#ifndef AliStaObjects_H #define AliStaObjects_H // $Id$ #include class AliStaHeader { public: AliStaHeader() : fRun(0), fOrbit(0), fPeriod(0), fBx(0), fL0(0), fL1(0), fL2(0), fTrClassMask(0), fTrCluster(0), fOffTriggers(0), fFiredTriggers(), fTcls(0), fV0And(0), fIsHT(0), fIsPileup(0), fIsPileup2(0), fIsPileup4(0), fIsPileup8(0), fNSpdVertices(0), fNTpcVertices(0), fV0Cent(0), fV0(0), fCl1Cent(0), fCl1(0), fTrCent(0), fTr(0), fCqual(-1), fPsi(0), fPsiRes(0), fNSelTr(0), fNSelPrimTr(0), fNSelPrimTr1(0), fNSelPrimTr2(0), fNCells(0), fNCells0(0), fNCells01(0), fNCells03(0), fNCells1(0), fNCells2(0), fNCells5(0), fNClus(0), fNClus1(0), fNClus2(0), fNClus5(0), fMaxCellE(0), fMaxClusE(0), fMaxTrE(0), fNcSM0(0), fNcSM1(0), fNcSM2(0), fNcSM3(0), fNcSM4(0), fNcSM5(0), fNcSM6(0),fNcSM7(0),fNcSM8(0),fNcSM9(0) {;} virtual ~AliStaHeader() {;} ULong64_t GetEventId() const { return (((ULong64_t)fPeriod << 36) | ((ULong64_t)fOrbit << 12) | (ULong64_t)fBx); } public: Int_t fRun; // run number UInt_t fOrbit; // orbit number UInt_t fPeriod; // period number UShort_t fBx; // bunch crossing id UInt_t fL0; // l0 trigger bits UInt_t fL1; // l1 trigger bits UShort_t fL2; // l2 trigger bits ULong64_t fTrClassMask; // trigger class mask UChar_t fTrCluster; // trigger cluster mask UInt_t fOffTriggers; // fired offline triggers for this event TString fFiredTriggers; // string with fired triggers UInt_t fTcls; // custom trigger definition Bool_t fV0And; // if V0AND (from AliTriggerAnalysis) Bool_t fIsHT; // if EMCAL L0 (from AliTriggerAnalysis) Bool_t fIsPileup; // indicate pileup from IsPileupFromSPD with 0.8 minzdist Bool_t fIsPileup2; // indicate pileup from IsPileupFromSPD with 0.4 minzdist Bool_t fIsPileup4; // indicate pileup from IsPileupFromSPD with 0.2 minzdist Bool_t fIsPileup8; // indicate pileup from IsPileupFromSPD with 0.1 minzdist UShort_t fNSpdVertices; // number of pileup vertices (spd) UShort_t fNTpcVertices; // number of pileup vertices (tpc) Double32_t fV0Cent; //[0,0,16] v0 cent Double32_t fV0; //[0,0,16] v0 result used for cent Double32_t fCl1Cent; //[0,0,16] cl1 cent Double32_t fCl1; //[0,0,16] cl1 result used for cent Double32_t fTrCent; //[0,0,16] tr cent Double32_t fTr; //[0,0,16] tr result used for cent Int_t fCqual; // centrality quality Double32_t fPsi; //[0,0,16] event-plane angle Double32_t fPsiRes; //[0,0,16] event-plane ange resolution UShort_t fNSelTr; // # selected tracks UShort_t fNSelPrimTr; // # selected tracks (primary) UShort_t fNSelPrimTr1; // # selected tracks (primary) pt > 1 GeV/c UShort_t fNSelPrimTr2; // # selected tracks (primary) pt > 2 GeV/c UShort_t fNCells; // # cells UShort_t fNCells0; // # cells > 0.45 GeV UShort_t fNCells01; // # cells > 0.1 GeV UShort_t fNCells03; // # cells > 0.3 GeV UShort_t fNCells1; // # cells > 1 GeV UShort_t fNCells2; // # cells > 2 GeV UShort_t fNCells5; // # cells > 5 GeV UShort_t fNClus; // # clus UShort_t fNClus1; // # clus > 1 GeV UShort_t fNClus2; // # clus > 2 GeV UShort_t fNClus5; // # clus > 5 GeV Double32_t fMaxCellE; //[0,0,16] maximum cell energy Double32_t fMaxClusE; //[0,0,16] maximum clus energy Double32_t fMaxTrE; //[0,0,16] maximum trigger energy UShort_t fNcSM0; // # cells > 0.1 GeV in SM 0 UShort_t fNcSM1; // # cells > 0.1 GeV in SM 1 UShort_t fNcSM2; // # cells > 0.1 GeV in SM 2 UShort_t fNcSM3; // # cells > 0.1 GeV in SM 3 UShort_t fNcSM4; // # cells > 0.1 GeV in SM 4 UShort_t fNcSM5; // # cells > 0.1 GeV in SM 5 UShort_t fNcSM6; // # cells > 0.1 GeV in SM 6 UShort_t fNcSM7; // # cells > 0.1 GeV in SM 7 UShort_t fNcSM8; // # cells > 0.1 GeV in SM 8 UShort_t fNcSM9; // # cells > 0.1 GeV in SM 9 ClassDef(AliStaHeader,6) // Header class }; class AliStaVertex { public: AliStaVertex(Double_t x=0, Double_t y=0, Double_t z=0) : fVx(x), fVy(y), fVz(z), fVc(-1), fDisp(0), fZres(0), fChi2(0), fSt(0), fIs3D(0), fIsZ(0) {;} virtual ~AliStaVertex() {;} public: Double_t fVx; //[0,0,16] vertex x Double_t fVy; //[0,0,16] vertex y Double_t fVz; //[0,0,16] vertex z Double_t fVc; //[0,0,16] number of contributors to vertex Double_t fDisp; //[0,0,16] dispersion Double_t fZres; //[0,0,16] z-resolution Double_t fChi2; //[0,0,16] chi2 of fit Bool_t fSt; // status bit Bool_t fIs3D; // is vertex from 3D Bool_t fIsZ; // is vertex from Z only ClassDef(AliStaVertex,1) // Vertex class }; class AliStaCluster : public TObject { public: AliStaCluster() : TObject(), fE(0), fR(0), fEta(0), fPhi(0), fN(0), fN1(0), fN3(0), fIdMax(-1), fSM(-1), fEmax(0), fE2max(0), fEcross(0), fTmax(0), fDbc(-1), fDisp(-1), fM20(-1), fM02(-1), fEcc(-1), fSig(-1), fSigEtaEta(-1), fSigPhiPhi(-1), fIsTrackM(0), fTrDz(0), fTrDr(-1), fTrEp(0), fTrDedx(0), fTrIso(0), fTrIso1(0), fTrIso2(0), fTrIsoD1(0), fTrIso1D1(0), fTrIso2D1(0), fTrIsoD3(0), fTrIso1D3(0), fTrIso2D3(0), fTrIsoD4(0), fTrIso1D4(0), fTrIso2D4(0), fTrIsoStrip(0), fCeIso(0), fCeIso1(0), fCeIso3(0), fCeIso4(0), fCeIso3x3(0), fCeIso4x4(0), fCeIso5x5(0), fCeCore(0), fCeIso3x22(0), fIsShared(0), fTrigId(-1), fTrigE(0), fMcLabel(-1), fEmbE(0) {;} void GetMom(TLorentzVector& p, Double_t *vertex=0); void GetMom(TLorentzVector& p, AliStaVertex *vertex); public: Double32_t fE; //[0,0,16] energy Double32_t fR; //[0,0,16] radius (cylinder) Double32_t fEta; //[0,0,16] eta Double32_t fPhi; //[0,0,16] phi UChar_t fN; // number of cells UChar_t fN1; // number of cells > 100 MeV UChar_t fN3; // number of cells > 300 MeV Short_t fIdMax; // id maximum cell Char_t fSM; // super module number (from maximum cell) Double32_t fEmax; //[0,0,16] energy of maximum cell Double32_t fE2max; //[0,0,16] energy of second maximum cell Double32_t fEcross; //[0,0,16] energy of the 4 adjacent cells around the seed Double32_t fTmax; //[0,0,16] time of maximum cell Double32_t fDbc; //[0,0,16] distance to nearest bad channel Double32_t fDisp; //[0,0,16] cluster dispersion, for shape analysis Double32_t fM20; //[0,0,16] 2-nd moment along the main eigen axis Double32_t fM02; //[0,0,16] 2-nd moment along the second eigen axis Double32_t fEcc; //[0,0,16] eccentricity Double32_t fSig; //[0,0,16] sigma Double32_t fSigEtaEta; //[0,0,16] sigma eta-eta Double32_t fSigPhiPhi; //[0,0,16] sigma phi-phi Bool_t fIsTrackM; // if true then track values are set Double32_t fTrDz; //[0,0,16] dZ to nearest track Double32_t fTrDr; //[0,0,16] dR to nearest track (in x,y) Double32_t fTrEp; //[0,0,16] E/P to nearest track Double32_t fTrDedx; //[0,0,16] dE/dx (TPC signal) to nearest track Double32_t fTrIso; //[0,0,16] track isolation Double32_t fTrIso1; //[0,0,16] track isolation (pt>1GeV/c) Double32_t fTrIso2; //[0,0,16] track isolation (pt>2GeV/c) Double32_t fTrIsoD1; //[0,0,16] track isolation, iso dist 0.25 Double32_t fTrIso1D1; //[0,0,16] track isolation (pt>1GeV/c), iso dist 0.1 Double32_t fTrIso2D1; //[0,0,16] track isolation (pt>2GeV/c), iso dist 0.1 Double32_t fTrIsoD3; //[0,0,16] track isolation, iso dist 0.3 Double32_t fTrIso1D3; //[0,0,16] track isolation (pt>1GeV/c), iso dist 0.3 Double32_t fTrIso2D3; //[0,0,16] track isolation (pt>2GeV/c), iso dist 0.3 Double32_t fTrIsoD4; //[0,0,16] track isolation, iso dist 0.4 Double32_t fTrIso1D4; //[0,0,16] track isolation (pt>1GeV/c), iso dist 0.4 Double32_t fTrIso2D4; //[0,0,16] track isolation (pt>2GeV/c), iso dist 0.4 Double32_t fTrIsoStrip; //[0,0,16] track isolation strip, dEtaXdPhi=0.015x0.3 Double32_t fCeIso; //[0,0,16] cell isolation in R=0.20 Double32_t fCeIso1; //[0,0,16] cell isolation in R=0.10 Double32_t fCeIso3; //[0,0,16] cell isolation in R=0.30 Double32_t fCeIso4; //[0,0,16] cell isolation in R=0.40 Double32_t fCeIso3x3; //[0,0,16] cell isolation in 3x3 cells Double32_t fCeIso4x4; //[0,0,16] cell isolation in 4x4 cells Double32_t fCeIso5x5; //[0,0,16] cell isolation in 5x5 cells Double32_t fCeCore; //[0,0,16] cell content in R=0.05 Double32_t fCeIso3x22; //[0,0,16] cell isolation in rectangular strip of dEtaXdPhi=0.042x0.308 Bool_t fIsShared; // =true then extends across more than one super module Short_t fTrigId; // index of matched trigger tower Double32_t fTrigE; //[0,0,16] energy (FEE) of matched trigger tower Short_t fMcLabel; // index of closest MC particle Double32_t fEmbE; //[0,0,16] sum of energy of embedded (MC) cells in cluster ClassDef(AliStaCluster,10) // Cluster class }; class AliStaTrigger : public TObject { public: AliStaTrigger() : TObject(), fE(0), fEta(0), fPhi(0), fIdMax(-1) {} public: Double32_t fE; //[0,0,16] energy Double32_t fEta; //[0,0,16] eta Double32_t fPhi; //[0,0,16] phi Short_t fIdMax; // id maximum cell ClassDef(AliStaTrigger,2) // Trigger class }; class AliStaPart : public TObject { public: AliStaPart() : TObject(), fPt(0), fEta(0), fPhi(0), fVR(0), fVEta(0), fVPhi(0), fPid(0), fMo(-1), fDet(-2), fLab(-1), fNs(0) { memset(fDs,-1,sizeof(Short_t)*99); } Int_t OnEmcal() const { return (fDet==8); } Int_t IsSim() const { return (fDet!=-2); } public: Double32_t fPt; //[0,0,16] pt Double32_t fEta; //[0,0,16] eta Double32_t fPhi; //[0,0,16] phi Double32_t fVR; //[0,0,16] prod r (cylinder) Double32_t fVEta; //[0,0,16] prod eta Double32_t fVPhi; //[0,0,16] prod phi Short_t fPid; // pid Short_t fMo; // index of mother Short_t fDet; // detector in which particle left trace (8 for EMCAL, see AliTrackReference.h) // the following must be filled before first usage Short_t fLab; //! label (index in array) Short_t fNs; //! number of daughters Short_t fDs[99]; //! daughters ClassDef(AliStaPart,1) // Particle class }; #endif