPCclsDiff] = -999.; values[AliDielectronVarManager::kTOFsignal]=0; values[AliDielectronVarManager::kTOFbeta]=0; values[AliDielectronVarManager::kTPCnSigmaEleRaw]=0; values[AliDielectronVarManager::kTPCnSigmaEle]=0; values[AliDielectronVarManager::kTPCnSigmaPio]=0; values[AliDielectronVarManager::kTPCnSigmaMuo]=0; values[AliDielectronVarManager::kTPCnSigmaKao]=0; values[AliDielectronVarManager::kTPCnSigmaPro]=0; values[AliDielectronVarManager::kTOFnSigmaEle]=0; values[AliDielectronVarManager::kTOFnSigmaPio]=0; values[AliDielectronVarManager::kTOFnSigmaMuo]=0; values[AliDielectronVarManager::kTOFnSigmaKao]=0; values[AliDielectronVarManager::kTOFnSigmaPro]=0; if(Req(kITSsignal)) values[AliDielectronVarManager::kITSsignal] = particle->GetITSsignal(); if(Req(kITSclusterMap)) values[AliDielectronVarManager::kITSclusterMap] = particle->GetITSClusterMap(); if(Req(kITSLayerFirstCls)) values[AliDielectronVarManager::kITSLayerFirstCls] = -1.; for (Int_t iC=0; iC<6; iC++) { if (((particle->GetITSClusterMap()) & (1<<(iC))) > 0) { if(Req(kITSLayerFirstCls)) values[AliDielectronVarManager::kITSLayerFirstCls] = iC; break; } } AliAODPid *pid=const_cast(particle->GetDetPid()); if (pid) { Double_t origdEdx=pid->GetTPCsignal(); //overwrite signal pid->SetTPCsignal(origdEdx/AliDielectronPID::GetEtaCorr(particle)/AliDielectronPID::GetCorrValdEdx()); Double_t tpcSignalN=0.0; if(Req(kTPCsignalN) || Req(kTPCsignalNfrac) || Req(kTPCclsDiff)) tpcSignalN = pid->GetTPCsignalN(); values[AliDielectronVarManager::kTPCsignalN] = tpcSignalN; values[AliDielectronVarManager::kTPCsignalNfrac] = tpcNcls>0?tpcSignalN/tpcNcls:0; values[AliDielectronVarManager::kTPCclsDiff] = tpcSignalN-tpcNcls; values[AliDielectronVarManager::kPIn] = pid->GetTPCmomentum(); if(Req(kTPCsignal)) values[AliDielectronVarManager::kTPCsignal] = pid->GetTPCsignal(); if(Req(kTOFsignal)) values[AliDielectronVarManager::kTOFsignal] = pid->GetTOFsignal(); if(Req(kTOFmismProb)) values[AliDielectronVarManager::kTOFmismProb] = fgPIDResponse->GetTOFMismatchProbability(particle); // TOF beta calculation if(Req(kTOFbeta)) { Double32_t expt[5]; particle->GetIntegratedTimes(expt); // ps Double_t l = TMath::C()* expt[0]*1e-12; // m Double_t t = pid->GetTOFsignal(); // ps start time subtracted (until v5-02-Rev09) AliTOFHeader* tofH=0x0; // from v5-02-Rev10 on subtract the start time if(fgEvent) tofH = (AliTOFHeader*)fgEvent->GetTOFHeader(); if(tofH) t -= fgPIDResponse->GetTOFResponse().GetStartTime(particle->P()); // ps if( (l < 360.e-2 || l > 800.e-2) || (t <= 0.) ) { values[AliDielectronVarManager::kTOFbeta] =0; } else { t *= 1e-12; //ps -> s Double_t v = l / t; Float_t beta = v / TMath::C(); values[AliDielectronVarManager::kTOFbeta]=beta; } } // nsigma for various detectors if(Req(kTPCnSigmaEleRaw)) values[kTPCnSigmaEleRaw]= fgPIDResponse->NumberOfSigmasTPC(particle,AliPID::kElectron); if(Req(kTPCnSigmaEle)) values[kTPCnSigmaEle] =(fgPIDResponse->NumberOfSigmasTPC(particle,AliPID::kElectron) -AliDielectronPID::GetCorrVal()- AliDielectronPID::GetCntrdCorr(particle)) / AliDielectronPID::GetWdthCorr(particle); if(Req(kTPCnSigmaPio)) values[kTPCnSigmaPio]=fgPIDResponse->NumberOfSigmasTPC(particle,AliPID::kPion); if(Req(kTPCnSigmaMuo)) values[kTPCnSigmaMuo]=fgPIDResponse->NumberOfSigmasTPC(particle,AliPID::kMuon); if(Req(kTPCnSigmaKao)) values[kTPCnSigmaKao]=fgPIDResponse->NumberOfSigmasTPC(particle,AliPID::kKaon); if(Req(kTPCnSigmaPro)) values[kTPCnSigmaPro]=fgPIDResponse->NumberOfSigmasTPC(particle,AliPID::kProton); if(Req(kITSnSigmaEle)) values[kITSnSigmaEle]=fgPIDResponse->NumberOfSigmasITS(particle,AliPID::kElectron); if(Req(kITSnSigmaPio)) values[kITSnSigmaPio]=fgPIDResponse->NumberOfSigmasITS(particle,AliPID::kPion); if(Req(kITSnSigmaMuo)) values[kITSnSigmaMuo]=fgPIDResponse->NumberOfSigmasITS(particle,AliPID::kMuon); if(Req(kITSnSigmaKao)) values[kITSnSigmaKao]=fgPIDResponse->NumberOfSigmasITS(particle,AliPID::kKaon); if(Req(kITSnSigmaPro)) values[kITSnSigmaPro]=fgPIDResponse->NumberOfSigmasITS(particle,AliPID::kProton); if(Req(kTOFnSigmaEle)) values[kTOFnSigmaEle]=fgPIDResponse->NumberOfSigmasTOF(particle,AliPID::kElectron); if(Req(kTOFnSigmaPio)) values[kTOFnSigmaPio]=fgPIDResponse->NumberOfSigmasTOF(particle,AliPID::kPion); if(Req(kTOFnSigmaMuo)) values[kTOFnSigmaMuo]=fgPIDResponse->NumberOfSigmasTOF(particle,AliPID::kMuon); if(Req(kTOFnSigmaKao)) values[kTOFnSigmaKao]=fgPIDResponse->NumberOfSigmasTOF(particle,AliPID::kKaon); if(Req(kTOFnSigmaPro)) values[kTOFnSigmaPro]=fgPIDResponse->NumberOfSigmasTOF(particle,AliPID::kProton); Double_t prob[AliPID::kSPECIES]={0.0}; // switch computation off since it takes 70% of the CPU time for filling all AODtrack variables // TODO: find a solution when this is needed (maybe at fill time in histos, CFcontainer and cut selection) if( Req(kTRDprobEle) || Req(kTRDprobPio) ) fgPIDResponse->ComputeTRDProbability(particle,AliPID::kSPECIES,prob); values[AliDielectronVarManager::kTRDprobEle] = prob[AliPID::kElectron]; values[AliDielectronVarManager::kTRDprobPio] = prob[AliPID::kPion]; // if( Req(kTRDprob2DEle) || Req(kTRDprob2DPio) ) // fgPIDResponse->ComputeTRDProbability(particle,AliPID::kSPECIES,prob, AliTRDPIDResponse::kLQ2D); values[AliDielectronVarManager::kTRDprob2DEle] = prob[AliPID::kElectron]; values[AliDielectronVarManager::kTRDprob2DPio] = prob[AliPID::kPion]; //restore TPC signal if it was changed pid->SetTPCsignal(origdEdx); } //EMCAL PID information Double_t eop=0; Double_t showershape[4]={0.,0.,0.,0.}; // if(Req()) values[AliDielectronVarManager::kEMCALnSigmaEle] = fgPIDResponse->NumberOfSigmasEMCAL(particle,AliPID::kElectron); if(Req(kEMCALnSigmaEle) || Req(kEMCALE) || Req(kEMCALEoverP) || Req(kEMCALNCells) || Req(kEMCALM02) || Req(kEMCALM20) || Req(kEMCALDispersion)) values[AliDielectronVarManager::kEMCALnSigmaEle] = fgPIDResponse->NumberOfSigmasEMCAL(particle,AliPID::kElectron,eop,showershape); values[AliDielectronVarManager::kEMCALEoverP] = eop; values[AliDielectronVarManager::kEMCALE] = eop*values[AliDielectronVarManager::kP]; values[AliDielectronVarManager::kEMCALNCells] = showershape[0]; values[AliDielectronVarManager::kEMCALM02] = showershape[1]; values[AliDielectronVarManager::kEMCALM20] = showershape[2]; values[AliDielectronVarManager::kEMCALDispersion] = showershape[3]; values[AliDielectronVarManager::kPdgCode]=-1; values[AliDielectronVarManager::kPdgCodeMother]=-1; values[AliDielectronVarManager::kPdgCodeGrandMother]=-1; values[AliDielectronVarManager::kHasCocktailMother]=0; values[AliDielectronVarManager::kHasCocktailGrandMother]=0; values[AliDielectronVarManager::kNumberOfDaughters]=-1; AliDielectronMC *mc=AliDielectronMC::Instance(); if (mc->HasMC()){ if (mc->GetMCTrack(particle)) { Int_t trkLbl = TMath::Abs(mc->GetMCTrack(particle)->GetLabel()); values[AliDielectronVarManager::kPdgCode] =mc->GetMCTrack(particle)->PdgCode(); values[AliDielectronVarManager::kHasCocktailMother] =mc->CheckParticleSource(trkLbl, AliDielectronSignalMC::kDirect); values[AliDielectronVarManager::kPdgCodeMother] =mc->GetMotherPDG(particle); AliAODMCParticle *motherMC=mc->GetMCTrackMother(particle); //mother if(motherMC) values[AliDielectronVarManager::kPdgCodeGrandMother]=mc->GetMotherPDG(motherMC); } values[AliDielectronVarManager::kNumberOfDaughters]=mc->NumberOfDaughters(particle); } //if(mc->HasMC()) if(Req(kTOFPIDBit)) values[AliDielectronVarManager::kTOFPIDBit]=(particle->GetStatus()&AliESDtrack::kTOFpid? 1: 0); if(Req(kLegEff) || Req(kOneOverLegEff)) { values[AliDielectronVarManager::kLegEff] = GetSingleLegEff(values); values[AliDielectronVarManager::kOneOverLegEff] = (values[AliDielectronVarManager::kLegEff]>0.0 ? 1./values[AliDielectronVarManager::kLegEff] : 0.0); } } inline void AliDielectronVarManager::FillVarMCParticle(const AliMCParticle *particle, Double_t * const values) { // // Fill track information available for histogramming into an array // values[AliDielectronVarManager::kNclsITS] = 0; values[AliDielectronVarManager::kITSchi2Cl] = 0; values[AliDielectronVarManager::kNclsTPC] = 0; values[AliDielectronVarManager::kNclsSTPC] = 0; values[AliDielectronVarManager::kNclsSFracTPC] = 0; values[AliDielectronVarManager::kNclsTPCiter1] = 0; values[AliDielectronVarManager::kNFclsTPC] = 0; values[AliDielectronVarManager::kNFclsTPCr] = 0; values[AliDielectronVarManager::kNFclsTPCrFrac] = 0; values[AliDielectronVarManager::kNclsTRD] = 0; values[AliDielectronVarManager::kTRDntracklets] = 0; values[AliDielectronVarManager::kTRDpidQuality] = 0; values[AliDielectronVarManager::kTPCchi2Cl] = 0; values[AliDielectronVarManager::kTrackStatus] = 0; values[AliDielectronVarManager::kFilterBit] = 0; values[AliDielectronVarManager::kTRDprobEle] = 0; values[AliDielectronVarManager::kTRDprobPio] = 0; values[AliDielectronVarManager::kTPCsignalN] = 0; values[AliDielectronVarManager::kTPCclsDiff] = 0; values[AliDielectronVarManager::kTPCsignalNfrac] = 0; values[AliDielectronVarManager::kImpactParXY] = 0; values[AliDielectronVarManager::kImpactParZ] = 0; values[AliDielectronVarManager::kPIn] = 0; values[AliDielectronVarManager::kYsignedIn] = 0; values[AliDielectronVarManager::kTPCsignal] = 0; values[AliDielectronVarManager::kTOFsignal] = 0; values[AliDielectronVarManager::kTOFbeta] = 0; values[AliDielectronVarManager::kTPCnSigmaEleRaw] = 0; values[AliDielectronVarManager::kTPCnSigmaEle] = 0; values[AliDielectronVarManager::kTPCnSigmaPio] = 0; values[AliDielectronVarManager::kTPCnSigmaMuo] = 0; values[AliDielectronVarManager::kTPCnSigmaKao] = 0; values[AliDielectronVarManager::kTPCnSigmaPro] = 0; values[AliDielectronVarManager::kITSclusterMap] = 0; values[AliDielectronVarManager::kPdgCode] = -1; values[AliDielectronVarManager::kPdgCodeMother] = -1; values[AliDielectronVarManager::kPdgCodeGrandMother] = -1; values[AliDielectronVarManager::kHasCocktailMother]=0; values[AliDielectronVarManager::kHasCocktailGrandMother]=0; // Fill common AliVParticle interface information FillVarVParticle(particle, values); // Fill AliMCParticle interface specific information AliDielectronMC *mc=AliDielectronMC::Instance(); Int_t trkLbl = TMath::Abs(particle->GetLabel()); values[AliDielectronVarManager::kPdgCode] = particle->PdgCode(); values[AliDielectronVarManager::kHasCocktailMother] = mc->CheckParticleSource(trkLbl, AliDielectronSignalMC::kDirect); values[AliDielectronVarManager::kPdgCodeMother] = mc->GetMotherPDG(particle); AliMCParticle *motherMC=mc->GetMCTrackMother(particle); //mother if(motherMC) values[AliDielectronVarManager::kPdgCodeGrandMother]=mc->GetMotherPDG(motherMC); values[AliDielectronVarManager::kIsJpsiPrimary] = mc->IsJpsiPrimary(particle); values[AliDielectronVarManager::kNumberOfDaughters]=mc->NumberOfDaughters(particle); } inline void AliDielectronVarManager::FillVarMCParticle2(const AliVParticle *p1, const AliVParticle *p2, Double_t * const values) { // // fill 2 track information starting from MC legs // values[AliDielectronVarManager::kNclsITS] = 0; values[AliDielectronVarManager::kITSchi2Cl] = -1; values[AliDielectronVarManager::kNclsTPC] = 0; values[AliDielectronVarManager::kNclsSTPC] = 0; values[AliDielectronVarManager::kNclsSFracTPC] = 0; values[AliDielectronVarManager::kNclsTPCiter1] = 0; values[AliDielectronVarManager::kNFclsTPC] = 0; values[AliDielectronVarManager::kNFclsTPCr] = 0; values[AliDielectronVarManager::kNFclsTPCrFrac] = 0; values[AliDielectronVarManager::kNclsTRD] = 0; values[AliDielectronVarManager::kTRDntracklets] = 0; values[AliDielectronVarManager::kTRDpidQuality] = 0; values[AliDielectronVarManager::kTPCchi2Cl] = 0; values[AliDielectronVarManager::kTrackStatus] = 0; values[AliDielectronVarManager::kFilterBit] = 0; values[AliDielectronVarManager::kTRDprobEle] = 0; values[AliDielectronVarManager::kTRDprobPio] = 0; values[AliDielectronVarManager::kTPCsignalN] = 0; values[AliDielectronVarManager::kTPCclsDiff] = 0; values[AliDielectronVarManager::kTPCsignalNfrac] = 0; values[AliDielectronVarManager::kImpactParXY] = 0; values[AliDielectronVarManager::kImpactParZ] = 0; values[AliDielectronVarManager::kPIn] = 0; values[AliDielectronVarManager::kYsignedIn] = 0; values[AliDielectronVarManager::kTPCsignal] = 0; values[AliDielectronVarManager::kTPCnSigmaEleRaw] = 0; values[AliDielectronVarManager::kTPCnSigmaEle] = 0; values[AliDielectronVarManager::kTPCnSigmaPio] = 0; values[AliDielectronVarManager::kTPCnSigmaMuo] = 0; values[AliDielectronVarManager::kTPCnSigmaKao] = 0; values[AliDielectronVarManager::kTPCnSigmaPro] = 0; values[AliDielectronVarManager::kITSclusterMap] = 0; values[AliDielectronVarManager::kPdgCode] = -1; values[AliDielectronVarManager::kPdgCodeMother] = -1; values[AliDielectronVarManager::kHasCocktailMother]=0; AliDielectronMC *mc=AliDielectronMC::Instance(); AliVParticle* mother=0x0; Int_t mLabel1 = mc->GetMothersLabel(p1->GetLabel()); Int_t mLabel2 = mc->GetMothersLabel(p2->GetLabel()); if(mLabel1==mLabel2) mother = mc->GetMCTrackFromMCEvent(mLabel1); values[AliDielectronVarManager::kPseudoProperTime] = -2e10; if(mother) { // same mother FillVarVParticle(mother, values); Double_t vtxX, vtxY, vtxZ; mc->GetPrimaryVertex(vtxX,vtxY,vtxZ); Double_t lxy = ((mother->Xv()- vtxX) * mother->Px() + (mother->Yv()- vtxY) * mother->Py() )/mother->Pt(); values[AliDielectronVarManager::kPseudoProperTime] = lxy*(TDatabasePDG::Instance()->GetParticle(443)->Mass())/mother->Pt(); } // AliVParticle part values[AliDielectronVarManager::kPx] = p1->Px()+p2->Px(); values[AliDielectronVarManager::kPy] = p1->Py()+p2->Py(); values[AliDielectronVarManager::kPz] = p1->Pz()+p2->Pz(); values[AliDielectronVarManager::kPt] = TMath::Sqrt(values[AliDielectronVarManager::kPx]* values[AliDielectronVarManager::kPx]+ values[AliDielectronVarManager::kPy]* values[AliDielectronVarManager::kPy]); values[AliDielectronVarManager::kPtSq] = values[AliDielectronVarManager::kPt] * values[AliDielectronVarManager::kPt]; values[AliDielectronVarManager::kP] = TMath::Sqrt(values[AliDielectronVarManager::kPt]* values[AliDielectronVarManager::kPt]+ values[AliDielectronVarManager::kPz]* values[AliDielectronVarManager::kPz]); values[AliDielectronVarManager::kXv] = 0; values[AliDielectronVarManager::kYv] = 0; values[AliDielectronVarManager::kZv] = 0; values[AliDielectronVarManager::kOneOverPt] = (values[AliDielectronVarManager::kPt]>1.0e-6 ? 1.0/values[AliDielectronVarManager::kPt] : 0.0); values[AliDielectronVarManager::kPhi] = TMath::ATan2(values[AliDielectronVarManager::kPy],values[AliDielectronVarManager::kPx]); values[AliDielectronVarManager::kTheta] = TMath::ATan2(values[AliDielectronVarManager::kPt],values[AliDielectronVarManager::kPz]); values[AliDielectronVarManager::kEta] = ((values[AliDielectronVarManager::kP]-values[AliDielectronVarManager::kPz])>1.0e-6 && (values[AliDielectronVarManager::kP]+values[AliDielectronVarManager::kPz])>1.0e-6 ? 0.5*TMath::Log((values[AliDielectronVarManager::kP]+values[AliDielectronVarManager::kPz])/(values[AliDielectronVarManager::kP]-values[AliDielectronVarManager::kPz])) : -9999.); values[AliDielectronVarManager::kE] = p1->E()+p2->E(); values[AliDielectronVarManager::kY] = ((values[AliDielectronVarManager::kE]-values[AliDielectronVarManager::kPz])>1.0e-6 && (values[AliDielectronVarManager::kE]+values[AliDielectronVarManager::kPz])>1.0e-6 ? 0.5*TMath::Log((values[AliDielectronVarManager::kE]+values[AliDielectronVarManager::kPz])/(values[AliDielectronVarManager::kE]-values[AliDielectronVarManager::kPz])) : -9999.); values[AliDielectronVarManager::kCharge] = p1->Charge()+p2->Charge(); values[AliDielectronVarManager::kM] = p1->M()*p1->M()+p2->M()*p2->M()+ 2.0*(p1->E()*p2->E()-p1->Px()*p2->Px()-p1->Py()*p2->Py()-p1->Pz()*p2->Pz()); values[AliDielectronVarManager::kM] = (values[AliDielectronVarManager::kM]>1.0e-8 ? TMath::Sqrt(values[AliDielectronVarManager::kM]) : -1.0); if ( fgEvent ) AliDielectronVarManager::Fill(fgEvent, values); values[AliDielectronVarManager::kThetaHE] = AliDielectronPair::ThetaPhiCM(p1,p2,kTRUE, kTRUE); values[AliDielectronVarManager::kPhiHE] = AliDielectronPair::ThetaPhiCM(p1,p2,kTRUE, kFALSE); values[AliDielectronVarManager::kThetaSqHE] = values[AliDielectronVarManager::kThetaHE] * values[AliDielectronVarManager::kThetaHE]; values[AliDielectronVarManager::kCos2PhiHE] = TMath::Cos(2*values[AliDielectronVarManager::kPhiHE]); values[AliDielectronVarManager::kThetaCS] = AliDielectronPair::ThetaPhiCM(p1,p2,kFALSE, kTRUE); values[AliDielectronVarManager::kPhiCS] = AliDielectronPair::ThetaPhiCM(p1,p2,kFALSE, kFALSE); values[AliDielectronVarManager::kThetaSqCS] = values[AliDielectronVarManager::kThetaCS] * values[AliDielectronVarManager::kThetaCS]; values[AliDielectronVarManager::kCos2PhiCS] = TMath::Cos(2*values[AliDielectronVarManager::kPhiCS]); values[AliDielectronVarManager::kCosTilPhiHE] = (values[AliDielectronVarManager::kThetaHE]>0)?(TMath::Cos(values[AliDielectronVarManager::kPhiHE]-TMath::Pi()/4.)):(TMath::Cos(values[AliDielectronVarManager::kPhiHE]-3*TMath::Pi()/4.)); values[AliDielectronVarManager::kCosTilPhiCS] = (values[AliDielectronVarManager::kThetaCS]>0)?(TMath::Cos(values[AliDielectronVarManager::kPhiCS]-TMath::Pi()/4.)):(TMath::Cos(values[AliDielectronVarManager::kPhiCS]-3*TMath::Pi()/4.)); } inline void AliDielectronVarManager::FillVarAODMCParticle(const AliAODMCParticle *particle, Double_t * const values) { // // Fill track information available for histogramming into an array // values[AliDielectronVarManager::kNclsITS] = 0; values[AliDielectronVarManager::kITSchi2Cl] = -1; values[AliDielectronVarManager::kNclsTPC] = 0; values[AliDielectronVarManager::kNclsSTPC] = 0; values[AliDielectronVarManager::kNclsSFracTPC] = 0; values[AliDielectronVarManager::kNclsTPCiter1] = 0; values[AliDielectronVarManager::kNFclsTPC] = 0; values[AliDielectronVarManager::kNclsTRD] = 0; values[AliDielectronVarManager::kTRDntracklets] = 0; values[AliDielectronVarManager::kTRDpidQuality] = 0; values[AliDielectronVarManager::kTPCchi2Cl] = 0; values[AliDielectronVarManager::kTrackStatus] = 0; values[AliDielectronVarManager::kFilterBit] = 0; values[AliDielectronVarManager::kTRDprobEle] = 0; values[AliDielectronVarManager::kTRDprobPio] = 0; values[AliDielectronVarManager::kTPCsignalN] = 0; values[AliDielectronVarManager::kTPCclsDiff] = 0; values[AliDielectronVarManager::kTPCsignalNfrac]= 0; values[AliDielectronVarManager::kImpactParXY] = 0; values[AliDielectronVarManager::kImpactParZ] = 0; values[AliDielectronVarManager::kPIn] = 0; values[AliDielectronVarManager::kYsignedIn] = 0; values[AliDielectronVarManager::kTPCsignal] = 0; values[AliDielectronVarManager::kTPCnSigmaEleRaw] = 0; values[AliDielectronVarManager::kTPCnSigmaEle] = 0; values[AliDielectronVarManager::kTPCnSigmaPio] = 0; values[AliDielectronVarManager::kTPCnSigmaMuo] = 0; values[AliDielectronVarManager::kTPCnSigmaKao] = 0; values[AliDielectronVarManager::kTPCnSigmaPro] = 0; values[AliDielectronVarManager::kITSclusterMap] = 0; values[AliDielectronVarManager::kPdgCode] = -1; values[AliDielectronVarManager::kPdgCodeMother] = -1; values[AliDielectronVarManager::kPdgCodeGrandMother] = -1; values[AliDielectronVarManager::kHasCocktailMother]=0; values[AliDielectronVarManager::kHasCocktailGrandMother]=0; // Fill common AliVParticle interface information FillVarVParticle(particle, values); // Fill AliAODMCParticle interface specific information AliDielectronMC *mc=AliDielectronMC::Instance(); Int_t trkLbl = TMath::Abs(particle->GetLabel()); values[AliDielectronVarManager::kPdgCode] = particle->PdgCode(); values[AliDielectronVarManager::kHasCocktailMother] = mc->CheckParticleSource(trkLbl, AliDielectronSignalMC::kDirect); values[AliDielectronVarManager::kPdgCodeMother] = mc->GetMotherPDG(particle); AliAODMCParticle *motherMC=mc->GetMCTrackMother(particle); //mother if(motherMC) values[AliDielectronVarManager::kPdgCodeGrandMother]=mc->GetMotherPDG(motherMC); values[AliDielectronVarManager::kIsJpsiPrimary] = mc->IsJpsiPrimary(particle); values[AliDielectronVarManager::kNumberOfDaughters]=mc->NumberOfDaughters(particle); // using AODMCHEader information AliAODMCHeader *mcHeader = (AliAODMCHeader*)fgEvent->FindListObject(AliAODMCHeader::StdBranchName()); if(mcHeader) { values[AliDielectronVarManager::kImpactParZ] = mcHeader->GetVtxZ()-particle->Zv(); values[AliDielectronVarManager::kImpactParXY] = TMath::Sqrt(TMath::Power(mcHeader->GetVtxX()-particle->Xv(),2) + TMath::Power(mcHeader->GetVtxY()-particle->Yv(),2)); } } inline void AliDielectronVarManager::FillVarDielectronPair(const AliDielectronPair *pair, Double_t * const values) { // // Fill pair information available for histogramming into an array // values[AliDielectronVarManager::kPdgCode]=-1; values[AliDielectronVarManager::kPdgCodeMother]=-1; values[AliDielectronVarManager::kPdgCodeGrandMother]=-1; values[AliDielectronVarManager::kHasCocktailMother]=0; values[AliDielectronVarManager::kHasCocktailGrandMother]=0; Double_t errPseudoProperTime2 = -1; // Fill common AliVParticle interface information FillVarVParticle(pair, values); // Fill AliDielectronPair specific information const AliKFParticle &kfPair = pair->GetKFParticle(); values[AliDielectronVarManager::kThetaHE] = 0.0; values[AliDielectronVarManager::kPhiHE] = 0.0; values[AliDielectronVarManager::kThetaSqHE] = 0.0; values[AliDielectronVarManager::kCos2PhiHE] = 0.0; values[AliDielectronVarManager::kCosTilPhiHE] = 0.0; values[AliDielectronVarManager::kThetaCS] = 0.0; values[AliDielectronVarManager::kPhiCS] = 0.0; values[AliDielectronVarManager::kThetaSqCS] = 0.0; values[AliDielectronVarManager::kCos2PhiCS] = 0.0; values[AliDielectronVarManager::kCosTilPhiCS] = 0.0; Double_t thetaHE=0; Double_t phiHE=0; Double_t thetaCS=0; Double_t phiCS=0; if(Req(kThetaHE) || Req(kPhiHE) || Req(kThetaCS) || Req(kPhiCS)) { pair->GetThetaPhiCM(thetaHE,phiHE,thetaCS,phiCS); values[AliDielectronVarManager::kThetaHE] = thetaHE; values[AliDielectronVarManager::kPhiHE] = phiHE; values[AliDielectronVarManager::kThetaSqHE] = thetaHE * thetaHE; values[AliDielectronVarManager::kCos2PhiHE] = TMath::Cos(2.0*phiHE); values[AliDielectronVarManager::kCosTilPhiHE] = (thetaHE>0)?(TMath::Cos(phiHE-TMath::Pi()/4.)):(TMath::Cos(phiHE-3*TMath::Pi()/4.)); values[AliDielectronVarManager::kThetaCS] = thetaCS; values[AliDielectronVarManager::kPhiCS] = phiCS; values[AliDielectronVarManager::kThetaSqCS] = thetaCS * thetaCS; values[AliDielectronVarManager::kCos2PhiCS] = TMath::Cos(2.0*phiCS); values[AliDielectronVarManager::kCosTilPhiCS] = (thetaCS>0)?(TMath::Cos(phiCS-TMath::Pi()/4.)):(TMath::Cos(phiCS-3*TMath::Pi()/4.)); } if(Req(kChi2NDF)) values[AliDielectronVarManager::kChi2NDF] = kfPair.GetChi2()/kfPair.GetNDF(); if(Req(kDecayLength)) values[AliDielectronVarManager::kDecayLength] = kfPair.GetDecayLength(); if(Req(kR)) values[AliDielectronVarManager::kR] = kfPair.GetR(); if(Req(kOpeningAngle)) values[AliDielectronVarManager::kOpeningAngle] = pair->OpeningAngle(); if(Req(kCosPointingAngle)) values[AliDielectronVarManager::kCosPointingAngle] = fgEvent ? pair->GetCosPointingAngle(fgEvent->GetPrimaryVertex()) : -1; if(Req(kLegDist)) values[AliDielectronVarManager::kLegDist] = pair->DistanceDaughters(); if(Req(kLegDistXY)) values[AliDielectronVarManager::kLegDistXY] = pair->DistanceDaughtersXY(); if(Req(kDeltaEta)) values[AliDielectronVarManager::kDeltaEta] = pair->DeltaEta(); if(Req(kDeltaPhi)) values[AliDielectronVarManager::kDeltaPhi] = pair->DeltaPhi(); if(Req(kMerr)) values[AliDielectronVarManager::kMerr] = kfPair.GetErrMass()>1e-30&&kfPair.GetMass()>1e-30?kfPair.GetErrMass()/kfPair.GetMass():1000000; values[AliDielectronVarManager::kPairType] = pair->GetType(); // Armenteros-Podolanski quantities if(Req(kArmAlpha)) values[AliDielectronVarManager::kArmAlpha] = pair->GetArmAlpha(); if(Req(kArmPt)) values[AliDielectronVarManager::kArmPt] = pair->GetArmPt(); if(Req(kPsiPair)) values[AliDielectronVarManager::kPsiPair] = fgEvent ? pair->PsiPair(fgEvent->GetMagneticField()) : -5; if(Req(kPhivPair)) values[AliDielectronVarManager::kPhivPair] = fgEvent ? pair->PhivPair(fgEvent->GetMagneticField()) : -5; if(Req(kPseudoProperTime) || Req(kPseudoProperTimeErr)) { values[AliDielectronVarManager::kPseudoProperTime] = fgEvent ? kfPair.GetPseudoProperDecayTime(*(fgEvent->GetPrimaryVertex()), TDatabasePDG::Instance()->GetParticle(443)->Mass(), &errPseudoProperTime2 ) : -1e10; // values[AliDielectronVarManager::kPseudoProperTime] = fgEvent ? pair->GetPseudoProperTime(fgEvent->GetPrimaryVertex()): -1e10; values[AliDielectronVarManager::kPseudoProperTimeErr] = (errPseudoProperTime2 > 0) ? TMath::Sqrt(errPseudoProperTime2) : -1e10; } // impact parameter Double_t d0z0[2]={-999., -999.}; if( (Req(kImpactParXY) || Req(kImpactParZ)) && fgEvent) pair->GetDCA(fgEvent->GetPrimaryVertex(), d0z0); values[AliDielectronVarManager::kImpactParXY] = d0z0[0]; values[AliDielectronVarManager::kImpactParZ] = d0z0[1]; if (!(pair->GetKFUsage())) { //if KF Pairing is not enabled, overwrite values that can be easily derived from legs //use the INDIVIDUAL KF particles as source, which should be a copy of the corresponding properties //the ESDtrack, the reference to the ESDtrack is not (always) accessible in Mixing, while KF //particles are copied in the Pair-Object static const Double_t mElectron = AliPID::ParticleMass(AliPID::kElectron); // MeV const AliKFParticle& fD1 = pair->GetKFFirstDaughter(); const AliKFParticle& fD2 = pair->GetKFSecondDaughter(); //Define local buffer variables for leg properties Double_t px1=-9999.,py1=-9999.,pz1=-9999.; Double_t px2=-9999.,py2=-9999.,pz2=-9999.; Double_t e1 =-9999.,e2 =-9999.; Double_t feta1=-9999.;//,fphi1=-9999.; Double_t feta2=-9999.;//,fphi2=-9999.; px1 = fD1.GetPx(); py1 = fD1.GetPy(); pz1 = fD1.GetPz(); feta1 = fD1.GetEta(); // fphi1 = fD1.GetPhi(); px2 = fD2.GetPx(); py2 = fD2.GetPy(); pz2 = fD2.GetPz(); feta2 = fD2.GetEta(); // fphi2 = fD2.GetPhi(); //Calculate Energy per particle by hand e1 = TMath::Sqrt(mElectron*mElectron+px1*px1+py1*py1+pz1*pz1); e2 = TMath::Sqrt(mElectron*mElectron+px2*px2+py2*py2+pz2*pz2); //Now Create TLorentzVector: TLorentzVector lv1,lv2; lv1.SetPxPyPzE(px1,py1,pz1,e1); lv2.SetPxPyPzE(px2,py2,pz2,e2); values[AliDielectronVarManager::kPx] = (lv1+lv2).Px(); values[AliDielectronVarManager::kPy] = (lv1+lv2).Py(); values[AliDielectronVarManager::kPz] = (lv1+lv2).Pz(); values[AliDielectronVarManager::kPt] = (lv1+lv2).Pt(); values[AliDielectronVarManager::kPtSq] = values[AliDielectronVarManager::kPt] * values[AliDielectronVarManager::kPt]; values[AliDielectronVarManager::kP] = (lv1+lv2).P(); //Not overwritten, could take event vertex in next iteration values[AliDielectronVarManager::kXv] = (lv1+lv2).X(); values[AliDielectronVarManager::kYv] = (lv1+lv2).Y(); values[AliDielectronVarManager::kZv] = (lv1+lv2).Z(); values[AliDielectronVarManager::kE] = (lv1+lv2).E(); values[AliDielectronVarManager::kM] = (lv1+lv2).M(); values[AliDielectronVarManager::kOpeningAngle] = lv1.Angle(lv2.Vect()); values[AliDielectronVarManager::kOneOverPt] = (values[AliDielectronVarManager::kPt]>0. ? 1./values[AliDielectronVarManager::kPt] : -9999.); values[AliDielectronVarManager::kPhi] = (lv1+lv2).Phi()+TMath::Pi(); // change interval to [0,+2pi] values[AliDielectronVarManager::kEta] = (lv1+lv2).Eta(); values[AliDielectronVarManager::kY] = (lv1+lv2).Rapidity(); for (Int_t i=AliDielectronVarManager::kPairMax; iGetType(); /* //Also not overwritten, still coming from KF particle //where needed to be replaced by independent determination values[AliDielectronVarManager::kCharge] = 0.; values[AliDielectronVarManager::kPdgCode] = 0.; values[AliDielectronVarManager::kChi2NDF] = 0.; values[AliDielectronVarManager::kDecayLength] = 0.; values[AliDielectronVarManager::kR] = 0.; values[AliDielectronVarManager::kCosPointingAngle] = 0.; values[AliDielectronVarManager::kThetaHE] = 0.; values[AliDielectronVarManager::kPhiHE] = 0.; values[AliDielectronVarManager::kThetaSqHE] = 0.; values[AliDielectronVarManager::kCos2PhiHE] = 0.; values[AliDielectronVarManager::kCosTilPhiHE] = 0.; values[AliDielectronVarManager::kThetaCS] = 0.; values[AliDielectronVarManager::kPhiCS] = 0.; values[AliDielectronVarManager::kThetaSqCS] = 0.; values[AliDielectronVarManager::kCos2PhiCS] = 0.; values[AliDielectronVarManager::kCosTilPhiCS] = 0.; values[AliDielectronVarManager::kLegDist] = 0.; values[AliDielectronVarManager::kLegDistXY] = 0.; values[AliDielectronVarManager::kMerr] = 0.; values[AliDielectronVarManager::kPseudoProperTime] = 0.; values[AliDielectronVarManager::kPseudoProperTimeErr] = 0.; //Fill in Taku's PhiV? values[AliDielectronVarManager::kPsiPair] = 0.; */ } //common, regardless of calculation method // Flow quantities Double_t phi=values[AliDielectronVarManager::kPhi]; if(Req(kCosPhiH2)) values[AliDielectronVarManager::kCosPhiH2] = TMath::Cos(2*phi); if(Req(kSinPhiH2)) values[AliDielectronVarManager::kSinPhiH2] = TMath::Sin(2*phi); Double_t delta=0.0; // v2 with respect to VZERO-A event plane delta = phi - fgData[AliDielectronVarManager::kV0ArpH2]; if(delta>TMath::Pi()) delta -= 2.0*TMath::Pi(); // keep the [-pi,+pi] interval if(delta<-1.0*TMath::Pi()) delta += 2.0*TMath::Pi(); if(Req(kV0ArpH2FlowV2)) values[AliDielectronVarManager::kV0ArpH2FlowV2] = TMath::Cos(2.0*delta); // 2nd harmonic flow coefficient if(Req(kDeltaPhiV0ArpH2)) values[AliDielectronVarManager::kDeltaPhiV0ArpH2] = delta; // v2 with respect to VZERO-C event plane delta = phi - fgData[AliDielectronVarManager::kV0CrpH2]; if(delta>TMath::Pi()) delta -= 2.0*TMath::Pi(); // keep the [-pi,+pi] interval if(delta<-1.0*TMath::Pi()) delta += 2.0*TMath::Pi(); if(Req(kV0CrpH2FlowV2)) values[AliDielectronVarManager::kV0CrpH2FlowV2] = TMath::Cos(2.0*delta); // 2nd harmonic flow coefficient if(Req(kDeltaPhiV0CrpH2)) values[AliDielectronVarManager::kDeltaPhiV0CrpH2] = delta; // v2 with respect to the combined VZERO-A and VZERO-C event plane delta = phi - fgData[AliDielectronVarManager::kV0ACrpH2]; if(delta>TMath::Pi()) delta -= 2.0*TMath::Pi(); // keep the [-pi,+pi] interval if(delta<-1.0*TMath::Pi()) delta += 2.0*TMath::Pi(); if(Req(kV0ACrpH2FlowV2)) values[AliDielectronVarManager::kV0ACrpH2FlowV2] = TMath::Cos(2.0*delta); // 2nd harmonic flow coefficient if(Req(kDeltaPhiV0ACrpH2)) values[AliDielectronVarManager::kDeltaPhiV0ACrpH2] = delta; // quantities using the values of AliEPSelectionTask values[AliDielectronVarManager::kDeltaPhiv0ArpH2] = phi - values[AliDielectronVarManager::kv0ArpH2]; values[AliDielectronVarManager::kDeltaPhiv0CrpH2] = phi - values[AliDielectronVarManager::kv0CrpH2]; values[AliDielectronVarManager::kDeltaPhiv0ACrpH2] = phi - values[AliDielectronVarManager::kv0ACrpH2]; values[AliDielectronVarManager::kDeltaPhiTPCrpH2] = phi - values[AliDielectronVarManager::kTPCrpH2]; values[AliDielectronVarManager::kv0ACrpH2FlowV2] = TMath::Cos( 2*(phi - values[AliDielectronVarManager::kv0ACrpH2]) ); values[AliDielectronVarManager::kv0ArpH2FlowV2] = TMath::Cos( 2*(phi - values[AliDielectronVarManager::kv0ArpH2]) ); values[AliDielectronVarManager::kv0CrpH2FlowV2] = TMath::Cos( 2*(phi - values[AliDielectronVarManager::kv0CrpH2]) ); values[AliDielectronVarManager::kTPCrpH2FlowV2] = TMath::Cos( 2*(phi - values[AliDielectronVarManager::kTPCrpH2]) ); values[AliDielectronVarManager::kTPCrpH2FlowV2Sin] = TMath::Sin( 2*(phi - values[AliDielectronVarManager::kTPCrpH2]) ); // keep the interval [-pi,+pi] if ( values[kDeltaPhiv0ArpH2] > TMath::Pi() ) values[kDeltaPhiv0ArpH2] -= TMath::TwoPi(); if ( values[kDeltaPhiv0CrpH2] > TMath::Pi() ) values[kDeltaPhiv0CrpH2] -= TMath::TwoPi(); if ( values[kDeltaPhiv0ACrpH2] > TMath::Pi() ) values[kDeltaPhiv0ACrpH2] -= TMath::TwoPi(); if ( values[kDeltaPhiTPCrpH2] > TMath::Pi() ) values[kDeltaPhiTPCrpH2] -= TMath::TwoPi(); if ( values[kDeltaPhiv0ArpH2] < -1.*TMath::Pi() ) values[kDeltaPhiv0ArpH2] += TMath::TwoPi(); if ( values[kDeltaPhiv0CrpH2] < -1.*TMath::Pi() ) values[kDeltaPhiv0CrpH2] += TMath::TwoPi(); if ( values[kDeltaPhiv0ACrpH2] < -1.*TMath::Pi() ) values[kDeltaPhiv0ACrpH2] += TMath::TwoPi(); if ( values[kDeltaPhiTPCrpH2] < -1.*TMath::Pi() ) values[kDeltaPhiTPCrpH2] += TMath::TwoPi(); //calculate inner product of strong Mag and ee plane if(Req(kPairPlaneMagInPro)) values[AliDielectronVarManager::kPairPlaneMagInPro] = pair->PairPlaneMagInnerProduct(values[AliDielectronVarManager::kZDCACrpH1]); //Calculate the angle between electrons decay plane and variables 1-4 if(Req(kPairPlaneAngle1A)) values[AliDielectronVarManager::kPairPlaneAngle1A] = pair->GetPairPlaneAngle(values[kv0ArpH2],1); if(Req(kPairPlaneAngle2A)) values[AliDielectronVarManager::kPairPlaneAngle2A] = pair->GetPairPlaneAngle(values[kv0ArpH2],2); if(Req(kPairPlaneAngle3A)) values[AliDielectronVarManager::kPairPlaneAngle3A] = pair->GetPairPlaneAngle(values[kv0ArpH2],3); if(Req(kPairPlaneAngle4A)) values[AliDielectronVarManager::kPairPlaneAngle4A] = pair->GetPairPlaneAngle(values[kv0ArpH2],4); if(Req(kPairPlaneAngle1C)) values[AliDielectronVarManager::kPairPlaneAngle1C] = pair->GetPairPlaneAngle(values[kv0CrpH2],1); if(Req(kPairPlaneAngle2C)) values[AliDielectronVarManager::kPairPlaneAngle2C] = pair->GetPairPlaneAngle(values[kv0CrpH2],2); if(Req(kPairPlaneAngle3C)) values[AliDielectronVarManager::kPairPlaneAngle3C] = pair->GetPairPlaneAngle(values[kv0CrpH2],3); if(Req(kPairPlaneAngle4C)) values[AliDielectronVarManager::kPairPlaneAngle4C] = pair->GetPairPlaneAngle(values[kv0CrpH2],4); if(Req(kPairPlaneAngle1AC)) values[AliDielectronVarManager::kPairPlaneAngle1AC] = pair->GetPairPlaneAngle(values[kv0ACrpH2],1); if(Req(kPairPlaneAngle2AC)) values[AliDielectronVarManager::kPairPlaneAngle2AC] = pair->GetPairPlaneAngle(values[kv0ACrpH2],2); if(Req(kPairPlaneAngle3AC)) values[AliDielectronVarManager::kPairPlaneAngle3AC] = pair->GetPairPlaneAngle(values[kv0ACrpH2],3); if(Req(kPairPlaneAngle4AC)) values[AliDielectronVarManager::kPairPlaneAngle4AC] = pair->GetPairPlaneAngle(values[kv0ACrpH2],4); //Random reaction plane values[AliDielectronVarManager::kRandomRP] = gRandom->Uniform(-TMath::Pi()/2.0,TMath::Pi()/2.0); //delta phi of pair fron random reaction plane values[AliDielectronVarManager::kDeltaPhiRandomRP] = phi - values[kRandomRP]; // keep the interval [-pi,+pi] if ( values[AliDielectronVarManager::kDeltaPhiRandomRP] > TMath::Pi() ) values[AliDielectronVarManager::kDeltaPhiRandomRP] -= TMath::TwoPi(); if(Req(kPairPlaneAngle1Ran)) values[AliDielectronVarManager::kPairPlaneAngle1Ran]= pair->GetPairPlaneAngle(values[kRandomRP],1); if(Req(kPairPlaneAngle2Ran)) values[AliDielectronVarManager::kPairPlaneAngle2Ran]= pair->GetPairPlaneAngle(values[kRandomRP],2); if(Req(kPairPlaneAngle3Ran)) values[AliDielectronVarManager::kPairPlaneAngle3Ran]= pair->GetPairPlaneAngle(values[kRandomRP],3); if(Req(kPairPlaneAngle4Ran)) values[AliDielectronVarManager::kPairPlaneAngle4Ran]= pair->GetPairPlaneAngle(values[kRandomRP],4); AliDielectronMC *mc=AliDielectronMC::Instance(); if (mc->HasMC()){ values[AliDielectronVarManager::kPseudoProperTimeResolution] = -10.0e+10; Bool_t samemother = mc->HaveSameMother(pair); values[AliDielectronVarManager::kIsJpsiPrimary] = mc->IsJpsiPrimary(pair); values[AliDielectronVarManager::kHaveSameMother] = samemother ; // fill kPseudoProperTimeResolution values[AliDielectronVarManager::kPseudoProperTimeResolution] = -1e10; // values[AliDielectronVarManager::kPseudoProperTimePull] = -1e10; if(samemother && fgEvent) { if(pair->GetFirstDaughterP()->GetLabel() > 0) { const AliVParticle *motherMC = 0x0; if(fgEvent->IsA() == AliESDEvent::Class()) motherMC = (AliMCParticle*)mc->GetMCTrackMother((AliESDtrack*)pair->GetFirstDaughterP()); else if(fgEvent->IsA() == AliAODEvent::Class()) motherMC = (AliAODMCParticle*)mc->GetMCTrackMother((AliAODTrack*)pair->GetFirstDaughterP()); Double_t vtxX, vtxY, vtxZ; if(motherMC && mc->GetPrimaryVertex(vtxX,vtxY,vtxZ)) { Int_t motherLbl = motherMC->GetLabel(); values[AliDielectronVarManager::kHasCocktailMother]=mc->CheckParticleSource(motherLbl, AliDielectronSignalMC::kDirect); const Double_t lxyMC = ( (motherMC->Xv() - vtxX) * motherMC->Px() + (motherMC->Yv() - vtxY) * motherMC->Py() ) / motherMC->Pt(); const Double_t pseudoMC = lxyMC * (TDatabasePDG::Instance()->GetParticle(443)->Mass())/motherMC->Pt(); values[AliDielectronVarManager::kPseudoProperTimeResolution] = values[AliDielectronVarManager::kPseudoProperTime] - pseudoMC; if (errPseudoProperTime2 > 0) values[AliDielectronVarManager::kPseudoProperTimePull] = values[AliDielectronVarManager::kPseudoProperTimeResolution]/sqrt(errPseudoProperTime2); } } } values[AliDielectronVarManager::kTRDpidEffPair] = 0.; if (fgTRDpidEff[0][0]){ Double_t valuesLeg1[AliDielectronVarManager::kNMaxValues]; Double_t valuesLeg2[AliDielectronVarManager::kNMaxValues]; AliVParticle* leg1 = pair->GetFirstDaughterP(); AliVParticle* leg2 = pair->GetSecondDaughterP(); if (leg1 && leg2){ Fill(leg1, valuesLeg1); Fill(leg2, valuesLeg2); values[AliDielectronVarManager::kTRDpidEffPair] = valuesLeg1[AliDielectronVarManager::kTRDpidEffLeg]*valuesLeg2[AliDielectronVarManager::kTRDpidEffLeg]; } } }//if (mc->HasMC()) AliVParticle* leg1 = pair->GetFirstDaughterP(); AliVParticle* leg2 = pair->GetSecondDaughterP(); if (leg1) values[AliDielectronVarManager::kMomAsymDau1] = (values[AliDielectronVarManager::kP] != 0)? leg1->P() / values[AliDielectronVarManager::kP]: 0; else values[AliDielectronVarManager::kMomAsymDau1] = -9999.; if (leg2) values[AliDielectronVarManager::kMomAsymDau2] = (values[AliDielectronVarManager::kP] != 0)? leg2->P() / values[AliDielectronVarManager::kP]: 0; else values[AliDielectronVarManager::kMomAsymDau2] = -9999.; Double_t valuesLeg1[AliDielectronVarManager::kNMaxValues]; Double_t valuesLeg2[AliDielectronVarManager::kNMaxValues]; if (leg1 && leg2 && fgLegEffMap) { Fill(leg1, valuesLeg1); Fill(leg2, valuesLeg2); values[AliDielectronVarManager::kPairEff] = valuesLeg1[AliDielectronVarManager::kLegEff] *valuesLeg2[AliDielectronVarManager::kLegEff]; } else if(fgPairEffMap) { values[AliDielectronVarManager::kPairEff] = GetPairEff(values); } values[AliDielectronVarManager::kOneOverPairEff] = (values[AliDielectronVarManager::kPairEff]>0.0 ? 1./values[AliDielectronVarManager::kPairEff] : 1.0); values[AliDielectronVarManager::kOneOverPairEffSq] = (values[AliDielectronVarManager::kPairEff]>0.0 ? 1./values[AliDielectronVarManager::kPairEff]/values[AliDielectronVarManager::kPairEff] : 1.0); if(kRndmPair) values[AliDielectronVarManager::kRndmPair] = gRandom->Rndm(); } inline void AliDielectronVarManager::FillVarKFParticle(const AliKFParticle *particle, Double_t * const values) { // // Fill track information available in AliVParticle into an array // values[AliDielectronVarManager::kPx] = particle->GetPx(); values[AliDielectronVarManager::kPy] = particle->GetPy(); values[AliDielectronVarManager::kPz] = particle->GetPz(); values[AliDielectronVarManager::kPt] = particle->GetPt(); values[AliDielectronVarManager::kPtSq] = particle->GetPt() * particle->GetPt(); values[AliDielectronVarManager::kP] = particle->GetP(); values[AliDielectronVarManager::kXv] = particle->GetX(); values[AliDielectronVarManager::kYv] = particle->GetY(); values[AliDielectronVarManager::kZv] = particle->GetZ(); values[AliDielectronVarManager::kOneOverPt] = 0; values[AliDielectronVarManager::kPhi] = particle->GetPhi(); values[AliDielectronVarManager::kTheta] = 0.; values[AliDielectronVarManager::kEta] = particle->GetEta(); values[AliDielectronVarManager::kY] = ((particle->GetE()*particle->GetE()-particle->GetPx()*particle->GetPx()-particle->GetPy()*particle->GetPy()-particle->GetPz()*particle->GetPz())>0.) ? TLorentzVector(particle->GetPx(),particle->GetPy(),particle->GetPz(),particle->GetE()).Rapidity() : -1111.; values[AliDielectronVarManager::kE] = particle->GetE(); values[AliDielectronVarManager::kM] = particle->GetMass(); values[AliDielectronVarManager::kCharge] = particle->GetQ(); values[AliDielectronVarManager::kNclsITS] = 0; values[AliDielectronVarManager::kITSchi2Cl] = -1; values[AliDielectronVarManager::kNclsTPC] = 0; values[AliDielectronVarManager::kNclsSTPC] = 0; values[AliDielectronVarManager::kNclsSFracTPC] = 0; values[AliDielectronVarManager::kNclsTPCiter1] = 0; values[AliDielectronVarManager::kNFclsTPC] = 0; values[AliDielectronVarManager::kNclsTRD] = 0; values[AliDielectronVarManager::kTRDntracklets] = 0; values[AliDielectronVarManager::kTRDpidQuality] = 0; values[AliDielectronVarManager::kTPCchi2Cl] = 0; values[AliDielectronVarManager::kTrackStatus] = 0; values[AliDielectronVarManager::kFilterBit] = 0; values[AliDielectronVarManager::kTRDprobEle] = 0; values[AliDielectronVarManager::kTRDprobPio] = 0; values[AliDielectronVarManager::kTPCsignalN] = 0; values[AliDielectronVarManager::kTPCclsDiff] = 0; values[AliDielectronVarManager::kTPCsignalNfrac]= 0; values[AliDielectronVarManager::kImpactParXY] = 0; values[AliDielectronVarManager::kImpactParZ] = 0; values[AliDielectronVarManager::kPIn] = 0; values[AliDielectronVarManager::kYsignedIn] = 0; values[AliDielectronVarManager::kTPCsignal] = 0; values[AliDielectronVarManager::kTOFsignal] = 0; values[AliDielectronVarManager::kTOFbeta] = 0; values[AliDielectronVarManager::kTPCnSigmaEleRaw] = 0; values[AliDielectronVarManager::kTPCnSigmaEle] = 0; values[AliDielectronVarManager::kTPCnSigmaPio] = 0; values[AliDielectronVarManager::kTPCnSigmaMuo] = 0; values[AliDielectronVarManager::kTPCnSigmaKao] = 0; values[AliDielectronVarManager::kTPCnSigmaPro] = 0; values[AliDielectronVarManager::kITSclusterMap] = 0; values[AliDielectronVarManager::kPdgCode] = -1; values[AliDielectronVarManager::kPdgCodeMother] = -1; values[AliDielectronVarManager::kPdgCodeGrandMother] = -1; values[AliDielectronVarManager::kHasCocktailMother]=0; values[AliDielectronVarManager::kHasCocktailGrandMother]=0; // if ( fgEvent ) AliDielectronVarManager::Fill(fgEvent, values); for (Int_t i=AliDielectronVarManager::kPairMax; iGetRunNumber(); if(fgCurrentRun!=event->GetRunNumber()) { if(fgVZEROCalibrationFile.Contains(".root")) InitVZEROCalibrationHistograms(event->GetRunNumber()); if(fgVZERORecenteringFile.Contains(".root")) InitVZERORecenteringHistograms(event->GetRunNumber()); if(fgZDCRecenteringFile.Contains(".root")) InitZDCRecenteringHistograms(event->GetRunNumber()); fgCurrentRun=event->GetRunNumber(); } values[AliDielectronVarManager::kMixingBin]=0; const AliVVertex *primVtx = event->GetPrimaryVertex(); values[AliDielectronVarManager::kXvPrim] = 0; values[AliDielectronVarManager::kYvPrim] = 0; values[AliDielectronVarManager::kZvPrim] = 0; values[AliDielectronVarManager::kNVtxContrib] = 0; // values[AliDielectronVarManager::kChi2NDF] = 0; //This is the pair value!!! values[AliDielectronVarManager::kNTrk] = 0; values[AliDielectronVarManager::kNVtxContrib] = 0; values[AliDielectronVarManager::kNacc] = 0; values[AliDielectronVarManager::kNaccTrcklts] = 0; values[AliDielectronVarManager::kNaccTrcklts0916] = 0; values[AliDielectronVarManager::kNevents] = 0; //always fill bin 0; values[AliDielectronVarManager::kRefMult] = 0; values[AliDielectronVarManager::kRefMultTPConly] = 0; if (primVtx){ // printf("prim vertex reco: %f \n",primVtx->GetX()); values[AliDielectronVarManager::kXvPrim] = primVtx->GetX(); values[AliDielectronVarManager::kYvPrim] = primVtx->GetY(); values[AliDielectronVarManager::kZvPrim] = primVtx->GetZ(); values[AliDielectronVarManager::kNVtxContrib] = primVtx->GetNContributors(); } // values[AliDielectronVarManager::kChi2NDF] = primVtx->GetChi2perNDF(); //this is the pair value // online and offline trigger maps values[AliDielectronVarManager::kTriggerInclONL] = event->GetTriggerMask(); AliAnalysisManager *man=AliAnalysisManager::GetAnalysisManager(); UInt_t maskOff = ((AliInputEventHandler*)man->GetInputEventHandler())->IsEventSelected(); values[AliDielectronVarManager::kTriggerInclOFF] = maskOff; values[AliDielectronVarManager::kTriggerExclOFF] = -1; for(Int_t i=0; i<30; i++) { if(maskOff==BIT(i)) values[AliDielectronVarManager::kTriggerExclOFF]=i; } values[AliDielectronVarManager::kNTrk] = event->GetNumberOfTracks(); if(Req(kNacc)) values[AliDielectronVarManager::kNacc] = AliDielectronHelper::GetNacc(event); if(Req(kMatchEffITSTPC)) values[AliDielectronVarManager::kMatchEffITSTPC] = AliDielectronHelper::GetITSTPCMatchEff(event); if(Req(kNaccTrcklts)) values[AliDielectronVarManager::kNaccTrcklts] = AliDielectronHelper::GetNaccTrcklts(event); // etaRange = 1.6 (default) if(Req(kNaccTrcklts0916)) values[AliDielectronVarManager::kNaccTrcklts0916] = AliDielectronHelper::GetNaccTrcklts(event,1.6)-AliDielectronHelper::GetNaccTrcklts(event,.9); // values[AliDielectronVarManager::kNaccTrcklts05] = AliDielectronHelper::GetNaccTrcklts(event, 0.5); // AODHeader::fRefMultComb05 // values[AliDielectronVarManager::kNaccTrcklts10] = AliDielectronHelper::GetNaccTrcklts(event, 1.0); // values[AliDielectronVarManager::kNaccTrckltsCorr] = AliDielectronHelper::GetNaccTrckltsCorrected(event, values[AliDielectronVarManager::kNaccTrcklts], values[AliDielectronVarManager::kZvPrim]); Double_t ptMaxEv = -1., phiptMaxEv= -1.; if(Req(kMaxPt) || Req(kPhiMaxPt)) AliDielectronHelper::GetMaxPtAndPhi(event, ptMaxEv, phiptMaxEv); values[AliDielectronVarManager::kPhiMaxPt] = phiptMaxEv; values[AliDielectronVarManager::kMaxPt] = ptMaxEv; // event plane quantities from the AliEPSelectionTask for(Int_t ivar=AliDielectronVarManager::kv0ArpH2; ivar<=kv0C0v0C3DiffH2; ivar++) values[ivar] = 0.0; // v0 variables for(Int_t ivar=AliDielectronVarManager::kTPCxH2; ivar<=kTPCsub12DiffH2uc; ivar++) values[ivar] = 0.0; // tpc variables // ep angle interval [todo, fill] AliEventplane *ep = const_cast(event)->GetEventplane(); if(ep) { // TPC event plane quantities (uncorrected) TVector2 *qstd = ep->GetQVector(); // This is the "standard" Q-Vector for TPC TVector2 *qsub1 = ep->GetQsub1(); // random subevent plane TVector2 *qsub2 = ep->GetQsub2(); if(qstd && qsub1 && qsub2) { values[AliDielectronVarManager::kTPCxH2uc] = qstd->X(); values[AliDielectronVarManager::kTPCyH2uc] = qstd->Y(); values[AliDielectronVarManager::kTPCmagH2uc] = qstd->Mod(); values[AliDielectronVarManager::kTPCrpH2uc] = ((TMath::Abs(qstd->X())>1.0e-10) ? TMath::ATan2(qstd->Y(),qstd->X())/2.0 : 0.0); values[AliDielectronVarManager::kTPCsub1xH2uc] = qsub1->X(); values[AliDielectronVarManager::kTPCsub1yH2uc] = qsub1->Y(); values[AliDielectronVarManager::kTPCsub1rpH2uc] = ((TMath::Abs(qsub1->X())>1.0e-10) ? TMath::ATan2(qsub1->Y(),qsub1->X())/2.0 : 0.0); values[AliDielectronVarManager::kTPCsub2xH2uc] = qsub2->X(); values[AliDielectronVarManager::kTPCsub2yH2uc] = qsub2->Y(); values[AliDielectronVarManager::kTPCsub2rpH2uc] = ((TMath::Abs(qsub2->X())>1.0e-10) ? TMath::ATan2(qsub2->Y(),qsub2->X())/2.0 : 0.0); values[AliDielectronVarManager::kTPCsub12DiffH2uc] = TMath::Cos( 2.*(values[AliDielectronVarManager::kTPCsub1rpH2uc] - values[AliDielectronVarManager::kTPCsub2rpH2uc]) ); } // VZERO event plane TVector2 qvec; Double_t qx = 0, qy = 0; ep->CalculateVZEROEventPlane(event,10, 2, qx, qy); qvec.Set(qx,qy); values[AliDielectronVarManager::kv0ACrpH2] = ((TMath::Abs(qvec.X())>1.0e-10) ? TMath::ATan2(qvec.Y(),qvec.X())/2.0 : 0.0); values[AliDielectronVarManager::kv0ACxH2] = qvec.X(); values[AliDielectronVarManager::kv0ACyH2] = qvec.Y(); values[AliDielectronVarManager::kv0ACmagH2] = qvec.Mod(); ep->CalculateVZEROEventPlane(event, 8, 2, qx, qy); qvec.Set(qx,qy); values[AliDielectronVarManager::kv0ArpH2] = ((TMath::Abs(qvec.X())>1.0e-10) ? TMath::ATan2(qvec.Y(),qvec.X())/2.0 : 0.0); values[AliDielectronVarManager::kv0AxH2] = qvec.X(); values[AliDielectronVarManager::kv0AyH2] = qvec.Y(); values[AliDielectronVarManager::kv0AmagH2] = qvec.Mod(); ep->CalculateVZEROEventPlane(event, 9, 2, qx, qy); qvec.Set(qx,qy); values[AliDielectronVarManager::kv0CrpH2] = ((TMath::Abs(qvec.X())>1.0e-10) ? TMath::ATan2(qvec.Y(),qvec.X())/2.0 : 0.0); values[AliDielectronVarManager::kv0CxH2] = qvec.X(); values[AliDielectronVarManager::kv0CyH2] = qvec.Y(); values[AliDielectronVarManager::kv0CmagH2] = qvec.Mod(); ep->CalculateVZEROEventPlane(event, 0, 0, 2, qx, qy); qvec.Set(qx,qy); values[AliDielectronVarManager::kv0C0rpH2] = ((TMath::Abs(qvec.X())>1.0e-10) ? TMath::ATan2(qvec.Y(),qvec.X())/2.0 : 0.0); ep->CalculateVZEROEventPlane(event, 3, 3, 2, qx, qy); qvec.Set(qx,qy); values[AliDielectronVarManager::kv0C3rpH2] = ((TMath::Abs(qvec.X())>1.0e-10) ? TMath::ATan2(qvec.Y(),qvec.X())/2.0 : 0.0); ep->CalculateVZEROEventPlane(event, 4, 4, 2, qx, qy); qvec.Set(qx,qy); values[AliDielectronVarManager::kv0A0rpH2] = ((TMath::Abs(qvec.X())>1.0e-10) ? TMath::ATan2(qvec.Y(),qvec.X())/2.0 : 0.0); ep->CalculateVZEROEventPlane(event, 7, 7, 2, qx, qy); qvec.Set(qx,qy); values[AliDielectronVarManager::kv0A3rpH2] = ((TMath::Abs(qvec.X())>1.0e-10) ? TMath::ATan2(qvec.Y(),qvec.X())/2.0 : 0.0); } //if: eventplane // ESD VZERO information AliVVZERO* vzeroData = event->GetVZEROData(); values[AliDielectronVarManager::kMultV0A] = 0.0; values[AliDielectronVarManager::kMultV0C] = 0.0; values[AliDielectronVarManager::kEqMultV0A] = 0.0; values[AliDielectronVarManager::kEqMultV0C] = 0.0; values[AliDielectronVarManager::kAdcV0A] = 0.0; values[AliDielectronVarManager::kAdcV0C] = 0.0; for(Int_t i=0; i<32; ++i) { values[AliDielectronVarManager::kVZEROchMult+i] = vzeroData->GetMultiplicity(i); values[AliDielectronVarManager::kVZEROchMult+32+i] = vzeroData->GetMultiplicity(i+32); //values[AliDielectronVarManager::kVZEROchMult+i] = event->GetVZEROEqMultiplicity(i); //values[AliDielectronVarManager::kVZEROchMult+32+i] = event->GetVZEROEqMultiplicity(i+32); values[AliDielectronVarManager::kMultV0A] += vzeroData->GetMultiplicityV0A(i); values[AliDielectronVarManager::kMultV0C] += vzeroData->GetMultiplicityV0C(i); values[AliDielectronVarManager::kEqMultV0A] += event->GetVZEROEqMultiplicity(i); values[AliDielectronVarManager::kEqMultV0C] += event->GetVZEROEqMultiplicity(i+32); //values[AliDielectronVarManager::kAdcV0A] += vzeroData->GetAdcV0A(i); //values[AliDielectronVarManager::kAdcV0C] += vzeroData->GetAdcV0C(i); } values[AliDielectronVarManager::kMultV0] = values[AliDielectronVarManager::kMultV0A] + values[AliDielectronVarManager::kMultV0C]; values[AliDielectronVarManager::kEqMultV0] = values[AliDielectronVarManager::kEqMultV0A] + values[AliDielectronVarManager::kEqMultV0C]; values[AliDielectronVarManager::kAdcV0] = values[AliDielectronVarManager::kAdcV0A] + values[AliDielectronVarManager::kAdcV0C]; // VZERO event plane quantities Double_t qvec[3]={0.0}; GetVzeroRP(event, qvec,0); // V0-A values[AliDielectronVarManager::kV0AxH2] = qvec[0]; values[AliDielectronVarManager::kV0AyH2] = qvec[1]; values[AliDielectronVarManager::kV0ArpH2] = qvec[2]; qvec[0]=0.0; qvec[1]=0.0; qvec[2]=0.0; GetVzeroRP(event, qvec,1); // V0-C values[AliDielectronVarManager::kV0CxH2] = qvec[0]; values[AliDielectronVarManager::kV0CyH2] = qvec[1]; values[AliDielectronVarManager::kV0CrpH2] = qvec[2]; qvec[0]=0.0; qvec[1]=0.0; qvec[2]=0.0; GetVzeroRP(event, qvec,2); // V0-A and V0-C combined values[AliDielectronVarManager::kV0ACxH2] = qvec[0]; values[AliDielectronVarManager::kV0ACyH2] = qvec[1]; values[AliDielectronVarManager::kV0ACrpH2] = qvec[2]; // VZERO event plane resolution values[AliDielectronVarManager::kV0ArpResH2] = 1.0; values[AliDielectronVarManager::kV0CrpResH2] = 1.0; values[AliDielectronVarManager::kV0ACrpResH2] = 1.0; // Q vector components correlations values[AliDielectronVarManager::kV0XaXcH2] = values[AliDielectronVarManager::kV0AxH2]*values[AliDielectronVarManager::kV0CxH2]; values[AliDielectronVarManager::kV0XaYaH2] = values[AliDielectronVarManager::kV0AxH2]*values[AliDielectronVarManager::kV0AyH2]; values[AliDielectronVarManager::kV0XaYcH2] = values[AliDielectronVarManager::kV0AxH2]*values[AliDielectronVarManager::kV0CyH2]; values[AliDielectronVarManager::kV0YaXcH2] = values[AliDielectronVarManager::kV0AyH2]*values[AliDielectronVarManager::kV0CxH2]; values[AliDielectronVarManager::kV0YaYcH2] = values[AliDielectronVarManager::kV0AyH2]*values[AliDielectronVarManager::kV0CyH2]; values[AliDielectronVarManager::kV0XcYcH2] = values[AliDielectronVarManager::kV0CxH2]*values[AliDielectronVarManager::kV0CyH2]; // event plane differences used for EP resolution calculation values[AliDielectronVarManager::kV0ATPCDiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kV0ArpH2] - values[AliDielectronVarManager::kTPCrpH2]) ); values[AliDielectronVarManager::kV0CTPCDiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kV0CrpH2] - values[AliDielectronVarManager::kTPCrpH2]) ); values[AliDielectronVarManager::kV0AV0CDiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kV0ArpH2] - values[AliDielectronVarManager::kV0CrpH2]) ); values[AliDielectronVarManager::kv0ATPCDiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kv0ArpH2] - values[AliDielectronVarManager::kTPCrpH2]) ); values[AliDielectronVarManager::kv0CTPCDiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kv0CrpH2] - values[AliDielectronVarManager::kTPCrpH2]) ); values[AliDielectronVarManager::kv0Av0CDiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kv0ArpH2] - values[AliDielectronVarManager::kv0CrpH2]) ); values[AliDielectronVarManager::kv0Av0C0DiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kv0ArpH2] - values[AliDielectronVarManager::kv0C0rpH2]) ); values[AliDielectronVarManager::kv0Av0C3DiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kv0ArpH2] - values[AliDielectronVarManager::kv0C3rpH2]) ); values[AliDielectronVarManager::kv0Cv0A0DiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kv0CrpH2] - values[AliDielectronVarManager::kv0A0rpH2]) ); values[AliDielectronVarManager::kv0Cv0A3DiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kv0CrpH2] - values[AliDielectronVarManager::kv0A3rpH2]) ); values[AliDielectronVarManager::kv0A0v0A3DiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kv0A0rpH2] - values[AliDielectronVarManager::kv0A3rpH2]) ); values[AliDielectronVarManager::kv0C0v0C3DiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kv0C0rpH2] - values[AliDielectronVarManager::kv0C3rpH2]) ); Double_t ZDCqvec[3][2] = {{999., 999.}, {999., 999.}, {999., 999.} }; GetZDCRP(event, ZDCqvec); values[AliDielectronVarManager::kZDCArpH1] = TMath::ATan2(ZDCqvec[0][1], ZDCqvec[0][0]); values[AliDielectronVarManager::kZDCCrpH1] = TMath::ATan2(ZDCqvec[1][1], ZDCqvec[1][0]); values[AliDielectronVarManager::kZDCACrpH1] = TMath::ATan2(ZDCqvec[2][1], ZDCqvec[2][0]); if(TMath::Abs(ZDCqvec[0][0] - 999.) < 1e-10 || TMath::Abs(ZDCqvec[0][1] - 999.) < 1e-10 || TMath::Abs(ZDCqvec[1][0] - 999.) < 1e-10 || TMath::Abs(ZDCqvec[1][1] - 999.) < 1e-10){ values[AliDielectronVarManager::kZDCArpH1] = 999; values[AliDielectronVarManager::kZDCCrpH1] = 999; values[AliDielectronVarManager::kZDCACrpH1] = 999; } values[AliDielectronVarManager::kv0ZDCrpRes] = cos(2*(values[AliDielectronVarManager::kZDCArpH1] - values[AliDielectronVarManager::kv0ArpH2])); values[AliDielectronVarManager::kZDCrpResH1] = cos(values[AliDielectronVarManager::kZDCArpH1] - values[AliDielectronVarManager::kZDCCrpH1]); } inline void AliDielectronVarManager::FillVarESDEvent(const AliESDEvent *event, Double_t * const values) { // // Fill event information available for histogramming into an array // // Fill common AliVEvent interface information FillVarVEvent(event, values); Double_t centralityF=-1; Double_t centralitySPD=-1; AliCentrality *esdCentrality = const_cast(event)->GetCentrality(); if (esdCentrality) centralityF = esdCentrality->GetCentralityPercentile("V0M"); if (esdCentrality) centralitySPD = esdCentrality->GetCentralityPercentile("CL1"); // Fill AliESDEvent interface specific information const AliESDVertex *primVtx = event->GetPrimaryVertex(); values[AliDielectronVarManager::kXRes] = primVtx->GetXRes(); values[AliDielectronVarManager::kYRes] = primVtx->GetYRes(); values[AliDielectronVarManager::kZRes] = primVtx->GetZRes(); values[AliDielectronVarManager::kCentrality] = centralityF; values[AliDielectronVarManager::kCentralitySPD] = centralitySPD; const AliESDVertex *vtxTPC = event->GetPrimaryVertexTPC(); values[AliDielectronVarManager::kNVtxContribTPC] = (vtxTPC ? vtxTPC->GetNContributors() : 0); // Event multiplicity estimators Int_t nTrSPD05=0; Int_t nTrITSTPC05=0; Int_t nTrITSSA05=0; nTrSPD05 = AliESDtrackCuts::GetReferenceMultiplicity(event, AliESDtrackCuts::kTracklets, 0.5); nTrITSTPC05 = AliESDtrackCuts::GetReferenceMultiplicity(event, AliESDtrackCuts::kTrackletsITSTPC, 0.5); nTrITSSA05 = AliESDtrackCuts::GetReferenceMultiplicity(event, AliESDtrackCuts::kTrackletsITSSA, 0.5); values[AliDielectronVarManager::kNaccTrckltsEsd05] = nTrSPD05; values[AliDielectronVarManager::kNaccItsTpcEsd05] = nTrITSTPC05; values[AliDielectronVarManager::kNaccItsPureEsd05] = nTrITSSA05; values[AliDielectronVarManager::kNaccTrckltsEsd05Corr] = AliDielectronHelper::GetNaccTrckltsCorrected(event,Double_t(nTrSPD05),values[AliDielectronVarManager::kZvPrim],0); values[AliDielectronVarManager::kNaccItsTpcEsd05Corr] = AliDielectronHelper::GetNaccTrckltsCorrected(event,Double_t(nTrITSTPC05),values[AliDielectronVarManager::kZvPrim],3); values[AliDielectronVarManager::kNaccItsPureEsd05Corr] = AliDielectronHelper::GetNaccTrckltsCorrected(event,Double_t(nTrITSSA05),values[AliDielectronVarManager::kZvPrim],6); Int_t nTrSPD10=0; Int_t nTrITSTPC10=0; Int_t nTrITSSA10=0; nTrSPD10 = AliESDtrackCuts::GetReferenceMultiplicity(event, AliESDtrackCuts::kTracklets, 1.0); nTrITSTPC10 = AliESDtrackCuts::GetReferenceMultiplicity(event, AliESDtrackCuts::kTrackletsITSTPC, 1.0); nTrITSSA10 = AliESDtrackCuts::GetReferenceMultiplicity(event, AliESDtrackCuts::kTrackletsITSSA, 1.0); values[AliDielectronVarManager::kNaccTrckltsEsd10] = nTrSPD10; values[AliDielectronVarManager::kNaccItsTpcEsd10] = nTrITSTPC10; values[AliDielectronVarManager::kNaccItsPureEsd10] = nTrITSSA10; values[AliDielectronVarManager::kNaccTrckltsEsd10Corr] = AliDielectronHelper::GetNaccTrckltsCorrected(event,Double_t(nTrSPD10),values[AliDielectronVarManager::kZvPrim],1); values[AliDielectronVarManager::kNaccItsTpcEsd10Corr] = AliDielectronHelper::GetNaccTrckltsCorrected(event,Double_t(nTrITSTPC10),values[AliDielectronVarManager::kZvPrim],4); values[AliDielectronVarManager::kNaccItsPureEsd10Corr] = AliDielectronHelper::GetNaccTrckltsCorrected(event,Double_t(nTrITSSA10),values[AliDielectronVarManager::kZvPrim],7); Int_t nTrSPD16=0; Int_t nTrITSTPC16=0; Int_t nTrITSSA16=0; nTrSPD16 = AliESDtrackCuts::GetReferenceMultiplicity(event, AliESDtrackCuts::kTracklets, 1.6); nTrITSTPC16 = AliESDtrackCuts::GetReferenceMultiplicity(event, AliESDtrackCuts::kTrackletsITSTPC, 1.6); nTrITSSA16 = AliESDtrackCuts::GetReferenceMultiplicity(event, AliESDtrackCuts::kTrackletsITSSA, 1.6); values[AliDielectronVarManager::kNaccTrckltsEsd16] = nTrSPD16; values[AliDielectronVarManager::kNaccItsTpcEsd16] = nTrITSTPC16; values[AliDielectronVarManager::kNaccItsPureEsd16] = nTrITSSA16; values[AliDielectronVarManager::kNaccTrckltsEsd16Corr] = AliDielectronHelper::GetNaccTrckltsCorrected(event,Double_t(nTrSPD16),values[AliDielectronVarManager::kZvPrim],2); values[AliDielectronVarManager::kNaccItsTpcEsd16Corr] = AliDielectronHelper::GetNaccTrckltsCorrected(event,Double_t(nTrITSTPC16),values[AliDielectronVarManager::kZvPrim],5); values[AliDielectronVarManager::kNaccItsPureEsd16Corr] = AliDielectronHelper::GetNaccTrckltsCorrected(event,Double_t(nTrITSSA16),values[AliDielectronVarManager::kZvPrim],8); } inline void AliDielectronVarManager::FillVarAODEvent(const AliAODEvent *event, Double_t * const values) { // // Fill event information available for histogramming into an array // // Fill common AliVEvent interface information FillVarVEvent(event, values); // Fill AliAODEvent interface specific information AliAODHeader *header = event->GetHeader(); Double_t centralityF=-1; Double_t centralitySPD=-1; AliCentrality *aodCentrality = header->GetCentralityP(); if (aodCentrality) centralityF = aodCentrality->GetCentralityPercentile("V0M"); if (aodCentrality) centralitySPD = aodCentrality->GetCentralityPercentile("CL1"); values[AliDielectronVarManager::kCentrality] = centralityF; values[AliDielectronVarManager::kCentralitySPD] = centralitySPD; values[AliDielectronVarManager::kRefMult] = header->GetRefMultiplicity(); // similar to Ntrk values[AliDielectronVarManager::kRefMultTPConly] = header->GetTPConlyRefMultiplicity(); // similar to Nacc /////////////////////////////////////////// //////////// NANO AODs //////////////////// /////////////////////////////////////////// // (w/o AliCentrality branch), VOM centrality should be stored in the header if(!header->GetCentralityP()) values[AliDielectronVarManager::kCentrality] = header->GetCentrality(); // (w/o AliEventPlane branch) tpc event plane stuff stored in the header if(!header->GetEventplaneP()) { // values[AliDielectronVarManager::kNTrk] = header->GetRefMultiplicity(); // overwritten datamembers in "our" nanoAODs // values[AliDielectronVarManager::kNacc] = header->GetRefMultiplicityPos(); // overwritten datamembers in "our" nanoAODs TVector2 qvec; // TPC qvec.Set(header->GetEventplaneQx(), header->GetEventplaneQy()); values[AliDielectronVarManager::kTPCxH2uc] = qvec.X(); values[AliDielectronVarManager::kTPCyH2uc] = qvec.Y(); values[AliDielectronVarManager::kTPCmagH2uc] = qvec.Mod(); values[AliDielectronVarManager::kTPCrpH2uc] = ((TMath::Abs(qvec.X())>1.0e-10) ? TMath::ATan2(qvec.Y(),qvec.X())/2.0 : 0.0); // VZERO AliEventplane ep2; // get event plane corrections from the VZERO EP selection task AliAnalysisManager *man=AliAnalysisManager::GetAnalysisManager(); AliVZEROEPSelectionTask *eptask = dynamic_cast(man->GetTask("AliVZEROEPSelectionTask")); if(eptask) eptask->SetEventplaneParams(&ep2,centralityF); else printf("no VZERO event plane selection task added! \n"); Double_t qx = 0, qy = 0; ep2.CalculateVZEROEventPlane(event,10, 2, qx, qy); qvec.Set(qx,qy); values[AliDielectronVarManager::kv0ACrpH2] = ((TMath::Abs(qvec.X())>1.0e-10) ? TMath::ATan2(qvec.Y(),qvec.X())/2.0 : 0.0); values[AliDielectronVarManager::kv0ACxH2] = qvec.X(); values[AliDielectronVarManager::kv0ACyH2] = qvec.Y(); values[AliDielectronVarManager::kv0ACmagH2] = qvec.Mod(); ep2.CalculateVZEROEventPlane(event, 8, 2, qx, qy); qvec.Set(qx,qy); values[AliDielectronVarManager::kv0ArpH2] = ((TMath::Abs(qvec.X())>1.0e-10) ? TMath::ATan2(qvec.Y(),qvec.X())/2.0 : 0.0); values[AliDielectronVarManager::kv0AxH2] = qvec.X(); values[AliDielectronVarManager::kv0AyH2] = qvec.Y(); values[AliDielectronVarManager::kv0AmagH2] = qvec.Mod(); ep2.CalculateVZEROEventPlane(event, 9, 2, qx, qy); qvec.Set(qx,qy); values[AliDielectronVarManager::kv0CrpH2] = ((TMath::Abs(qvec.X())>1.0e-10) ? TMath::ATan2(qvec.Y(),qvec.X())/2.0 : 0.0); values[AliDielectronVarManager::kv0CxH2] = qvec.X(); values[AliDielectronVarManager::kv0CyH2] = qvec.Y(); values[AliDielectronVarManager::kv0CmagH2] = qvec.Mod(); ep2.CalculateVZEROEventPlane(event, 0, 0, 2, qx, qy); qvec.Set(qx,qy); values[AliDielectronVarManager::kv0C0rpH2] = ((TMath::Abs(qvec.X())>1.0e-10) ? TMath::ATan2(qvec.Y(),qvec.X())/2.0 : 0.0); ep2.CalculateVZEROEventPlane(event, 3, 3, 2, qx, qy); qvec.Set(qx,qy); values[AliDielectronVarManager::kv0C3rpH2] = ((TMath::Abs(qvec.X())>1.0e-10) ? TMath::ATan2(qvec.Y(),qvec.X())/2.0 : 0.0); ep2.CalculateVZEROEventPlane(event, 4, 4, 2, qx, qy); qvec.Set(qx,qy); values[AliDielectronVarManager::kv0A0rpH2] = ((TMath::Abs(qvec.X())>1.0e-10) ? TMath::ATan2(qvec.Y(),qvec.X())/2.0 : 0.0); ep2.CalculateVZEROEventPlane(event, 7, 7, 2, qx, qy); qvec.Set(qx,qy); values[AliDielectronVarManager::kv0A3rpH2] = ((TMath::Abs(qvec.X())>1.0e-10) ? TMath::ATan2(qvec.Y(),qvec.X())/2.0 : 0.0); } const AliAODVertex *vtxtpc = GetVertex(event, AliAODVertex::kMainTPC); values[AliDielectronVarManager::kNVtxContribTPC] = (vtxtpc ? vtxtpc->GetNContributors() : 0); } inline void AliDielectronVarManager::FillVarMCEvent(const AliMCEvent *event, Double_t * const values) { // // Fill event information available for histogramming into an array // // Fill common AliVEvent interface information // FillVarVEvent(event, values); const AliVVertex* vtx = event->GetPrimaryVertex(); values[AliDielectronVarManager::kXvPrim] = (vtx ? vtx->GetX() : 0.0); values[AliDielectronVarManager::kYvPrim] = (vtx ? vtx->GetY() : 0.0); values[AliDielectronVarManager::kZvPrim] = (vtx ? vtx->GetZ() : 0.0); // Fill AliMCEvent interface specific information values[AliDielectronVarManager::kNch] = AliDielectronHelper::GetNch(event, 1.6); values[AliDielectronVarManager::kNch05] = AliDielectronHelper::GetNch(event, 0.5); values[AliDielectronVarManager::kNch10] = AliDielectronHelper::GetNch(event, 1.0); values[AliDielectronVarManager::kNumberOfJPsis] = AliDielectronHelper::GetNMothers(event, 0.9, 443, 11); values[AliDielectronVarManager::kNumberOfJPsisPrompt] = AliDielectronHelper::GetNMothers(event, 0.9, 443, 11, 1); values[AliDielectronVarManager::kNumberOfJPsisNPrompt] = AliDielectronHelper::GetNMothers(event, 0.9, 443, 11, 0); } inline void AliDielectronVarManager::FillVarTPCEventPlane(const AliEventplane *evplane, Double_t * const values) { // // Fill TPC event plane information after correction // if(evplane) { TVector2 *qcorr = const_cast(evplane)->GetQVector(); // This is the "corrected" Q-Vector TVector2 *qcsub1 = const_cast(evplane)->GetQsub1(); TVector2 *qcsub2 = const_cast(evplane)->GetQsub2(); if(qcorr) { values[AliDielectronVarManager::kTPCxH2] = qcorr->X(); values[AliDielectronVarManager::kTPCyH2] = qcorr->Y(); values[AliDielectronVarManager::kTPCmagH2] = qcorr->Mod(); values[AliDielectronVarManager::kTPCrpH2] = ((TMath::Abs(qcorr->X())>1.0e-10) ? TMath::ATan2(qcorr->Y(),qcorr->X())/2.0 : 0.0); // detector effects values[AliDielectronVarManager::kCosTPCrpH2] = TMath::Cos( 2.* values[AliDielectronVarManager::kTPCrpH2] ); values[AliDielectronVarManager::kSinTPCrpH2] = TMath::Sin( 2.* values[AliDielectronVarManager::kTPCrpH2] ); // correlations for event plane resoultion values[AliDielectronVarManager::kv0ATPCDiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kv0ArpH2] - values[AliDielectronVarManager::kTPCrpH2]) ); values[AliDielectronVarManager::kv0CTPCDiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kv0CrpH2] - values[AliDielectronVarManager::kTPCrpH2]) ); values[AliDielectronVarManager::kv0Av0CDiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kv0ArpH2] - values[AliDielectronVarManager::kv0CrpH2]) ); values[AliDielectronVarManager::kv0Av0C0DiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kv0ArpH2] - values[AliDielectronVarManager::kv0C0rpH2]) ); values[AliDielectronVarManager::kv0Av0C3DiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kv0ArpH2] - values[AliDielectronVarManager::kv0C3rpH2]) ); values[AliDielectronVarManager::kv0Cv0A0DiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kv0CrpH2] - values[AliDielectronVarManager::kv0A0rpH2]) ); values[AliDielectronVarManager::kv0Cv0A3DiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kv0CrpH2] - values[AliDielectronVarManager::kv0A3rpH2]) ); values[AliDielectronVarManager::kv0A0v0A3DiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kv0A0rpH2] - values[AliDielectronVarManager::kv0A3rpH2]) ); values[AliDielectronVarManager::kv0C0v0C3DiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kv0C0rpH2] - values[AliDielectronVarManager::kv0C3rpH2]) ); } if(qcsub1 && qcsub2) { values[AliDielectronVarManager::kTPCsub1xH2] = qcsub1->X(); values[AliDielectronVarManager::kTPCsub1yH2] = qcsub1->Y(); values[AliDielectronVarManager::kTPCsub1rpH2] = ((TMath::Abs(qcsub1->X())>1.0e-10) ? TMath::ATan2(qcsub1->Y(),qcsub1->X())/2.0 : 0.0); values[AliDielectronVarManager::kTPCsub2xH2] = qcsub2->X(); values[AliDielectronVarManager::kTPCsub2yH2] = qcsub2->Y(); values[AliDielectronVarManager::kTPCsub2rpH2] = ((TMath::Abs(qcsub2->X())>1.0e-10) ? TMath::ATan2(qcsub2->Y(),qcsub2->X())/2.0 : 0.0); values[AliDielectronVarManager::kTPCsub12DiffH2] = TMath::Cos( 2.*(values[AliDielectronVarManager::kTPCsub1rpH2] - values[AliDielectronVarManager::kTPCsub2rpH2]) ); values[AliDielectronVarManager::kTPCsub12DiffH2Sin] = TMath::Sin( 2.*(values[AliDielectronVarManager::kTPCsub1rpH2] - values[AliDielectronVarManager::kTPCsub2rpH2]) ); } } } inline void AliDielectronVarManager::InitESDpid(Int_t type) { // // initialize PID parameters // type=0 is simulation // type=1 is data if (!fgPIDResponse) fgPIDResponse=new AliESDpid((Bool_t)(type==0)); Double_t alephParameters[5]; // simulation alephParameters[0] = 2.15898e+00/50.; alephParameters[1] = 1.75295e+01; alephParameters[2] = 3.40030e-09; alephParameters[3] = 1.96178e+00; alephParameters[4] = 3.91720e+00; fgPIDResponse->GetTOFResponse().SetTimeResolution(80.); // data if (type==1){ alephParameters[0] = 0.0283086/0.97; alephParameters[1] = 2.63394e+01; alephParameters[2] = 5.04114e-11; alephParameters[3] = 2.12543e+00; alephParameters[4] = 4.88663e+00; fgPIDResponse->GetTOFResponse().SetTimeResolution(130.); fgPIDResponse->GetTPCResponse().SetMip(50.); } fgPIDResponse->GetTPCResponse().SetBetheBlochParameters( alephParameters[0],alephParameters[1],alephParameters[2], alephParameters[3],alephParameters[4]); fgPIDResponse->GetTPCResponse().SetSigma(3.79301e-03, 2.21280e+04); } inline void AliDielectronVarManager::InitAODpidUtil(Int_t type) { if (!fgPIDResponse) fgPIDResponse=new AliAODpidUtil; Double_t alephParameters[5]; // simulation alephParameters[0] = 2.15898e+00/50.; alephParameters[1] = 1.75295e+01; alephParameters[2] = 3.40030e-09; alephParameters[3] = 1.96178e+00; alephParameters[4] = 3.91720e+00; fgPIDResponse->GetTOFResponse().SetTimeResolution(80.); // data if (type==1){ alephParameters[0] = 0.0283086/0.97; alephParameters[1] = 2.63394e+01; alephParameters[2] = 5.04114e-11; alephParameters[3] = 2.12543e+00; alephParameters[4] = 4.88663e+00; fgPIDResponse->GetTOFResponse().SetTimeResolution(130.); fgPIDResponse->GetTPCResponse().SetMip(50.); } fgPIDResponse->GetTPCResponse().SetBetheBlochParameters( alephParameters[0],alephParameters[1],alephParameters[2], alephParameters[3],alephParameters[4]); fgPIDResponse->GetTPCResponse().SetSigma(3.79301e-03, 2.21280e+04); } inline void AliDielectronVarManager::InitEstimatorAvg(const Char_t* filename) { // // initialize the profile histograms neccessary for the correction of the multiplicity estimators in pp collisions // const Char_t* estimatorNames[9] = {"SPDmult05","SPDmult10","SPDmult16", "ITSTPC05", "ITSTPC10", "ITSTPC16", "ITSSA05", "ITSSA10", "ITSSA16"}; const Char_t* periodNames[4] = {"LHC10b", "LHC10c", "LHC10d", "LHC10e"}; TFile* file=TFile::Open(filename); if(!file) return; for(Int_t ip=0; ip<4; ++ip) { for(Int_t ie=0; ie<9; ++ie) { fgMultEstimatorAvg[ip][ie] = (TProfile*)(file->Get(Form("%s_%s",estimatorNames[ie],periodNames[ip]))->Clone(Form("%s_%s_clone",estimatorNames[ie],periodNames[ip]))); } } } inline void AliDielectronVarManager::InitTRDpidEffHistograms(const Char_t* filename) { // // initialize the 3D histograms with the TRD pid efficiency histograms // // reset the centrality ranges and the efficiency histograms for(Int_t i=0; i<10; ++i) { // centrality ranges for(Int_t j=0; j<4; ++j) fgTRDpidEffCentRanges[i][j] = -1.; if(fgTRDpidEff[i][0]) { delete fgTRDpidEff[i][0]; fgTRDpidEff[i][0] = 0x0; } if(fgTRDpidEff[i][1]) { delete fgTRDpidEff[i][1]; fgTRDpidEff[i][1] = 0x0; } } TFile* file=TFile::Open(filename); TList* keys=file->GetListOfKeys(); Int_t idxp=0; Int_t idxn=0; for(Int_t i=0; iGetEntries(); ++i) { if(idxp>=10) continue; if(idxn>=10) continue; TString name=((TKey*)keys->At(i))->ReadObj()->GetName(); // Name of histograms should be in the format: // TRDeff_cent__ // is either "BPLUS" or "BMINUS" if(!(name.Contains("BPLUS") || name.Contains("BMINUS"))) continue; TObjArray* arr = name.Tokenize("_"); Bool_t isBplus = kTRUE; if(name.Contains("BMINUS")) isBplus = kFALSE; TString centMinStr = arr->At(2)->GetName(); TString centMaxStr = arr->At(3)->GetName(); delete arr; if(isBplus) { fgTRDpidEffCentRanges[idxp][2] = centMinStr.Atof(); fgTRDpidEffCentRanges[idxp][3] = centMaxStr.Atof(); fgTRDpidEff[idxp][1] = (TH3D*)(file->Get(name.Data())->Clone(Form("%s_clone",name.Data()))); ++idxp; } else { fgTRDpidEffCentRanges[idxn][0] = centMinStr.Atof(); fgTRDpidEffCentRanges[idxn][1] = centMaxStr.Atof(); fgTRDpidEff[idxn][0] = (TH3D*)(file->Get(name.Data())->Clone(Form("%s_clone",name.Data()))); ++idxn; } } } inline Double_t AliDielectronVarManager::GetSingleLegEff(Double_t * const values) { // // get the single leg efficiency for a given particle // if(!fgLegEffMap) return -1.; if(fgLegEffMap->IsA()== THnBase::Class()) { THnBase *eff = static_cast(fgLegEffMap); Int_t dim=eff->GetNdimensions(); Int_t idx[dim]; for(Int_t idim=0; idimGetAxis(idim)->GetName()); idx[idim] = eff->GetAxis(idim)->FindBin(values[var]); if(idx[idim] < 0 || idx[idim]>eff->GetAxis(idim)->GetNbins()) return 0.0; } // printf(" bin content %f+-%f \n",eff->GetBinContent(idx), eff->GetBinError(idx)); return (eff->GetBinContent(idx)); } return -1.; } inline Double_t AliDielectronVarManager::GetPairEff(Double_t * const values) { // // get the pair efficiency for given pair kinematics // if(!fgPairEffMap) return -1.; if(fgPairEffMap->IsA()== THnBase::Class()) { THnBase *eff = static_cast(fgPairEffMap); Int_t dim=eff->GetNdimensions(); Int_t idx[dim]; for(Int_t idim=0; idimGetAxis(idim)->GetName()); idx[idim] = eff->GetAxis(idim)->FindBin(values[var]); if(idx[idim] < 0 || idx[idim]>eff->GetAxis(idim)->GetNbins()) return 0.0; } // printf(" bin content %f+-%f \n",eff->GetBinContent(idx), eff->GetBinError(idx)); return (eff->GetBinContent(idx)); } if(fgPairEffMap->IsA()== TSpline3::Class()) { TSpline3 *eff = static_cast(fgPairEffMap); if(!eff->GetHistogram()) { printf("no histogram added to the spline\n"); return -1.;} UInt_t var = GetValueType(eff->GetHistogram()->GetXaxis()->GetName()); //printf(" bin content %f \n",eff->Eval(values[var]) ); return (eff->Eval(values[var])); } return -1.; } inline void AliDielectronVarManager::InitVZEROCalibrationHistograms(Int_t runNo) { // // Initialize the VZERO channel-by-channel calibration histograms // //initialize only once if(fgVZEROCalib[0]) return; for(Int_t i=0; i<64; ++i) if(fgVZEROCalib[i]) { delete fgVZEROCalib[i]; fgVZEROCalib[i] = 0x0; } TFile file(fgVZEROCalibrationFile.Data()); for(Int_t i=0; i<64; ++i){ fgVZEROCalib[i] = (TProfile2D*)(file.Get(Form("RUN%d_ch%d_VtxCent", runNo, i))); if (fgVZEROCalib[i]) fgVZEROCalib[i]->SetDirectory(0x0); } } inline void AliDielectronVarManager::InitVZERORecenteringHistograms(Int_t runNo) { // // Initialize the VZERO event plane recentering histograms // //initialize only once if(fgVZERORecentering[0][0]) return; for(Int_t i=0; i<2; ++i) for(Int_t j=0; j<2; ++j) if(fgVZERORecentering[i][j]) { delete fgVZERORecentering[i][j]; fgVZERORecentering[i][j] = 0x0; } TFile file(fgVZERORecenteringFile.Data()); if (!file.IsOpen()) return; fgVZERORecentering[0][0] = (TProfile2D*)(file.Get(Form("RUN%d_QxA_CentVtx", runNo))); fgVZERORecentering[0][1] = (TProfile2D*)(file.Get(Form("RUN%d_QyA_CentVtx", runNo))); fgVZERORecentering[1][0] = (TProfile2D*)(file.Get(Form("RUN%d_QxC_CentVtx", runNo))); fgVZERORecentering[1][1] = (TProfile2D*)(file.Get(Form("RUN%d_QyC_CentVtx", runNo))); if (fgVZERORecentering[0][0]) fgVZERORecentering[0][0]->SetDirectory(0x0); if (fgVZERORecentering[0][1]) fgVZERORecentering[0][1]->SetDirectory(0x0); if (fgVZERORecentering[1][0]) fgVZERORecentering[1][0]->SetDirectory(0x0); if (fgVZERORecentering[1][1]) fgVZERORecentering[1][1]->SetDirectory(0x0); } inline void AliDielectronVarManager::InitZDCRecenteringHistograms(Int_t runNo) { //initialize only once if(fgZDCRecentering[0][0]) return; for(Int_t i=0; i<2; ++i) for(Int_t j=0; j<2; ++j) if(fgZDCRecentering[i][j]) { delete fgZDCRecentering[i][j]; fgZDCRecentering[i][j] = 0x0; } TFile* file=TFile::Open(fgZDCRecenteringFile.Data()); if(!file) return; fgZDCRecentering[0][0] = (TProfile3D*)file->Get(Form("RUN%06d_QxA_Recent", runNo)); fgZDCRecentering[0][1] = (TProfile3D*)file->Get(Form("RUN%06d_QyA_Recent", runNo)); fgZDCRecentering[1][0] = (TProfile3D*)file->Get(Form("RUN%06d_QxC_Recent", runNo)); fgZDCRecentering[1][1] = (TProfile3D*)file->Get(Form("RUN%06d_QyC_Recent", runNo)); fgZDCRecentering[2][0] = (TProfile3D*)file->Get(Form("RUN%06d_QxAC_Recent", runNo)); fgZDCRecentering[2][1] = (TProfile3D*)file->Get(Form("RUN%06d_QyAC_Recent", runNo)); if (fgZDCRecentering[0][0]) fgZDCRecentering[0][0]->SetDirectory(0x0); if (fgZDCRecentering[0][1]) fgZDCRecentering[0][1]->SetDirectory(0x0); if (fgZDCRecentering[1][0]) fgZDCRecentering[1][0]->SetDirectory(0x0); if (fgZDCRecentering[1][1]) fgZDCRecentering[1][1]->SetDirectory(0x0); if (fgZDCRecentering[2][0]) fgZDCRecentering[2][0]->SetDirectory(0x0); if (fgZDCRecentering[2][1]) fgZDCRecentering[2][1]->SetDirectory(0x0); delete file; } inline Double_t AliDielectronVarManager::GetTRDpidEfficiency(Int_t runNo, Double_t centrality, Double_t eta, Double_t trdPhi, Double_t pout, Double_t& effErr) { // // return the efficiency in the given phase space cell // // LHC10h data---------------------------------------------- Bool_t isBplus = kTRUE; if(runNo<=138275) isBplus = kFALSE; // TODO: check magnetic polarity for runs in 2011 data // --------------------------------------------------------- Int_t centIdx = -1; for(Int_t icent=0; icent<10; ++icent) { if(isBplus) { if(centrality>=fgTRDpidEffCentRanges[icent][2] && centrality=fgTRDpidEffCentRanges[icent][0] && centralityGetXaxis()->FindBin(eta); if(etaGetXaxis()->GetXmin()) etaBin=1; if(eta>effH->GetXaxis()->GetXmax()) etaBin=effH->GetXaxis()->GetNbins(); Int_t phiBin = effH->GetYaxis()->FindBin(trdPhi); if(trdPhiGetYaxis()->GetXmin()) phiBin=1; if(trdPhi>effH->GetYaxis()->GetXmax()) phiBin=effH->GetYaxis()->GetNbins(); Int_t poutBin = effH->GetZaxis()->FindBin(pout); if(poutGetZaxis()->GetXmin()) poutBin=1; if(pout>effH->GetZaxis()->GetXmax()) poutBin=effH->GetZaxis()->GetNbins(); Double_t eff = effH->GetBinContent(etaBin, phiBin, poutBin); effErr = effH->GetBinError(etaBin, phiBin, poutBin); if(eff<-0.0001) { effErr = 0.0; eff = 1.0; } return eff; } inline void AliDielectronVarManager::SetEvent(AliVEvent * const ev) { fgEvent = ev; if (fgKFVertex) delete fgKFVertex; fgKFVertex=0x0; if (!ev) return; if (ev->GetPrimaryVertex()) fgKFVertex=new AliKFVertex(*ev->GetPrimaryVertex()); for (Int_t i=0; iTestBit(AliAODTrack::kIsDCA)){ d0z0[0]=track->DCA(); d0z0[1]=track->ZAtDCA(); return kTRUE; } Bool_t ok=kFALSE; if(fgEvent) { Double_t covd0z0[3]; //AliAODTrack copy(*track); AliExternalTrackParam etp; etp.CopyFromVTrack(track); Float_t xstart = etp.GetX(); if(xstart>3.) { d0z0[0]=-999.; d0z0[1]=-999.; //printf("This method can be used only for propagation inside the beam pipe \n"); return kFALSE; } AliAODVertex *vtx =(AliAODVertex*)(fgEvent->GetPrimaryVertex()); Double_t fBzkG = fgEvent->GetMagneticField(); // z componenent of field in kG ok = etp.PropagateToDCA(vtx,fBzkG,kVeryBig,d0z0,covd0z0); //ok = copy.PropagateToDCA(vtx,fBzkG,kVeryBig,d0z0,covd0z0); } if(!ok){ d0z0[0]=-999.; d0z0[1]=-999.; } return ok; } inline void AliDielectronVarManager::SetTPCEventPlane(AliEventplane *const evplane) { fgTPCEventPlane = evplane; FillVarTPCEventPlane(evplane,fgData); // for (Int_t i=0; iIsA() == AliESDEvent::Class()) { const AliESDEvent* esdEv = static_cast(event); AliCentrality *esdCentrality = const_cast(esdEv)->GetCentrality(); if(esdCentrality) centralitySPD = esdCentrality->GetCentralityPercentile("CL1"); } if(event->IsA() == AliAODEvent::Class()) { const AliAODEvent* aodEv = static_cast(event); AliAODHeader *header = aodEv->GetHeader(); AliCentrality *aodCentrality = header->GetCentralityP(); if(aodCentrality) centralitySPD = aodCentrality->GetCentralityPercentile("CL1"); } const AliVVertex *primVtx = event->GetPrimaryVertex(); if(!primVtx) return; vtxZ = primVtx->GetZ(); if(TMath::Abs(vtxZ)>10.) return; if(centralitySPD<0. || centralitySPD>80.) return; Int_t binCent = -1; Int_t binVtx = -1; if(fgVZEROCalib[0]) { binVtx = fgVZEROCalib[0]->GetXaxis()->FindBin(vtxZ); binCent = fgVZEROCalib[0]->GetYaxis()->FindBin(centralitySPD); } AliVVZERO* vzero = event->GetVZEROData(); Double_t average = 0.0; for(Int_t iChannel=0; iChannel<64; ++iChannel) { if(iChannel<32 && sideOption==0) continue; if(iChannel>=32 && sideOption==1) continue; phi=iChannel%8; mult = vzero->GetMultiplicity(iChannel); if(fgVZEROCalib[iChannel]) average = fgVZEROCalib[iChannel]->GetBinContent(binVtx, binCent); if(average>1.0e-10 && mult>0.5) mult /= average; else mult = 0.0; // 2nd harmonic qvec[0] += mult*(2.0*TMath::Power(kX[phi],2.0)-1); qvec[1] += mult*(2.0*kX[phi]*kY[phi]); } // end loop over channels // do recentering if(fgVZERORecentering[0][0]) { // printf("vzero: %p\n",fgVZERORecentering[0][0]); Int_t binCentRecenter = -1; Int_t binVtxRecenter = -1; binCentRecenter = fgVZERORecentering[0][0]->GetXaxis()->FindBin(centralitySPD); binVtxRecenter = fgVZERORecentering[0][0]->GetYaxis()->FindBin(vtxZ); if(sideOption==0) { // side A qvec[0] -= fgVZERORecentering[0][0]->GetBinContent(binCentRecenter, binVtxRecenter); qvec[1] -= fgVZERORecentering[0][1]->GetBinContent(binCentRecenter, binVtxRecenter); } if(sideOption==1) { // side C qvec[0] -= fgVZERORecentering[1][0]->GetBinContent(binCentRecenter, binVtxRecenter); qvec[1] -= fgVZERORecentering[1][1]->GetBinContent(binCentRecenter, binVtxRecenter); } if(sideOption==2) { // side A and C together qvec[0] -= fgVZERORecentering[0][0]->GetBinContent(binCentRecenter, binVtxRecenter); qvec[0] -= fgVZERORecentering[1][0]->GetBinContent(binCentRecenter, binVtxRecenter); qvec[1] -= fgVZERORecentering[0][1]->GetBinContent(binCentRecenter, binVtxRecenter); qvec[1] -= fgVZERORecentering[1][1]->GetBinContent(binCentRecenter, binVtxRecenter); } } // calculate the reaction plane if(TMath::Abs(qvec[0])>1.0e-10) qvec[2] = TMath::ATan2(qvec[1],qvec[0])/2.0; } inline void AliDielectronVarManager::GetZDCRP(const AliVEvent* event, Double_t qvec[][2]) { // // Get the reaction plane from the ZDC detector for first harmonic // // Q{x,y} = SUM{ri(x,y)*Ei} / SUM{Ei} // const Int_t nZDCSides = 2; const Int_t nZDCplanes = 3; const Int_t Aside = 0, Cside = 1, ACside = 2; const Int_t nZDCTowers = 4;// number of ZDCtowers const Double_t ZDCTowerCenters[nZDCTowers][2] = { {-1.75, -1.75}, { 1.75, -1.75}, {-1.75, 1.75}, { 1.75, 1.75} }; Double_t *ZDCTEnergy[nZDCSides]; //reco E in 5 ZDC sectors - high gain chain Double_t qvecNUM[nZDCplanes][2]; Double_t qvecDEN[nZDCplanes]; memset( qvecNUM, 0, sizeof(qvecNUM)); //format memset(qvecDEN, 0, sizeof(qvecDEN)); //format Double_t TPCRefMulti = 999, vtxX = 999, vtxY = 999; Int_t multiBin = 0, vtxXBin = 0, vtxYBin = 0; Double_t recentdim[3][3] = { { 50, 0, 2500}, //multiplicity nbin, min, max { 20, 0.04, 0.08}, // vertex x nbin, min, max { 20, 0.25, 0.29} }; // vertex y nbin, min, max if(!event->GetZDCData()) return; AliVZDC* aliZDC = event->GetZDCData(); ZDCTEnergy[Aside] = (Double_t *)aliZDC -> GetZNATowerEnergy(); ZDCTEnergy[Cside] = (Double_t *)aliZDC -> GetZNCTowerEnergy(); for(int j = 0; j < nZDCSides ; j++){ for(int k = 0; k < nZDCTowers ; k++){ qvecNUM[j][0] += ZDCTowerCenters[k][0]*ZDCTEnergy[j][k+1]; // zdcQ += xE qvecNUM[j][1] += ZDCTowerCenters[k][1]*ZDCTEnergy[j][k+1]; // zdcQ += yE qvecDEN[j] += ZDCTEnergy[j][k+1]; // zdcQsum += E } if(j == Aside){ qvecNUM[j][0] = -qvecNUM[j][0]; } if(j == Cside){ qvecNUM[j][0] = -qvecNUM[j][0]; qvecNUM[j][1] = -qvecNUM[j][1]; } qvecNUM[ACside][0] += qvecNUM[j][0]; qvecNUM[ACside][1] += qvecNUM[j][1]; qvecDEN[ACside] += qvecDEN[j]; } for(int j = 0; j < nZDCplanes; j++){ if(qvecDEN[j] != 0){ qvec[j][0] = (qvecNUM[j][0] / qvecDEN[j]); qvec[j][1] = (qvecNUM[j][1] / qvecDEN[j]); } else if(qvecDEN[j] == 0) { qvec[j][0] = 999; qvec[j][1] = 999; } } if(fgZDCRecentering[0][0]){ const AliAODEvent* aodEv = static_cast(event); AliAODHeader *header = aodEv->GetHeader(); if(!header) return; TPCRefMulti = header -> GetTPConlyRefMultiplicity(); const AliVVertex *primVtx = event->GetPrimaryVertex(); if(!primVtx) return; vtxX = primVtx->GetX(); vtxY = primVtx->GetY(); multiBin = (Int_t)((TPCRefMulti-recentdim[0][1])*recentdim[0][0] / (recentdim[0][2] - recentdim[0][1])) + 1; vtxXBin = (Int_t)((vtxX-recentdim[1][1])*recentdim[1][0] / (recentdim[1][2] - recentdim[1][1])) + 1; vtxYBin = (Int_t)((vtxY-recentdim[2][1])*recentdim[2][0] / (recentdim[2][2] - recentdim[2][1])) + 1; for(int j = 0; j < nZDCplanes; j++) if(qvecDEN[j] != 0){ qvec[j][0] -= fgZDCRecentering[j][0] -> GetBinContent(multiBin, vtxXBin, vtxYBin); qvec[j][1] -= fgZDCRecentering[j][1] -> GetBinContent(multiBin, vtxXBin, vtxYBin); } } } //______________________________________________________________________________ inline AliAODVertex* AliDielectronVarManager::GetVertex(const AliAODEvent* event, AliAODVertex::AODVtx_t vtype) { // Get vertex Int_t nVertices=event->GetNumberOfVertices(); for(Int_t iVert=0; iVertGetVertex(iVert); // printf(" vtx %d contrib %d daughters %d \n ",v->GetType(),v->GetNContributors(), v->GetNDaughters()); if(v->GetType()==vtype) return v; } return 0; } /* inline void AliDielectronVarManager::FillValues(const TParticle *particle, Double_t *values) { // // Fill track information available for histogramming into an array // // Fill TParticle interface information values[AliDielectronVarManager::kPx] = particle->Px(); values[AliDielectronVarManager::kPy] = particle->Py(); values[AliDielectronVarManager::kPz] = particle->Pz(); values[AliDielectronVarManager::kPt] = particle->Pt(); values[AliDielectronVarManager::kP] = particle->P(); values[AliDielectronVarManager::kXv] = particle->Vx(); values[AliDielectronVarManager::kYv] = particle->Vy(); values[AliDielectronVarManager::kZv] = particle->Vz(); values[AliDielectronVarManager::kOneOverPt] = 1./particle->Pt(); values[AliDielectronVarManager::kPhi] = particle->Phi(); values[AliDielectronVarManager::kTheta] = values[AliDielectronVarManager::kEta] = particle->Eta(); values[AliDielectronVarManager::kY] = values[AliDielectronVarManager::kE] = particle->Energy(); values[AliDielectronVarManager::kM] = particle->GetMass(); values[AliDielectronVarManager::kCharge] = particle->GetPDG()->Charge()/3; // uggly }*/ #endif