// $Id$ // // Analysis task to estimate an event's local energy density // // This task is part of the emcal jet framework and should be run in the emcaljet train // The following extensions to an accepted AliVEvent are expected: // - (anti-kt) jets -> necessary if one wants to exclude leading jet contribution to the event plane // - background estimate of rho -> this task estimates modulation, not rho itself // - pico tracks -> a uniform track selection is necessary to estimate the contribution of v_n harmonics // aod's and esd's are handled transparently // The task will estimates a phi-dependent background density rho // which is added to the event as a AliLocalRhoParamter object // // Author: Redmer Alexander Bertens, Utrecht Univeristy, Utrecht, Netherlands // (rbertens@cern.ch, rbertens@nikhef.nl, r.a.bertens@uu.nl) // root includes #include #include #include #include #include #include #include #include #include // aliroot includes #include #include #include #include #include #include #include // emcal jet framework includes #include #include #include #include #include class AliAnalysisTaskLocalRho; using namespace std; ClassImp(AliAnalysisTaskLocalRho) //_____________________________________________________________________________ AliAnalysisTaskLocalRho::AliAnalysisTaskLocalRho() : AliAnalysisTaskEmcalJet("AliAnalysisTaskLocalRho", kTRUE), fDebug(0), fInitialized(0), fAttachToEvent(kTRUE), fFillHistograms(kFALSE), fNoEventWeightsForQC(kTRUE), fUseScaledRho(0), fCentralityClasses(0), fUserSuppliedV2(0), fUserSuppliedV3(0), fUserSuppliedR2(0), fUserSuppliedR3(0), fNAcceptedTracks(0), fNAcceptedTracksQCn(0), fInCentralitySelection(-1), fFitModulationType(kNoFit), fQCRecovery(kTryFit), fUsePtWeight(kTRUE), fUsePtWeightErrorPropagation(kFALSE), fDetectorType(kTPC), fFitModulationOptions("WLQI"), fRunModeType(kGrid), fFitModulation(0), fMinPvalue(0.01), fMaxPvalue(1), fLocalJetMinEta(-10), fLocalJetMaxEta(-10), fLocalJetMinPhi(-10), fLocalJetMaxPhi(-10), fSoftTrackMinPt(0.15), fSoftTrackMaxPt(5.), fHistPvalueCDF(0), fHistRhoStatusCent(0), fAbsVnHarmonics(kTRUE), fExcludeLeadingJetsFromFit(1.), fRebinSwapHistoOnTheFly(kTRUE), fPercentageOfFits(10.), fUseV0EventPlaneFromHeader(kTRUE), fOutputList(0), fOutputListGood(0), fOutputListBad(0), fHistSwap(0), fHistAnalysisSummary(0), fProfV2(0), fProfV2Cumulant(0), fProfV3(0), fProfV3Cumulant(0) { // Default constructor for(Int_t i(0); i < 10; i++) { fHistPsi2[i] = 0; fHistPsi3[i] = 0; } } //_____________________________________________________________________________ AliAnalysisTaskLocalRho::AliAnalysisTaskLocalRho(const char* name, runModeType type) : AliAnalysisTaskEmcalJet(name, kTRUE), fDebug(0), fInitialized(0), fAttachToEvent(kTRUE), fFillHistograms(kFALSE), fNoEventWeightsForQC(kTRUE), fUseScaledRho(0), fCentralityClasses(0), fUserSuppliedV2(0), fUserSuppliedV3(0), fUserSuppliedR2(0), fUserSuppliedR3(0), fNAcceptedTracks(0), fNAcceptedTracksQCn(0), fInCentralitySelection(-1), fFitModulationType(kNoFit), fQCRecovery(kTryFit), fUsePtWeight(kTRUE), fUsePtWeightErrorPropagation(kFALSE), fDetectorType(kTPC), fFitModulationOptions("WLQI"), fRunModeType(type), fFitModulation(0), fMinPvalue(0.01), fMaxPvalue(1), fLocalJetMinEta(-10), fLocalJetMaxEta(-10), fLocalJetMinPhi(-10), fLocalJetMaxPhi(-10), fSoftTrackMinPt(0.15), fSoftTrackMaxPt(5.), fHistPvalueCDF(0), fHistRhoStatusCent(0), fAbsVnHarmonics(kTRUE), fExcludeLeadingJetsFromFit(1.), fRebinSwapHistoOnTheFly(kTRUE), fPercentageOfFits(10.), fUseV0EventPlaneFromHeader(kTRUE), fOutputList(0), fOutputListGood(0), fOutputListBad(0), fHistSwap(0), fHistAnalysisSummary(0), fProfV2(0), fProfV2Cumulant(0), fProfV3(0), fProfV3Cumulant(0) { // Constructor for(Int_t i(0); i < 10; i++) { fHistPsi2[i] = 0; fHistPsi3[i] = 0; } DefineInput(0, TChain::Class()); DefineOutput(1, TList::Class()); switch (fRunModeType) { case kLocal : { gStyle->SetOptFit(1); DefineOutput(2, TList::Class()); DefineOutput(3, TList::Class()); } break; default: fDebug = -1; // suppress debug info explicitely when not running locally } } //_____________________________________________________________________________ AliAnalysisTaskLocalRho::~AliAnalysisTaskLocalRho() { // destructor if(fOutputList) delete fOutputList; if(fOutputListGood) delete fOutputListGood; if(fOutputListBad) delete fOutputListBad; if(fFitModulation) delete fFitModulation; if(fHistSwap) delete fHistSwap; } //_____________________________________________________________________________ void AliAnalysisTaskLocalRho::ExecOnce() { // Init the analysis if(fLocalRhoName=="") fLocalRhoName = Form("LocalRhoFrom_%s", GetName()); fLocalRho = new AliLocalRhoParameter(fLocalRhoName.Data(), 0); // add the local rho to the event if necessary if(fAttachToEvent) { if(!(InputEvent()->FindListObject(fLocalRho->GetName()))) { InputEvent()->AddObject(fLocalRho); } else { AliFatal(Form("%s: Container with same name %s already present. Aborting", GetName(), fLocalRho->GetName())); } } AliAnalysisTaskEmcalJet::ExecOnce(); // init the base clas if(fUseScaledRho) { // unscaled rho has been retrieved by the parent class, now we retrieve rho scaled fRho = dynamic_cast(InputEvent()->FindListObject(Form("%s_Scaled", fRho->GetName()))); if(!fRho) { AliFatal(Form("%s: Couldn't find container for scaled rho. Aborting !", GetName())); } } if(!GetJetContainer()) AliFatal(Form("%s: Couldn't get jet container. Aborting !", GetName())); } //_____________________________________________________________________________ Bool_t AliAnalysisTaskLocalRho::InitializeAnalysis() { // Initialize the anaysis if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__); if(fLocalJetMinEta > -10 && fLocalJetMaxEta > -10) SetJetEtaLimits(fLocalJetMinEta, fLocalJetMaxEta); if(fLocalJetMinPhi > -10 && fLocalJetMaxPhi > -10) SetJetPhiLimits(fLocalJetMinPhi, fLocalJetMaxPhi); switch (fFitModulationType) { case kNoFit : { SetModulationFit(new TF1("fit_kNoFit", "[0]", 0, TMath::TwoPi())); } break; case kV2 : { SetModulationFit(new TF1("fit_kV2", "[0]*([1]+[2]*[3]*TMath::Cos([2]*(x-[4])))", 0, TMath::TwoPi())); fFitModulation->SetParameter(0, 0.); // normalization fFitModulation->SetParameter(3, 0.2); // v2 fFitModulation->FixParameter(1, 1.); // constant fFitModulation->FixParameter(2, 2.); // constant } break; case kV3: { SetModulationFit(new TF1("fit_kV3", "[0]*([1]+[2]*[3]*TMath::Cos([2]*(x-[4])))", 0, TMath::TwoPi())); fFitModulation->SetParameter(0, 0.); // normalization fFitModulation->SetParameter(3, 0.2); // v3 fFitModulation->FixParameter(1, 1.); // constant fFitModulation->FixParameter(2, 3.); // constant } break; default : { // for the combined fit, the 'direct fourier series' or the user supplied vn values we use v2 and v3 SetModulationFit(new TF1("fit_kCombined", "[0]*([1]+[2]*([3]*TMath::Cos([2]*(x-[4]))+[7]*TMath::Cos([5]*(x-[6]))))", 0, TMath::TwoPi())); fFitModulation->SetParameter(0, 0.); // normalization fFitModulation->SetParameter(3, 0.2); // v2 fFitModulation->FixParameter(1, 1.); // constant fFitModulation->FixParameter(2, 2.); // constant fFitModulation->FixParameter(5, 3.); // constant fFitModulation->SetParameter(7, 0.2); // v3 } break; } switch (fRunModeType) { case kGrid : { fFitModulationOptions += "N0"; } break; default : break; } FillAnalysisSummaryHistogram(); return kTRUE; } //_____________________________________________________________________________ void AliAnalysisTaskLocalRho::UserCreateOutputObjects() { // create output objects if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__); fHistSwap = new TH1F("fHistSwap", "fHistSwap", 20, 0, TMath::TwoPi()); if(!fCentralityClasses) { // classes must be defined at this point Int_t c[] = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}; fCentralityClasses = new TArrayI(sizeof(c)/sizeof(c[0]), c); } fOutputList = new TList(); fOutputList->SetOwner(kTRUE); // the analysis summary histo which stores all the analysis flags is always written to file fHistAnalysisSummary = BookTH1F("fHistAnalysisSummary", "flag", 51, -0.5, 51.5); if(!fFillHistograms) { PostData(1, fOutputList); return; } for(Int_t i(0); i < fCentralityClasses->GetSize()-1; i++) { fHistPsi2[i] = BookTH1F("fHistPsi2", "#Psi_{2}", 100, -.5*TMath::Pi(), .5*TMath::Pi(), i); fHistPsi3[i] = BookTH1F("fHistPsi3", "#Psi_{3}", 100, -1.*TMath::Pi()/3., TMath::Pi()/3., i); } // cdf of chisquare distribution fHistPvalueCDF = BookTH1F("fHistPvalueCDF", "CDF #chi^{2}", 500, 0, 1); fHistRhoStatusCent = BookTH2F("fHistRhoStatusCent", "centrality", "status [0=ok, 1=failed]", 101, -1, 100, 2, -.5, 1.5); // vn profiles Float_t temp[fCentralityClasses->GetSize()]; for(Int_t i(0); i < fCentralityClasses->GetSize(); i++) temp[i] = fCentralityClasses->At(i); fProfV2 = new TProfile("fProfV2", "fProfV2", fCentralityClasses->GetSize()-1, temp); fProfV3 = new TProfile("fProfV3", "fProfV3", fCentralityClasses->GetSize()-1, temp); fOutputList->Add(fProfV2); fOutputList->Add(fProfV3); switch (fFitModulationType) { case kQC2 : { fProfV2Cumulant = new TProfile("fProfV2Cumulant", "fProfV2Cumulant", fCentralityClasses->GetSize()-1, temp); fProfV3Cumulant = new TProfile("fProfV3Cumulant", "fProfV3Cumulant", fCentralityClasses->GetSize()-1, temp); fOutputList->Add(fProfV2Cumulant); fOutputList->Add(fProfV3Cumulant); } break; case kQC4 : { fProfV2Cumulant = new TProfile("fProfV2Cumulant", "fProfV2Cumulant", fCentralityClasses->GetSize()-1, temp); fProfV3Cumulant = new TProfile("fProfV3Cumulant", "fProfV3Cumulant", fCentralityClasses->GetSize()-1, temp); fOutputList->Add(fProfV2Cumulant); fOutputList->Add(fProfV3Cumulant); } break; default : break; } if(fUsePtWeight) fHistSwap->Sumw2(); if(fUserSuppliedV2) fOutputList->Add(fUserSuppliedV2); if(fUserSuppliedV3) fOutputList->Add(fUserSuppliedV3); if(fUserSuppliedR2) fOutputList->Add(fUserSuppliedR2); if(fUserSuppliedR3) fOutputList->Add(fUserSuppliedR3); // increase readability of output list fOutputList->Sort(); PostData(1, fOutputList); switch (fRunModeType) { case kLocal : { fOutputListGood = new TList(); fOutputListGood->SetOwner(kTRUE); fOutputListBad = new TList(); fOutputListBad->SetOwner(kTRUE); PostData(2, fOutputListGood); PostData(3, fOutputListBad); } break; default: break; } } //_____________________________________________________________________________ TH1F* AliAnalysisTaskLocalRho::BookTH1F(const char* name, const char* x, Int_t bins, Double_t min, Double_t max, Int_t c, Bool_t append) { // Book a TH1F and connect it to the output container if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__); if(!fOutputList) return 0x0; TString title(name); if(c!=-1) { // format centrality dependent histograms accordingly name = Form("%s_%i", name, c); title += Form("_%i-%i", fCentralityClasses->At(c), fCentralityClasses->At(1+c)); } title += Form(";%s;[counts]", x); TH1F* histogram = new TH1F(name, title.Data(), bins, min, max); histogram->Sumw2(); if(append) fOutputList->Add(histogram); return histogram; } //_____________________________________________________________________________ TH2F* AliAnalysisTaskLocalRho::BookTH2F(const char* name, const char* x, const char*y, Int_t binsx, Double_t minx, Double_t maxx, Int_t binsy, Double_t miny, Double_t maxy, Int_t c, Bool_t append) { // Book a TH2F and connect it to the output container if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__); if(!fOutputList) return 0x0; TString title(name); if(c!=-1) { // format centrality dependent histograms accordingly name = Form("%s_%i", name, c); title += Form("_%i-%i", fCentralityClasses->At(c), fCentralityClasses->At(1+c)); } title += Form(";%s;%s", x, y); TH2F* histogram = new TH2F(name, title.Data(), binsx, minx, maxx, binsy, miny, maxy); histogram->Sumw2(); if(append) fOutputList->Add(histogram); return histogram; } //_____________________________________________________________________________ Bool_t AliAnalysisTaskLocalRho::Run() { // Execute once for each event if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__); if(!(InputEvent()||fTracks||fJets||fRho)) return kFALSE; if(!fInitialized) fInitialized = InitializeAnalysis(); // get the centrality bin (necessary for some control histograms fInCentralitySelection = -1; Double_t cent(InputEvent()->GetCentrality()->GetCentralityPercentile("V0M")); for(Int_t i(0); i < fCentralityClasses->GetSize()-1; i++) { if(cent >= fCentralityClasses->At(i) && cent <= fCentralityClasses->At(1+i)) { fInCentralitySelection = i; break; } } if(fInCentralitySelection < 0) return kFALSE; // set the rho value fLocalRho->SetVal(fRho->GetVal()); // set the correct event plane accordign to the requested reference detector Double_t psi2(-1), psi3(-1); switch (fDetectorType) { // determine the detector type for the rho fit case kTPC : { // [0] psi2 [1] psi3 Double_t tpc[2]; CalculateEventPlaneTPC(tpc); psi2 = tpc[0]; psi3 = tpc[1]; } break; case kVZEROA : { // [0][0] psi2a [1,0] psi2c // [0][1] psi3a [1,1] psi3c Double_t vzero[2][2]; CalculateEventPlaneVZERO(vzero); psi2 = vzero[0][0]; psi3 = vzero[0][1]; } break; case kVZEROC : { // [0][0] psi2a [1,0] psi2c // [0][1] psi3a [1,1] psi3c Double_t vzero[2][2]; CalculateEventPlaneVZERO(vzero); psi2 = vzero[1][0]; psi3 = vzero[1][1]; } break; case kVZEROComb : { /* for the combined vzero event plane * [0] psi2 [1] psi3 * not fully implmemented yet, use with caution ! */ Double_t vzeroComb[2]; CalculateEventPlaneCombinedVZERO(vzeroComb); psi2 = vzeroComb[0]; psi3 = vzeroComb[1]; } break; default : break; } if(fFillHistograms) FillEventPlaneHistograms(psi2, psi3); switch (fFitModulationType) { // do the fits case kNoFit : { fFitModulation->FixParameter(0, fLocalRho->GetVal()); } break; case kV2 : { // only v2 if(CorrectRho(psi2, psi3)) { if(fFillHistograms) fProfV2->Fill(fCent, fFitModulation->GetParameter(3)); if(fUserSuppliedR2) { Double_t r(fUserSuppliedR2->GetBinContent(fUserSuppliedR2->GetXaxis()->FindBin(fCent))); if(r > 0) fFitModulation->SetParameter(3, fFitModulation->GetParameter(3)/r); } } } break; case kV3 : { // only v3 if(CorrectRho(psi2, psi3)) { if(fUserSuppliedR3) { Double_t r(fUserSuppliedR3->GetBinContent(fUserSuppliedR3->GetXaxis()->FindBin(fCent))); if(r > 0) fFitModulation->SetParameter(3, fFitModulation->GetParameter(3)/r); } if(fFillHistograms) fProfV3->Fill(fCent, fFitModulation->GetParameter(3)); } } break; case kQC2 : { // qc2 analysis - NOTE: not a wise idea to use this ! if(CorrectRho(psi2, psi3)) { if(fUserSuppliedR2 && fUserSuppliedR3) { // note for the qc method, resolution is REVERSED to go back to v2obs Double_t r2(fUserSuppliedR2->GetBinContent(fUserSuppliedR2->GetXaxis()->FindBin(fCent))); Double_t r3(fUserSuppliedR3->GetBinContent(fUserSuppliedR3->GetXaxis()->FindBin(fCent))); if(r2 > 0) fFitModulation->SetParameter(3, fFitModulation->GetParameter(3)*r2); if(r3 > 0) fFitModulation->SetParameter(7, fFitModulation->GetParameter(7)*r3); } if (fUsePtWeight) { // use weighted weights Double_t dQCnM11 = (fNoEventWeightsForQC) ? 1. : QCnM11(); if(fFillHistograms) { fProfV2->Fill(fCent, fFitModulation->GetParameter(3), dQCnM11); fProfV3->Fill(fCent, fFitModulation->GetParameter(7), dQCnM11); } } else { Double_t dQCnM = (fNoEventWeightsForQC) ? 2. : QCnM(); if(fFillHistograms) { fProfV2->Fill(fCent, fFitModulation->GetParameter(3), dQCnM*(dQCnM-1)); fProfV3->Fill(fCent, fFitModulation->GetParameter(7), dQCnM*(dQCnM-1)); } } } } break; case kQC4 : { // NOTE: see comment at kQC2 if(CorrectRho(psi2, psi3)) { if(fUserSuppliedR2 && fUserSuppliedR3) { // note for the qc method, resolution is REVERSED to go back to v2obs Double_t r2(fUserSuppliedR2->GetBinContent(fUserSuppliedR2->GetXaxis()->FindBin(fCent))); Double_t r3(fUserSuppliedR3->GetBinContent(fUserSuppliedR3->GetXaxis()->FindBin(fCent))); if(r2 > 0) fFitModulation->SetParameter(3, fFitModulation->GetParameter(3)*r2); if(r3 > 0) fFitModulation->SetParameter(7, fFitModulation->GetParameter(7)*r3); } if (fUsePtWeight) { // use weighted weights if(fFillHistograms) { fProfV2->Fill(fCent, TMath::Power(fFitModulation->GetParameter(3),0.5)/*, QCnM1111()*/); fProfV3->Fill(fCent, TMath::Power(fFitModulation->GetParameter(7),0.5)/*, QCnM1111()*/); } } else { if(fFillHistograms) { fProfV2->Fill(fCent, TMath::Power(fFitModulation->GetParameter(3),0.5)/*, QCnM()*(QCnM()-1)*(QCnM()-2)*(QCnM()-3)*/); fProfV3->Fill(fCent, TMath::Power(fFitModulation->GetParameter(7),0.5)/*, QCnM()*(QCnM()-1)*(QCnM()-2)*(QCnM()-3)*/); } } } } break; default : { if(CorrectRho(psi2, psi3)) { if(fUserSuppliedR2 && fUserSuppliedR3) { Double_t r2(fUserSuppliedR2->GetBinContent(fUserSuppliedR2->GetXaxis()->FindBin(fCent))); Double_t r3(fUserSuppliedR3->GetBinContent(fUserSuppliedR3->GetXaxis()->FindBin(fCent))); if(r2 > 0) fFitModulation->SetParameter(3, fFitModulation->GetParameter(3)/r2); if(r3 > 0) fFitModulation->SetParameter(7, fFitModulation->GetParameter(7)/r3); } if(fFillHistograms) { fProfV2->Fill(fCent, fFitModulation->GetParameter(3)); fProfV3->Fill(fCent, fFitModulation->GetParameter(7)); } } } break; } // if all went well, add local rho fLocalRho->SetLocalRho(fFitModulation); PostData(1, fOutputList); return kTRUE; } //_____________________________________________________________________________ void AliAnalysisTaskLocalRho::CalculateEventPlaneVZERO(Double_t vzero[2][2]) const { // Get the vzero event plane if(fUseV0EventPlaneFromHeader) { // use the vzero event plane from the event header // note: to use the calibrated vzero event plane, run // $ALICE_ROOT/ANALYSIS/macros/AddTaskVZEROEPSelection.C // prior to this task (make sure the calibration is available for the dataset // you want to use) Double_t a(0), b(0), c(0), d(0), e(0), f(0), g(0), h(0); vzero[0][0] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 8, 2, a, b); vzero[1][0] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 9, 2, c, d); vzero[0][1] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 8, 3, e, f); vzero[1][1] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 9, 3, g, h); return; } // grab the vzero event plane without recentering if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__); Double_t qxa2(0), qya2(0), qxc2(0), qyc2(0); // for psi2 Double_t qxa3(0), qya3(0), qxc3(0), qyc3(0); // for psi3 for(Int_t iVZERO(0); iVZERO < 64; iVZERO++) { Double_t phi(TMath::PiOver4()*(.5+iVZERO%8)), /* eta(0), */ weight(InputEvent()->GetVZEROEqMultiplicity(iVZERO)); // (iVZERO<32) ? eta = -3.45+.5*(iVZERO/8) : eta = 4.8-.6*((iVZERO/8)-4); if(iVZERO<32) { qxa2 += weight*TMath::Cos(2.*phi); qya2 += weight*TMath::Sin(2.*phi); qxa3 += weight*TMath::Cos(3.*phi); qya3 += weight*TMath::Sin(3.*phi); } else { qxc2 += weight*TMath::Cos(2.*phi); qyc2 += weight*TMath::Sin(2.*phi); qxc3 += weight*TMath::Cos(3.*phi); qyc3 += weight*TMath::Sin(3.*phi); } } vzero[0][0] = .5*TMath::ATan2(qya2, qxa2); vzero[1][0] = .5*TMath::ATan2(qyc2, qxc2); vzero[0][1] = (1./3.)*TMath::ATan2(qya3, qxa3); vzero[1][1] = (1./3.)*TMath::ATan2(qyc3, qxc3); } //_____________________________________________________________________________ void AliAnalysisTaskLocalRho::CalculateEventPlaneTPC(Double_t* tpc) { // Grab the TPC event plane. if parameter fExcludeLeadingJetsFromFit is larger than 0, // strip in eta of width fExcludeLeadingJetsFromFit * GetJetContainer()->GetJetRadius() around the leading jet (before // subtraction of rho) will be exluded from the event plane estimate if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__); fNAcceptedTracks = 0; // reset the track counter Double_t qx2(0), qy2(0); // for psi2 Double_t qx3(0), qy3(0); // for psi3 if(fTracks) { Float_t excludeInEta = -999; if(fExcludeLeadingJetsFromFit > 0 ) { // remove the leading jet from ep estimate AliEmcalJet* leadingJet(GetJetContainer()->GetLeadingJet()); if(leadingJet) leadingJet->Eta(); } Int_t iTracks(fTracks->GetEntriesFast()); for(Int_t iTPC(0); iTPC < iTracks; iTPC++) { AliVTrack* track = static_cast(fTracks->At(iTPC)); if(!PassesCuts(track) || track->Pt() < fSoftTrackMinPt || track->Pt() > fSoftTrackMaxPt) continue; if(fExcludeLeadingJetsFromFit > 0 &&( (TMath::Abs(track->Eta() - excludeInEta) < GetJetContainer()->GetJetRadius()*fExcludeLeadingJetsFromFit ) || (TMath::Abs(track->Eta()) - GetJetContainer()->GetJetRadius() - GetJetContainer()->GetJetEtaMax() ) > 0 )) continue; fNAcceptedTracks++; qx2+= TMath::Cos(2.*track->Phi()); qy2+= TMath::Sin(2.*track->Phi()); qx3+= TMath::Cos(3.*track->Phi()); qy3+= TMath::Sin(3.*track->Phi()); } } tpc[0] = .5*TMath::ATan2(qy2, qx2); tpc[1] = (1./3.)*TMath::ATan2(qy3, qx3); } //_____________________________________________________________________________ void AliAnalysisTaskLocalRho::CalculateEventPlaneCombinedVZERO(Double_t* comb) const { // Grab the combined vzero event plane // if(fUseV0EventPlaneFromHeader) { // use the vzero from the header Double_t a(0), b(0), c(0), d(0); comb[0] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 10, 2, a, b); comb[1] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 10, 3, c, d); // FIXME the rest of this function isn't impelmented yet (as of 01-07-2013) // this means a default the combined vzero event plane from the header is used // to get this value 'by hand', vzeroa and vzeroc event planes have to be combined // according to their resolution - this will be added ... // // } else { // Double_t qx2a(0), qy2a(0), qx2c(0), qy2c(0), qx3a(0), qy3a(0), qx3c(0), qy3c(0); // InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 8, 2, qx2a, qy2a); // InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 9, 2, qx2c, qy2c); // InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 8, 3, qx3a, qy3a); // InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 9, 3, qx3c, qy3c); // Double_t chi2A(-1), chi2C(-1), chi3A(-1), chi3C(-1); // get chi from the resolution // Double_t qx2(chi2A*chi2A*qx2a+chi2C*chi2C*qx2c); // Double_t qy2(chi2A*chi2A*qy2a+chi2C*chi2C*qy2c); // Double_t qx3(chi3A*chi3A*qx3a+chi3C*chi3C*qx3c); // Double_t qy3(chi3A*chi3A*qy3a+chi3C*chi3C*qy3c); // comb[0] = .5*TMath::ATan2(qy2, qx2); // comb[1] = (1./3.)*TMath::ATan2(qy3, qx3); // } } //_____________________________________________________________________________ Double_t AliAnalysisTaskLocalRho::CalculateQC2(Int_t harm) { // Get the second order q-cumulant, a -999 return will be caught in the qa routine of CorrectRho if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__); Double_t reQ(0), imQ(0), modQ(0), M11(0), M(0); if(fUsePtWeight) { // for the weighted 2-nd order q-cumulant QCnQnk(harm, 1, reQ, imQ); // get the weighted 2-nd order q-vectors modQ = reQ*reQ+imQ*imQ; // get abs Q-squared M11 = QCnM11(); // equals S2,1 - S1,2 return (M11 > 0) ? ((modQ - QCnS(1,2))/M11) : -999; } // else return the non-weighted 2-nd order q-cumulant QCnQnk(harm, 0, reQ, imQ); // get the non-weighted 2-nd order q-vectors modQ = reQ*reQ+imQ*imQ; // get abs Q-squared M = QCnM(); return (M > 1) ? (modQ - M)/(M*(M-1)) : -999; } //_____________________________________________________________________________ Double_t AliAnalysisTaskLocalRho::CalculateQC4(Int_t harm) { // Get the fourth order q-cumulant, a -999 return will be caught in the qa routine of CorrectRho if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__); Double_t reQn1(0), imQn1(0), reQ2n2(0), imQ2n2(0), reQn3(0), imQn3(0), M1111(0), M(0); Double_t a(0), b(0), c(0), d(0), e(0), f(0), g(0); // terms of the calculation if(fUsePtWeight) { // for the weighted 4-th order q-cumulant QCnQnk(harm, 1, reQn1, imQn1); QCnQnk(harm*2, 2, reQ2n2, imQ2n2); QCnQnk(harm, 3, reQn3, imQn3); // fill in the terms ... a = (reQn1*reQn1+imQn1*imQn1)*(reQn1*reQn1+imQn1*imQn1); b = reQ2n2*reQ2n2 + imQ2n2*imQ2n2; c = -2.*(reQ2n2*reQn1*reQn1-reQ2n2*imQn1*imQn1+2.*imQ2n2*reQn1*imQn1); d = 8.*(reQn3*reQn1+imQn3*imQn1); e = -4.*QCnS(1,2)*(reQn1*reQn1+imQn1*imQn1); f = -6.*QCnS(1,4); g = 2.*QCnS(2,2); M1111 = QCnM1111(); return (M1111 > 0) ? (a+b+c+d+e+f+g)/M1111 : -999; } // else return the unweighted case Double_t reQn(0), imQn(0), reQ2n(0), imQ2n(0); QCnQnk(harm, 0, reQn, imQn); QCnQnk(harm*2, 0, reQ2n, imQ2n); // fill in the terms ... M = QCnM(); if(M < 4) return -999; a = (reQn*reQn+imQn*imQn)*(reQn*reQn+imQn*imQn); b = reQ2n*reQ2n + imQ2n*imQ2n; c = -2.*(reQ2n*reQn*reQn-reQ2n*imQn*imQn+2.*imQ2n*reQn*imQn); e = -4.*(M-2)*(reQn*reQn+imQn*imQn); f = 2.*M*(M-3); return (a+b+c+e+f)/(M*(M-1)*(M-2)*(M-3)); } //_____________________________________________________________________________ void AliAnalysisTaskLocalRho::QCnQnk(Int_t n, Int_t k, Double_t &reQ, Double_t &imQ) { // Get the weighted n-th order q-vector, pass real and imaginary part as reference if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__); if(!fTracks) return; fNAcceptedTracksQCn = 0; Int_t iTracks(fTracks->GetEntriesFast()); for(Int_t iTPC(0); iTPC < iTracks; iTPC++) { AliVTrack* track = static_cast(fTracks->At(iTPC)); if(!PassesCuts(track) || track->Pt() < fSoftTrackMinPt || track->Pt() > fSoftTrackMaxPt) continue; fNAcceptedTracksQCn++; // for the unweighted case, k equals zero and the weight doesn't contribute to the equation below reQ += TMath::Power(track->Pt(), k) * TMath::Cos(((double)n)*track->Phi()); imQ += TMath::Power(track->Pt(), k) * TMath::Sin(((double)n)*track->Phi()); } } //_____________________________________________________________________________ Double_t AliAnalysisTaskLocalRho::QCnS(Int_t i, Int_t j) { // Get the weighted ij-th order autocorrelation correction if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__); if(!fTracks || i <= 0 || j <= 0) return -999; Int_t iTracks(fTracks->GetEntriesFast()); Double_t Sij(0); for(Int_t iTPC(0); iTPC < iTracks; iTPC++) { AliVTrack* track = static_cast(fTracks->At(iTPC)); if(!PassesCuts(track) || track->Pt() < fSoftTrackMinPt || track->Pt() > fSoftTrackMaxPt) continue; Sij+=TMath::Power(track->Pt(), j); } return TMath::Power(Sij, i); } //_____________________________________________________________________________ Double_t AliAnalysisTaskLocalRho::QCnM() { // Get multiplicity for unweighted q-cumulants. function QCnQnk should be called first if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__); return (Double_t) fNAcceptedTracksQCn; } //_____________________________________________________________________________ Double_t AliAnalysisTaskLocalRho::QCnM11() { // Get multiplicity weights for the weighted two particle cumulant if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__); return (QCnS(2,1) - QCnS(1,2)); } //_____________________________________________________________________________ Double_t AliAnalysisTaskLocalRho::QCnM1111() { // Get multiplicity weights for the weighted four particle cumulant if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__); return (QCnS(4,1)-6*QCnS(1,2)*QCnS(2,1)+8*QCnS(1,3)*QCnS(1,1)+3*QCnS(2,2)-6*QCnS(1,4)); } //_____________________________________________________________________________ Bool_t AliAnalysisTaskLocalRho::QCnRecovery(Double_t psi2, Double_t psi3) { // Decides how to deal with the situation where c2 or c3 is negative // Returns kTRUE depending on whether or not a modulated rho is used for the jet background if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__); if(TMath::AreEqualAbs(fFitModulation->GetParameter(3), .0, 1e-10) && TMath::AreEqualAbs(fFitModulation->GetParameter(7), .0,1e-10)) { fFitModulation->SetParameter(7, 0); fFitModulation->SetParameter(3, 0); fFitModulation->SetParameter(0, fLocalRho->GetVal()); return kTRUE; // v2 and v3 have physical null values } switch (fQCRecovery) { case kFixedRho : { // roll back to the original rho fFitModulation->SetParameter(7, 0); fFitModulation->SetParameter(3, 0); fFitModulation->SetParameter(0, fLocalRho->GetVal()); return kFALSE; // rho is forced to be fixed } case kNegativeVn : { Double_t c2(fFitModulation->GetParameter(3)); Double_t c3(fFitModulation->GetParameter(7)); if( c2 < 0 ) c2 = -1.*TMath::Sqrt(-1.*c2); if( c3 < 0 ) c3 = -1.*TMath::Sqrt(-1.*c3); fFitModulation->SetParameter(3, c2); fFitModulation->SetParameter(7, c3); return kTRUE; // is this a physical quantity ? } case kTryFit : { fitModulationType tempType(fFitModulationType); // store temporarily fFitModulationType = kCombined; fFitModulation->SetParameter(7, 0); fFitModulation->SetParameter(3, 0); Bool_t pass(CorrectRho(psi2, psi3)); // do the fit and all quality checks fFitModulationType = tempType; // roll back for next event return pass; } default : return kFALSE; } return kFALSE; } //_____________________________________________________________________________ Bool_t AliAnalysisTaskLocalRho::CorrectRho(Double_t psi2, Double_t psi3) { // Get rho' -> rho(phi) // three routines are available, 1 and 2 can be used with or without pt weights // [1] get vn from q-cumulants // in case of cumulants, both cumulants and vn values are stored. in both cases, v2 and v3 // are expected. a check is performed to see if rho has no negative local minimum // for full description, see Phys. Rev. C 83, 044913 // since the cn distribution has negative values, vn = sqrt(cn) can be imaginary sometimes // in this case one can either roll back to the 'original' fixed rho, do a fit for vn or take use // vn = - sqrt(|cn|) note that because of this, use of q-cumulants is not safe ! // [2] fitting a fourier expansion to the de/dphi distribution // the fit can be done with either v2, v3 or a combination. // in all cases, a cut can be made on the p-value of the chi-squared value of the fit // and a check can be performed to see if rho has no negative local minimum // [3] get v2 and v3 from user supplied histograms // in this way, a fixed value of v2 and v3 is subtracted w.r.t. whichever event plane is requested if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__); switch (fFitModulationType) { // for approaches where no fitting is required case kQC2 : { fFitModulation->FixParameter(4, psi2); fFitModulation->FixParameter(6, psi3); fFitModulation->FixParameter(3, CalculateQC2(2)); // set here with cn, vn = sqrt(cn) fFitModulation->FixParameter(7, CalculateQC2(3)); // first fill the histos of the raw cumulant distribution if (fUsePtWeight) { // use weighted weights Double_t dQCnM11 = (fNoEventWeightsForQC) ? 1. : QCnM11(); if(fFillHistograms) { fProfV2Cumulant->Fill(fCent, fFitModulation->GetParameter(3), dQCnM11); fProfV3Cumulant->Fill(fCent, fFitModulation->GetParameter(7), dQCnM11); } } else { Double_t dQCnM = (fNoEventWeightsForQC) ? 2. : QCnM(); if(fFillHistograms) { fProfV2Cumulant->Fill(fCent, fFitModulation->GetParameter(3), dQCnM*(dQCnM-1)); fProfV3Cumulant->Fill(fCent, fFitModulation->GetParameter(7), dQCnM*(dQCnM-1)); } } // then see if one of the cn value is larger than zero and vn is readily available if(fFitModulation->GetParameter(3) > 0 && fFitModulation->GetParameter(7) > 0) { fFitModulation->FixParameter(3, TMath::Sqrt(fFitModulation->GetParameter(3))); fFitModulation->FixParameter(7, TMath::Sqrt(fFitModulation->GetParameter(7))); } else if (!QCnRecovery(psi2, psi3)) return kFALSE; // try to recover the cumulant, this will set v2 and v3 if(fAbsVnHarmonics && fFitModulation->GetMinimum(0, TMath::TwoPi()) < 0) { // general check fFitModulation->SetParameter(7, 0); fFitModulation->SetParameter(3, 0); fFitModulation->SetParameter(0, fLocalRho->GetVal()); return kFALSE; } return kTRUE; } break; case kQC4 : { fFitModulation->FixParameter(4, psi2); fFitModulation->FixParameter(6, psi3); fFitModulation->FixParameter(3, CalculateQC4(2)); // set here with cn, vn = sqrt(cn) fFitModulation->FixParameter(7, CalculateQC4(3)); // first fill the histos of the raw cumulant distribution if (fUsePtWeight) { // use weighted weights if(fFillHistograms) { fProfV2Cumulant->Fill(fCent, fFitModulation->GetParameter(3)/*, QCnM1111()*/); fProfV3Cumulant->Fill(fCent, fFitModulation->GetParameter(7)/*, QCnM1111()*/); } } else { if(fFillHistograms) { fProfV2Cumulant->Fill(fCent, fFitModulation->GetParameter(3)/*, QCnM1111()*/); fProfV3Cumulant->Fill(fCent, fFitModulation->GetParameter(7)/*, QCnM1111()*/); } } // then see if one of the cn value is larger than zero and vn is readily available if(fFitModulation->GetParameter(3) > 0 && fFitModulation->GetParameter(7) > 0) { fFitModulation->FixParameter(3, TMath::Sqrt(fFitModulation->GetParameter(3))); fFitModulation->FixParameter(7, TMath::Sqrt(fFitModulation->GetParameter(7))); } else if (!QCnRecovery(psi2, psi3)) return kFALSE; // try to recover the cumulant, this will set v2 and v3 if(fAbsVnHarmonics && fFitModulation->GetMinimum(0, TMath::TwoPi()) < 0) { // general check fFitModulation->SetParameter(7, 0); fFitModulation->SetParameter(3, 0); fFitModulation->SetParameter(0, fLocalRho->GetVal()); return kFALSE; } } break; case kIntegratedFlow : { // use v2 and v3 values from an earlier iteration over the data fFitModulation->FixParameter(3, fUserSuppliedV2->GetBinContent(fUserSuppliedV2->GetXaxis()->FindBin(fCent))); fFitModulation->FixParameter(4, psi2); fFitModulation->FixParameter(6, psi3); fFitModulation->FixParameter(7, fUserSuppliedV3->GetBinContent(fUserSuppliedV3->GetXaxis()->FindBin(fCent))); if(fAbsVnHarmonics && fFitModulation->GetMinimum(0, TMath::TwoPi()) < 0) { fFitModulation->SetParameter(7, 0); fFitModulation->SetParameter(3, 0); fFitModulation->SetParameter(0, fLocalRho->GetVal()); return kFALSE; } return kTRUE; } default : break; } TString detector(""); switch (fDetectorType) { case kTPC : detector+="TPC"; break; case kVZEROA : detector+="VZEROA"; break; case kVZEROC : detector+="VZEROC"; break; case kVZEROComb : detector+="VZEROComb"; break; default: break; } Int_t iTracks(fTracks->GetEntriesFast()); Double_t excludeInEta = -999; Double_t excludeInPhi = -999; Double_t excludeInPt = -999; if(iTracks <= 0 || fLocalRho->GetVal() <= 0 ) return kFALSE; // no use fitting an empty event ... if(fExcludeLeadingJetsFromFit > 0 ) { AliEmcalJet* leadingJet = GetJetContainer()->GetLeadingJet(); if(PassesCuts(leadingJet)) { excludeInEta = leadingJet->Eta(); excludeInPhi = leadingJet->Phi(); excludeInPt = leadingJet->Pt(); } } fHistSwap->Reset(); // clear the histogram TH1F _tempSwap; // on stack for quick access TH1F _tempSwapN; // on stack for quick access, bookkeeping histogram if(fRebinSwapHistoOnTheFly) { if(fNAcceptedTracks < 49) fNAcceptedTracks = 49; // avoid aliasing effects _tempSwap = TH1F("_tempSwap", "_tempSwap", TMath::CeilNint(TMath::Sqrt(fNAcceptedTracks)), 0, TMath::TwoPi()); if(fUsePtWeightErrorPropagation) _tempSwapN = TH1F("_tempSwapN", "_tempSwapN", TMath::CeilNint(TMath::Sqrt(fNAcceptedTracks)), 0, TMath::TwoPi()); if(fUsePtWeight) _tempSwap.Sumw2(); } else _tempSwap = *fHistSwap; // now _tempSwap holds the desired histo // non poissonian error when using pt weights Double_t totalpts(0.), totalptsquares(0.), totalns(0.); for(Int_t i(0); i < iTracks; i++) { AliVTrack* track = static_cast(fTracks->At(i)); if(fExcludeLeadingJetsFromFit > 0 &&( (TMath::Abs(track->Eta() - excludeInEta) < GetJetContainer()->GetJetRadius()*fExcludeLeadingJetsFromFit ) || (TMath::Abs(track->Eta()) - GetJetContainer()->GetJetRadius() - GetJetContainer()->GetJetEtaMax() ) > 0 )) continue; if(!PassesCuts(track) || track->Pt() > fSoftTrackMaxPt || track->Pt() < fSoftTrackMinPt) continue; if(fUsePtWeight) { _tempSwap.Fill(track->Phi(), track->Pt()); if(fUsePtWeightErrorPropagation) { totalpts += track->Pt(); totalptsquares += track->Pt()*track->Pt(); totalns += 1; _tempSwapN.Fill(track->Phi()); } } else _tempSwap.Fill(track->Phi()); } if(fUsePtWeight && fUsePtWeightErrorPropagation) { // in the case of pt weights overwrite the poissonian error estimate which is assigned by root by a more sophisticated appraoch // the assumption here is that the bin error will be dominated by the uncertainty in the mean pt in a bin and in the uncertainty // of the number of tracks in a bin, the first of which will be estimated from the sample standard deviation of all tracks in the // event, for the latter use a poissonian estimate. the two contrubitions are assumed to be uncorrelated if(totalns < 1) return kFALSE; // not one track passes the cuts for(Int_t l = 0; l < _tempSwap.GetNbinsX(); l++) { if(_tempSwapN.GetBinContent(l+1) == 0) { _tempSwap.SetBinContent(l+1,0); _tempSwap.SetBinError(l+1,0); } else { Double_t vartimesnsq = totalptsquares*totalns - totalpts*totalpts; Double_t variance = vartimesnsq/(totalns*(totalns-1.)); Double_t SDOMSq = variance / _tempSwapN.GetBinContent(l+1); Double_t SDOMSqOverMeanSq = SDOMSq * _tempSwapN.GetBinContent(l+1) * _tempSwapN.GetBinContent(l+1) / (_tempSwapN.GetBinContent(l+1) * _tempSwapN.GetBinContent(l+1)); Double_t poissonfrac = 1./_tempSwapN.GetBinContent(l+1); Double_t vartotalfrac = SDOMSqOverMeanSq + poissonfrac; Double_t vartotal = vartotalfrac * _tempSwap.GetBinContent(l+1) * _tempSwap.GetBinContent(l+1); if(vartotal > 0.0001) _tempSwap.SetBinError(l+1,TMath::Sqrt(vartotal)); else { _tempSwap.SetBinContent(l+1,0); _tempSwap.SetBinError(l+1,0); } } } } fFitModulation->SetParameter(0, fLocalRho->GetVal()); switch (fFitModulationType) { case kNoFit : { fFitModulation->FixParameter(0, fLocalRho->GetVal() ); } break; case kV2 : { fFitModulation->FixParameter(4, psi2); } break; case kV3 : { fFitModulation->FixParameter(4, psi3); } break; case kCombined : { fFitModulation->FixParameter(4, psi2); fFitModulation->FixParameter(6, psi3); } break; case kFourierSeries : { // in this approach, an explicit calculation will be made of vn = sqrt(xn^2+yn^2) // where x[y] = Integrate[r(phi)cos[sin](n phi)dphi, 0, 2pi] Double_t cos2(0), sin2(0), cos3(0), sin3(0), sumPt(0); for(Int_t i(0); i < iTracks; i++) { AliVTrack* track = static_cast(fTracks->At(i)); if(!PassesCuts(track) || track->Pt() > fSoftTrackMaxPt || track->Pt() < fSoftTrackMinPt) continue; sumPt += track->Pt(); cos2 += track->Pt()*TMath::Cos(2*PhaseShift(track->Phi()-psi2)); sin2 += track->Pt()*TMath::Sin(2*PhaseShift(track->Phi()-psi2)); cos3 += track->Pt()*TMath::Cos(3*PhaseShift(track->Phi()-psi3)); sin3 += track->Pt()*TMath::Sin(3*PhaseShift(track->Phi()-psi3)); } fFitModulation->SetParameter(3, TMath::Sqrt(cos2*cos2+sin2*sin2)/fLocalRho->GetVal()); fFitModulation->SetParameter(4, psi2); fFitModulation->SetParameter(6, psi3); fFitModulation->SetParameter(7, TMath::Sqrt(cos3*cos3+sin3*sin3)/fLocalRho->GetVal()); } break; default : break; } _tempSwap.Fit(fFitModulation, fFitModulationOptions.Data(), "", 0, TMath::TwoPi()); // the quality of the fit is evaluated from 1 - the cdf of the chi square distribution Double_t CDF(1.-ChiSquareCDF(fFitModulation->GetNDF(), fFitModulation->GetChisquare())); if(fFillHistograms) fHistPvalueCDF->Fill(CDF); if(CDF > fMinPvalue && CDF < fMaxPvalue && ( fAbsVnHarmonics && fFitModulation->GetMinimum(0, TMath::TwoPi()) > 0)) { // fit quality if(fFillHistograms) fHistRhoStatusCent->Fill(fCent, 0.); // for LOCAL didactic purposes, save the best and the worst fits // this routine can produce a lot of output histograms (it's not memory 'safe') and will not work on GRID // since the output will become unmergeable (i.e. different nodes may produce conflicting output) switch (fRunModeType) { case kLocal : { if(gRandom->Uniform(0, 100) > fPercentageOfFits) break; static Int_t didacticCounterBest(0); TProfile* didacticProfile = (TProfile*)_tempSwap.Clone(Form("Fit_%i_1-CDF_%.3f_cen_%i_%s", didacticCounterBest, CDF, fInCentralitySelection, detector.Data())); TF1* didactifFit = (TF1*)fFitModulation->Clone(Form("fit_%i_CDF_%.3f_cen_%i_%s", didacticCounterBest, CDF, fInCentralitySelection, detector.Data())); didacticProfile->GetListOfFunctions()->Add(didactifFit); fOutputListGood->Add(didacticProfile); didacticCounterBest++; TH2F* didacticSurface = BookTH2F(Form("surface_%s", didacticProfile->GetName()), "#phi", "#eta", 50, 0, TMath::TwoPi(), 50, -1, 1, -1, kFALSE); for(Int_t i(0); i < iTracks; i++) { AliVTrack* track = static_cast(fTracks->At(i)); if(PassesCuts(track)) { if(fUsePtWeight) didacticSurface->Fill(track->Phi(), track->Eta(), track->Pt()); else didacticSurface->Fill(track->Phi(), track->Eta()); } } if(fExcludeLeadingJetsFromFit) { // visualize the excluded region TF2 *f2 = new TF2(Form("%s_LJ", didacticSurface->GetName()),"[0]*TMath::Gaus(x,[1],[2])*TMath::Gaus(y,[3],[4])", 0, TMath::TwoPi(), -1, 1); f2->SetParameters(excludeInPt/3.,excludeInPhi,.1,excludeInEta,.1); didacticSurface->GetListOfFunctions()->Add(f2); } fOutputListGood->Add(didacticSurface); } break; default : break; } } else { // if the fit is of poor quality revert to the original rho estimate if(fFillHistograms) fHistRhoStatusCent->Fill(fCent, 1.); switch (fRunModeType) { // again see if we want to save the fit case kLocal : { static Int_t didacticCounterWorst(0); if(gRandom->Uniform(0, 100) > fPercentageOfFits) break; TProfile* didacticProfile = (TProfile*)_tempSwap.Clone(Form("Fit_%i_1-CDF_%.3f_cen_%i_%s", didacticCounterWorst, CDF, fInCentralitySelection, detector.Data() )); TF1* didactifFit = (TF1*)fFitModulation->Clone(Form("fit_%i_p_%.3f_cen_%i_%s", didacticCounterWorst, CDF, fInCentralitySelection, detector.Data())); didacticProfile->GetListOfFunctions()->Add(didactifFit); fOutputListBad->Add(didacticProfile); didacticCounterWorst++; } break; default : break; } switch (fFitModulationType) { case kNoFit : break; // nothing to do case kCombined : fFitModulation->SetParameter(7, 0); // no break case kFourierSeries : fFitModulation->SetParameter(7, 0); // no break default : { // needs to be done if there was a poor fit fFitModulation->SetParameter(3, 0); fFitModulation->SetParameter(0, fLocalRho->GetVal()); } break; } return kFALSE; // return false if the fit is rejected } return kTRUE; } //_____________________________________________________________________________ void AliAnalysisTaskLocalRho::FillAnalysisSummaryHistogram() const { // Fill the analysis summary histrogram, saves all relevant analysis settigns if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__); fHistAnalysisSummary->GetXaxis()->SetBinLabel(2, "fJetRadius"); fHistAnalysisSummary->SetBinContent(2, GetJetContainer()->GetJetRadius()); fHistAnalysisSummary->GetXaxis()->SetBinLabel(3, "fJetEtaMin"); fHistAnalysisSummary->SetBinContent(3, GetJetContainer()->GetJetEtaMin()); fHistAnalysisSummary->GetXaxis()->SetBinLabel(4, "fJetEtaMax"); fHistAnalysisSummary->SetBinContent(4, GetJetContainer()->GetJetEtaMax()); fHistAnalysisSummary->GetXaxis()->SetBinLabel(5, "fJetPhiMin"); fHistAnalysisSummary->SetBinContent(5, GetJetContainer()->GetJetPhiMin()); fHistAnalysisSummary->GetXaxis()->SetBinLabel(6, "fJetPhiMax"); fHistAnalysisSummary->SetBinContent(6, GetJetContainer()->GetJetPhiMin()); fHistAnalysisSummary->GetXaxis()->SetBinLabel(34, "fitModulationType"); fHistAnalysisSummary->SetBinContent(34, (int)fFitModulationType); fHistAnalysisSummary->GetXaxis()->SetBinLabel(35, "runModeType"); fHistAnalysisSummary->SetBinContent(35, (int)fRunModeType); fHistAnalysisSummary->GetXaxis()->SetBinLabel(37, "iterator"); fHistAnalysisSummary->SetBinContent(37, 1.); fHistAnalysisSummary->GetXaxis()->SetBinLabel(38, "fMinPvalue"); fHistAnalysisSummary->SetBinContent(38, fMinPvalue); fHistAnalysisSummary->GetXaxis()->SetBinLabel(39, "fMaxPvalue"); fHistAnalysisSummary->SetBinContent(39, fMaxPvalue); fHistAnalysisSummary->GetXaxis()->SetBinLabel(40, "fExcludeLeadingJetsFromFit"); fHistAnalysisSummary->SetBinContent(40, fExcludeLeadingJetsFromFit); fHistAnalysisSummary->GetXaxis()->SetBinLabel(41, "fRebinSwapHistoOnTheFly"); fHistAnalysisSummary->SetBinContent(41, (int)fRebinSwapHistoOnTheFly); fHistAnalysisSummary->GetXaxis()->SetBinLabel(42, "fUsePtWeight"); fHistAnalysisSummary->SetBinContent(42, (int)fUsePtWeight); fHistAnalysisSummary->GetXaxis()->SetBinLabel(45, "fLocalJetMinEta"); fHistAnalysisSummary->SetBinContent(45,fLocalJetMinEta ); fHistAnalysisSummary->GetXaxis()->SetBinLabel(46, "fLocalJetMaxEta"); fHistAnalysisSummary->SetBinContent(46, fLocalJetMaxEta); fHistAnalysisSummary->GetXaxis()->SetBinLabel(47, "fLocalJetMinPhi"); fHistAnalysisSummary->SetBinContent(47, fLocalJetMinPhi); fHistAnalysisSummary->GetXaxis()->SetBinLabel(48, "fLocalJetMaxPhi"); fHistAnalysisSummary->SetBinContent(48, fLocalJetMaxPhi); fHistAnalysisSummary->GetXaxis()->SetBinLabel(49, "fSoftTrackMinPt"); fHistAnalysisSummary->SetBinContent(49, fSoftTrackMinPt); fHistAnalysisSummary->GetXaxis()->SetBinLabel(50, "fSoftTrackMaxPt"); fHistAnalysisSummary->SetBinContent(50, fSoftTrackMaxPt); fHistAnalysisSummary->GetXaxis()->SetBinLabel(51, "fUseScaledRho"); fHistAnalysisSummary->SetBinContent(51, fUseScaledRho); } //_____________________________________________________________________________ void AliAnalysisTaskLocalRho::FillEventPlaneHistograms(Double_t psi2, Double_t psi3) const { // Fill event plane histograms if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__); fHistPsi2[fInCentralitySelection]->Fill(psi2); fHistPsi3[fInCentralitySelection]->Fill(psi3); } //_____________________________________________________________________________ void AliAnalysisTaskLocalRho::Terminate(Option_t *) { // Terminate } //_____________________________________________________________________________ void AliAnalysisTaskLocalRho::SetModulationFit(TF1* fit) { // Set function to fit modulation if (fFitModulation) delete fFitModulation; fFitModulation = fit; }